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The paper presents a semi-analytical method for the study of a linear differential system with vari-
able coefficients. The solution is given in terms of real positive integer powers; it is obtained in terms
of independent functions which are computed numerically. The paper extended the semi-analytical
method from [5] (for one differential equation only), to the study of a linear differential system.
The differential system became a system with recurrent expressions between the coefficients of the
power series in a matrix form. The strength of this method is shown by application to the dynamic
analysis of typical rotor blades. The frequencies and mode shapes are calculated. The results are
compared with theoretical results for the degenerate cases and with results obtained through other
methods.

NOMENCLATURE

E Young’s modulus,

G tangential elasticity modulus,

GJ torsion rigidity,

I, I3 geometrical inertial moments with respect to the principal axes passing
through the elastic centre,

[f[] non-dimensional matrix of the rigidity due to bending,

ko, k3g gyration radius of the cross section with respect to the principal axes passing
through the elastic centre,

m non-dimensional matrix of gyration radius,

m mass of the unit length of the beam,

l beam length,

M, My, M, non-dimensional components of the moment in cross section with respect

'rs ) Tm
Tg
Sy ) Sz
i

to the rotating coordinate system,

geometrical and mass asymmetry section coefficients,
gyration radius dimensionless by [,

non-dimensional shear stress resultants,

centrifugal stress,

1This is an extended version of the article presented at the 8th International Conference on Numerical Methods
in Continuum Mechanics, Liptovsky Jan, Low Tatras, Slovakia, September 19-24, 2000.
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Ta, Tg the distance between GC and EC of the cross section, dimensionless by [,
Z5, Zp x( cross section coordinate where pre-twisted angle is 6*,
[2(8)] state vector used in the transfer matrix method,
& non-dimensional coordinate,
0 pre-twist angle of the beam,
0 0 angle at zj position,
w natural frequencies, (rad/sec),
0.=22, (r=3.
¢ 8:50 3§

1. INTRODUCTION

The paper presents a semi-analytical method for the study of a linear differential system with
variable coefficients (polynomial coefficients).: The solution is given in terms of real positive in-
teger powers; it is obtained in terms of independent functions, which are computed numeri-
cally.

V. Giurgiutiu presented a similarly semi-analytical method, but for one differential equation only
in [5]. The present paper extended the semi-analytical method from [5], to the study of a linear
differential system with variable coefficients. The differential system became a system with recurrent
expressions between the coefficients of the power series in a matrix form. The mutual influence
between the unknown functions (terms of coupling) can be evaluated. The frequencies and mode
shapes can be calculated.

The strength of this method is shown by application to the dynamic analysis of typical rotor
blades. The frequencies and mode shapes are calculated. To the dynamic analysis of partial coupled
movements, of helicopter blades, the semi-analytical method has been applied in [1-3]. The results
are compared with theoretical results for the degenerate cases and with results obtained trough
others methods: Transmission Matrix Method (TMM), Integrating Matrix Methods (IMM) and
Structural Influence Functions Method (SIFM) respectively

2. DESCRIPTION OF THE SEMI-ANALYTICAL METHOD

A system in a matrix form with three differential equations with polynomial coefficients is consid-
ered, where & € [€p, £1] is the variable,

() ®3) () (1) (0)

T i T T z 9z
Mlgyly| +Mle|y| +Mlely| +Moyly| +Mgly| =9 |- Q)
z z z z z gz

The boundary conditions are

z(éo) = zo, y(&o) = o, z(¢) = 20,

2
d%[x(ﬁo)] = Vg , adg[y(ﬁo)] = Uy , d%[z(ﬁo)] = Vg, o

z(§1) = =1, y(&1) = v, z(&1) = 2,

%h@ﬂ=mm %W@ﬂ=mw L =,
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[M];) is a 3x3 matrix with polynomial coefficients (fourth degree polynomials are considered),

)]
z gz
|:y . §=0,1,2,3,4 is the ¢-derivative of j order of the z(¢), y(£), z(£) functions, I:gy :| is the
z 9z
absolute term of differential system (1) (fourth degree polynomials are considered).

In the differential system (1), the solution z(¢), y(€), z(§) will be approximated by power series,

(o o]
oot 2523 (4 Ba Ch1ES (3)
k=0
resulting in
) k + 5)! :
[25y 8] =3[die; Buss Cuas | k!’) &, §=1234 (4)

k=0

After calculations the differential system (1) will be transformed through (3) and (4) in a system
with recurrent expressions between the coefficients of the power series. These expressions written in
a matrix form

) -3 Agyi ak
B {Z [([N]i) [ By ] + | bk }} =0. (5)
k=0 | i=4 Ci ek

Since the relation (5) is valid (V) € € [¢o, &, the following recurrent matrix expression results,

Aktq ak -3 Api
[ B4 ] = -[N)g? [ bk ] -> { [([N131) [N):] [ By ] } (V) k >0, (6

Cr+4 ek i=3 Cr+i

~—

where [ Agyi Biyi Chyi | =0ifk+i<0.

The analysis of the recurrent expressions shows that there are only 12 independent coefficients:
A01A1’A2’A37B07B1aB2’B37CO, Cl, 02;03-

The mutual influence between the unknown functions z(£), y(§), z2(£) can be evaluated as follows:

¢ 36 independent functions are defined
o0
Xo() =&+ ) AR, ne{l,234}
k=4
2 ‘
Xl =3 4, n € {5,6,7,8,9,10,11,12},
k=4
o0
Ya(€) =€"°+> Bpet*, ne{56,78},

21 k=4 (7)
Yoy W “Epet n € {1,2,3,4,9,10,11,12},
=d

o0
Za(€) =E5+Y CReF,  ne{9,10,11,12},
k=4

o0
Z,(€) =) Cre*, n€{1,2,3,4,5,6,7,8}.
k=4
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o The coefficients A}, By}, C! are determined by using the recurrent expression (6) for the fol-

lowing initial sets of values,

(S1) A ST e R 2,9 B=CL=0, " "Fe{U.T,58)
(S2) A sy oAle0 o ke 10.2.3) B=t=0 keloldst
(S3) At e Adin Qs 0k 640, 131 BReGi=0,  kel0leal
(S4) Bxl, A0 kel BE=(2=0, kei{8138}:
(S5) =t B=0, tc{l23), A=C0C=0 Relp1ih
(56) =1 H=0 ¥keil023}, A= C0 =1, '~ Re {0,123} ®)
(S7) Ml Bl=0 relirs), Al =0L=0, ‘Fe{lias,
(S8) =1 B=0 kec{019). A=C=0, keci{018.M
(59) e=1l, Ci=0, keirLz3l Al=Bl=0,,kc{0 125
(510) Ci’=ig C}'=0, 00,23}, Adt= Bi%=10.7 k640,41, 2:3)
(S11) =1, i =0, ke {13} Al =B =0 ke {01,285
(S12) 8 b O 0. ko6 §0ci: 23, Al = Bl2.= 0.k ei{, 1,23},
e The general solution of the system (1) can be described as
z(£)- X1(6) X2(¢) Xs(¢) X12(§)
[y(f) } = $1:X1{6) HlE) 5(6) Y12(6)
z(¢) Z1(&) Z2(8) Z3(¢) Z12(¢)
([ 40 A1 4, A3 By By B, By Gy C1 Gy Gy 1) 9)

3. DYNAMIC ANALYSIS OF ROTATING BLADES

This work develops the problem of coupled free linear vibrations for the blade of a lifting propeller
modelled as a rotating beam. In accordance with the general theory from [4, 6, 9, 10, 12, 13],
the differential equations for the coupled vibrations were determined. A semi-analytical method
is used for the study of coupled linear vibrations. The displacements in a cross section of beam
are approximated with power series. Until now power series have been used only to the study the
uncoupled linear vibrations.

3.1. Hypothesis: The linear equation of motion

The following assumptions are made in order to develop the model of a long blade of a lifting
propeller. ;

The blade is modelled as a straight beam, contained in the plane of rotation; one of its ends is
embedded off the axis of rotation (eo); the centre of gravity (GC) and the centre of elongation (TC)
of any cross section of beam are generally different. The beam can be simultaneously bent in two
planes and can have a rotation around the elastic axis (EA).

The elastic axis of the blade (EA), is assumed initially to be a straight line; the angle between EA
and the plane of rotation is . By construction, the blade is pre-twisted by with angle 6 around EA.
The pre-twisting angle varies linearly along the blade. We consider the Taylor series expansion
around 6%, truncated to the first four terms for the trigonometric functions sin and cos.

Hooke laws and Euler-Bernoulli hypotheses regarding the rotation of the cross section are con-
sidered for the case of small displacements. Also, moderate rotations are taken into consideration.

The reference system considered (see Fig. 1) has the following features: it is a rotating system;
2-constant angular velocity; the origin is the embedded end of the blade, located at the distance e
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cross section symmetry
axis

Xo

Torsion

Fig. 1. Geometry of the undeformed blade

from the rotation axis (Ozo — the undeformed elastic axis); a reference section located at the
distance z} from the origin is pre-twisted with the angle 6*.

The displacements of the elastic axis (v, w) are measured on the Oy respective on the Oz
directions; ¢ is the twisting displacement around the elastic axis.

The displacements have harmonic variations in time

[vwol=[8 @ @], i=+v-1, (10)

considering ¥, W, ¢ as functions of only z¢ coordinate.
The differential equations for the coupled free linear vibrations, having in mind all the above
considerations, are '

{[EI] [ ;’) ]’u ~ 27T [ _C(S,islfge ] }
st o (sotea 0| 20, e[ Pt )} (e[ 2]}

cotzo {mpaen o | Snp | +moa 20 |} 4 {1 s ] }

_m[(w2+92)5]+mxc[(w2+92)sin0] 5-0, (11a)

S =

wi w?cos @ r
{(GJ + 1*,-2_,]T)c,2),ag},z +m {w?(knE + ks3g) — Q*[kar — kssg — Bze(zo + €)sinf]} &

+ Tz (W gz c0S 0 — D g4 Sinb) — mQ2zq(zo + e)(W 4 cos @ — ¥ 5 sin0)

+ mQ2B [(ka2k — k3sp)Dz + 2ka3pw z) — mzc [(Q® + w?)ising — w?Bcosf] =0,  (11b)

Elyp Ely 1 10 EI, —EI3 [ cos20 sin20
= [Efzs EI33] 3 2+E3){[0 1]+E12+E13[sin29 —cos2o]}’(12a)

koor kosg 1 10 kor — k3g | cos20 sin260
K= —(k k prebees 0 :
] [ kosg K33k ] 2( 26 + ksp) {[ 0 1 ] b kog + ksg | sin20 — cos 26 (12b)
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Equations (11) must be considered with the boundary conditions for the embedded blade,

T #(0) =w(0) =0, ¢(0) =0,
220+ { 5,4(6) = B4(€) = 0,
g M, (13)
ol [ - ] —§, M, =0, Tl,u=0,
z zo=l Mz et

where T is the axial force, S is the shear force and M is the moment from the section.

3.2. Semi-analytical method for the dynamic analysis of the blade
The differential equations (11) are processed step by step as presented below:

e the change of variable zo — £ leads to the following expression for the law of the beam pre-
twisting 6(¢),

3 =] Ee[—x—o,l—ﬁ], O(zo) = 0(¢) = 0" + h¢; (14)

e we consider the Taylor series expansion around 6* for the trigonometric functions sin and cos;
the series are truncated to the first four terms;

o the differential equations (11) written in a non-dimensional form using specific coefficients:

— rotation speed: Q= m Q21
o gt =7 A AN
— frequency: W= M——
—, g v T G
— axial force: f=m=a§2+b§+c,
; ; k k
— inertia: uz=%2E, M3=%, p=p+us ,
GJ
— rigidit tio: A= —r-—
rigidity ratio B+’

— asymmetry coefficients for cross section (mass and geometry):

oS S
T = ) o= = o s
L+13 M2 + (3

— coefficients for geometrical dimensions:
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In the differential equations obtained, the displacements are approximated by a power series

[5 @ @]=)_[Ar B Crl€ (15)
k=0

After calculations, the differential system became a system with recurrent expressions between
the coefficients of the power series. These expressions written in a matrix form are:

Apya 2 o -3 = Ak+j
Beya | = (Lla +Q[QL)™ D (L] +QUQY +3(S];) | Bres |, (Mk>0;
Cr+2 =3 Citi—2 (16)

[Alc+j Bk+j]=0 if k4+7<0; Ck+j_2=0 if k+5-2<0.

The matrices [L];, [S];, [Ql;, 7 € {-3,-2,-1,0,1,2,3,4}, were obtained after analytical cal-
culations with power series coefficients.

The analysis of the recurrent expressions concluded that there are only 10 independent coeffi-
cients: Ag, A1, A2, A3, By, B1, B2, B3, (o, C) .

Thirty independent functions are defined:

Valf) =€"1+ ) AReF,  ne{1,2,3,4),
k=4

Va€) =D Ape*, n € {5,6,7,8,9,10},
k=4

Wa(€)=£€""+> Bpe*, . ne{56,7,8),

o (17)
Wa(¢) =) Bpé*, n €{1,2,3,4,9,10},

k=4

() =5 Y Oper ey, 10},
k=2

o0
8.6} = > Cpe*, n € {1,2,3,4,5,6,7,8}.
k=2

The coefficients A}, B , Cp will be determined by using the recurrent expressions starting with
10 initial sets of values, selected for these independent coefficients (see relation (8)).
The general solution of the system is

v(¢) i) Va(6) Va(€) ... ... Vio(é)
w(é) | = | Wa(€) Wa(§) Ws(§) ... ... Wi(€) | -[D],
?(¢) 2(E) 2e) B3() o o Pr0(d) e
[D]F =[Ao A1 A» A3 By By B, By Cy C1].
The £ derivative of j order, 7 € {1,2,3,4} of 9(¢), w(§), @(£) functions can be calculated.
The boundary conditions for the embedded blade are:
S v(¢) =w(¢) =0, @) =0,
c=o=-g:  {BTUNTS,
S'. Mz (19)
ETICTEL TR -8 | T {M} 203 s lomtis2.0:
z2 dle=6 M, 3

£=61
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The transfer matrix method will be used to determine the frequencies and mode shapes. The
state vector is

[21(6) = [9(6) @) @) (&) @'(©) 58
The relation between & and ¢ sections is
[2](6) = [F(&)] - [D] = [F(&)] - [F (&))" - [2(é0)] = [G(€,€0)] - [2(&0)].- (21)

The [F(€)] matrix is computed by substituting the relations (18) into the expressions of the state
vector elements. The elements of the [F(£)] matrix are:

(&) M.(6) -My(&) My(&)]" . (20)

Fln(g) = Vn(f)a F2n(§) = Wn(f)a F3n(§) = <I>n(§),

Fin(€) = Vi(€),  Fsal) = WA(O),

Fl®) | _ i %O 1" [ %@ .1 oo @ T

[Fm(a)]‘ [EI][Wn(é’)] 1] [Wn@)] [K][Wn(a]’ 22
P}l _m=r [ Val® 1"

[an@)]‘[E”[Wn«)] ’

The transfer matrix 10x10 [G(&,&p)] can be numerically computed for a fixed value €.
The partition matrix of the [G(¢, {o)] matrix, which contains the elements between i and j rows
and k and [ columns respectively, is denoted by

(", )ew).

The following relations are obtained for a cantilever blade:

e the frequency equation is

det ([G( e 10, 10 ) (gl,go)D = 0; (23)

e the mode shapes relation is :
5] e
le( ) €[ 7T 000 ) (51,40)]_1

'[G<7’610’6)(§1,§0)J- (24)

The relations (23) and (24) may be particularized for uncoupled and partially coupled cases of
calculus.

The present method can be extended for study of non-uniform blade (structural or inertial
discontinuous of blade).

S 8 <
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3.3. Numerical applications

The matrix form of this method makes possible a simple computational implementation.

For the circular cantilever beam in Fig. 2 the relative error for the first six natural bending
frequencies, is presented with regard to theoretical results, reported by kmax the maximum degree
of the polynomial resulted from the truncated power series. For kpax > 50 the error is very small.

For the circular cantilever beam in Fig. 3, the influence of the rotation speed on the natural
bending frequencies and a comparison with results from [14] are presented.

The present semi-analytical method is applied to the hypothetical rotor blade, which was studied
in [7, 8, 11] with the Transmission Matrix Method (TMM), Integrating Matrix Methods (IMM) and
Structural Influence Functions Method (SIFM) respectively. The characteristics of this blade are
the following, according to [7, 8, 11]:

length [ =40in=1.016 m
mass/length m = 0.0015 slugs/m = 0.86185 kg/m
section zg = 0.4 in = 0.01016 m, z7 =0 m = const,

characteristics: kgg = 0.71 in? = 4.5806 - 10~* m?, k3g = 0.18 in® = 1.1613 - 10~ m?,
EI, = EI3 = 25000 Ib-in? = 71.745 Nm?, GJ = 9000 lb-in? = 25.8282 Nm?2.

BENDING NATURAL FREQUENCIES TORSION NATURAL FREQUENCIES
: ; : : : 0.1 : : : S i
8y ; { o i NFREQ. '
x lIth N. FR.:.Q. ‘ . ......................................
§p e : : o Hh N.FREQ.
< I‘ ; \ *IV-th N. FREQ. C* Ilth N. FREQ.
3 ; | #V-thN. FREQ. 9 :
: ; : T: 0'02 .........................
g ] SRR S R ey g
@ i Warl  pahe ianes 1 oasy . aaar OF -SSR
e é g
E 2 \ % 2002 [ dessianiianmi
] 2
1‘1 i@ m & m -0.04
H—# # # #
} 4 1 } } [0 J 0] SECEESETRUTTERLIY PUTIRITS SPCRSTI
0 : S ......
; . : : o770 | T SRRk (O e T o A AL AD SR SETERATE SRB RS 18 2 B AR
qbls : i i : ] : 0.4 : ; i ;
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
kmax kmax
Fig. 2. Relative error of natural frequencies reported by kmax
FLAP-BENDING FLAP and LAG-BENDING
150 i
ear D STTR
——— %" |
m o Paper [14] ]
2 100 2 100
(5] Q
8 - Present method S
P | 3
g /e// g
B 77 | B .
3 =3
8 50 § 50
i
HE - e
ke e e e
S :
00______6—___———9——-——"9" of= e % . o
L i i
0 2 4 6 8 10 12 0 2 4 6 8 10 12
rotation speed rotation speed

Fig. 3. Influence of the rotation speed on the natural frequencies for circular cantilever beam
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Table 1. Comparison of results for natural frequencies for flap-torsion coupled movements

Natural frequencies (rad/s)
Mode shapes | Reference [7] | Reference [8] | Reference [11] | Present paper
M.M.T. M.M.L F.I.G. (S.M.)
1-F1 31.05 31.05 31.06 31.089
2-F2 193.74 193.74 193.79 195.53
3-T1 390.87 390.87 390.91 324.13
4-F3 539.54 539.54 539.64 549.59
5-T2 - = & 970.83
6-F4 1041.72 1043.94 1043.87 1086.20
FiAP BENDING and TORSION
1400 / : 22
" F4 : ;
1200 g .
z o // F3
§ 1000 =
[}
317 goof =T UL BT =
o - Present method
ug; 600 e F2
£ o =
© 400 ¢ ——
200r¢ P
0 ‘}// v ;
0 50 100 150 200 250 300

rotation speed (rad/s)

Fig. 4. Influence of the rotation speed on the natural frequencies for flap-torsion coupling

The dynamic analysis is made for this blade, for the partial coupled vibration (flap-torsion). The
results for natural frequencies are shown in Table 1 and Fig. 4, in comparison with the reference
results for this blade. The comparison is presented for non-rotating blade only.

The above presented method has allowed the identification of some natural frequencies which
were omitted in [7, 8, 11] (w = 970.83 rad/s and others). The dynamic characteristics for the coupled
flap-torsion vibration, obtained with the semi-analytical method are in good agreement with the
results of other methods.

The method is also used for determining the mode shapes. In Figs. 5 to 10 the mode shapes are
shown for the case of the non-rotating blade (€ = 0). Each mode shape is dimensionless. w and ©
deformations are dimensionless with respect to their maximal values.

The present semi-analytical method can also be applied to the hypothetical rotor blade, which
was studied in [7] and [11] with the Transmission Matrix Method (TMM) and Structural Influ-
ence Functions Method (SIFM) respectively. The characteristics of this blade are shown as follows,
according to [7].

length [ =40in =1.016 m

mass/length m = 0.0015 slugs/m = 0.86185 kg/m

pre-twist 6 = 45°

section zg = V2 in = 0.035921 m, zr =0 m = const,

characteristics: EI = 75000 Ib-in? = 215.235 Nm?, EI3 = 25000 lb-in? = 71.745 Nm?2,

GJ = 9000 1b-in? = 25.8282 Nm?2.
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1.5
MODE SHAPE 1 - "F1", N. FREQ.=31.089 rad/s
1L DENDING W | i L
0.5¢ /

-0.5¢
e i 2 s
15 ‘ : : ‘
0 0.2 0.4 0.6 0.8 1
length
Fig. 5. The mode shape 1-F1
1.5

MODE SHAPE 3 - "T1", N.FREQ.=324.13 rad/s
* BENDING "W" - TORSION

0.5
_1 B ccicinieiatererererersiaretereseieie e s s erers st ore e eiereiereiersieraraisieiersittaieiattcatmIntntas
- 02 04 06 08 1
0 : 4 onath & :
Fig. 7. The mode shape 3-T1
15
MODE SHAPE 5 - "T2", N. FREQ.=970.83 rad/s
COCDRIRNINE 1 50102 [0 (101380 - TORSION
0.5}
0
0.5
-1 e 41/
e 0.2 0.4 0.6 0.8 1

" length ™

Fig. 9. The mode shape 5-T2

1.5

MODE SHAPE 2 - "F2", N. FREQ.=195.53 rad/s
* BENDING "W"

0.5f
0
-0.5
wf |aisieisiaisisnicio bl gt o et st e e eete)
A5 : : - : ‘
0 0.2 0.4 0.6 0.8 1
length
Fig. 6. The mode shape 2-F2
1.5
MODE SHAPE 4 - "F3", N. FREQ.=549.59 rad/s
gl BENRING WG cisonic - JORSION
0.5}
0
-0.5
-1
-15 : : : .
0 0.2 0.4 0.6 0.8 1
length
Fig. 8. The mode shape 4-F3
1.5
MODE SHAPE 6 - "F4", N. FREQ.=1086.2 rad/s
,|...1 BENDING "W - TORSION |
0.5f
0
-0.5
-1
-1.5 . : : \
0 0.2 04 0.6 0.8 1

" length ™

Fig. 10. The mode shape 6-F4
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Table 2. Comparison of results for natural frequencies for flap-lag-torsion coupled movements

Natural frequencies (rad/s)
Mode shapes | Reference [7] | Reference [11] | Present paper
T.M.M. S.LF.M. S.M.
1 30.8295 30.838 31.032
2. 53.8277 53.8404 53.749
3. 184.6175 184.6821 192.81
4. = = 235.62
5. 337.3333 337.4116 333.96
6. 484.3373 484.2932 532.61
T = - 706.85
8. = H 922.51
9. = — 1023.9
10. = - 1178.1
Uniform blade with pre-twist. Flap-Lag-Torsion coupling
1400 :
i / / / .
8 s00 [T |
S B
E’ 600
S 400} e
© o— e
o | e
R i
B e
0 e
0 50 100 150 200 250

rotation speed (rad/s)

Fig. 11. Influence of the rotation speed on the natural frequencies

The dynamic analysis is made for this blade, for the coupled vibration flap-lag-torsion. The
results for natural frequencies are shown in Table 2 and Fig 11, in comparison with the reference
results for this blade. The method presented allows the identification of some natural frequencies
which were omitted in [7] and [11] (w = 235.62 rad/s and others). The influence of the rotation
speed on the natural bending frequencies is presented for this rotating blade in Fig. 11.

The method is also used for determining the mode shapes. In Figs. 12 to 21, the mode shapes
are shown for the case of the non-rotating blade (2 = 0). Each mode shape is dimensionless. Thus:
the bending deformations v and w are dimensionless with respect to the maximum value between
them. The torsion deformation ¢ is dimensionless with respect to its maximum value.

Although the studied case was that of coupled vibrations for constant pre-twist angle 6 = 45°
the results may lead to a very interesting interpretation. The mode shapes in Figs. 12 and 13
(w = 31.032 rad/s = W1Bmin and w = 53.749 rad/s = w1 pmax) mode shapes are particular bending
mode shapes of first degree (no node). These correspond to bending pertaining to the main axis of
inertia of the cross-section. Similarly, the mode shapes in Figs. 14 and 16 (w = 192.81rad/s = weBmin
and w = 333.960 rad/s = wapmax) are proper mode shapes of second degree (one node), and those
in Figs. 17 and 19 (w = 532.61 rad/s = = w3pmin and w = 922.51 rad/s = w3pmax) are proper
modes of third degree (two nodes).
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38 MODE SHAPE 1, N. FREQ.=31.032 rad/s
o BENDING"V"  * BENDING"W" - TORSION
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The mode shapes in Figs. 12, 13, 14, 16, 17, 19 are “mostly” bending mode shapes. The mode
shapes in Fig. 15 (w = 235.62 rad/s), Fig. 18 (w = 706.85 rad/s) and Fig. 21 (w=1178.1rad/s) are
“mostly” torsion mode shapes.

Although 6 = 45° there are differences between the absolute values of the displacements v and
w in the mode shapes corresponding to the bending where v and w have opposite signs. When v
and w have the same sign their values are fairly equal. These differences become more obvious with
the increase of the value of natural frequencies. These observations can be explained if the coupling
terms from deformations v, w, and ¢ are analysed, for Q = 0, and pre-twist 6 = 45°. These are:

(AP K P —.Y

Ze[(Q+ @) sind — @@ cos 6) in relation (11b).

Results obtained through this method for this mechanical system are in good agreement with
the real characteristics of the system.

The present semi-analytical method can be used to the non-uniform blade, also which was studied
in [7] and [11]. The principle characteristics of this blade are shown in Table 3, according to [7]. This
blade was modelled as a blade made of five uniform segments. The characteristics of this model are
shown in Table 4.
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Table 3. Characteristics of non-uniform blade

length [ = 18 in = 0.4572 m;

radius of rigid fixing e = 6.8 in = 0.17272 m

coordinate m - 103 EI, - 10~¢ ET; -10-° pre-twist 6
(in) (Ib-s?/in?) (Ib-in?) (1b-in2) (deg)
0.0 1.026 63.0 0.200 30.5
2.0 0.696 49.0 0.110 25.2
4.0 0.660 46.0 0.083 20.1
6.0 0.608 44.0 0.058 14.8
8.0 0.564 43.0 0.042 9.6
10.0 0.535 43.0 0.031 4.7
12.0 0.520 44.0 0.027 0.0
14.0 0.506 47.0 0.026 —4.2
16.0 0.498 51.0 0.025 -7.5
18.0 0.498 56.0 0.024 —10.0
Table 4. Characteristics of model for non-uniform blade
length | = 0.4572 m,; radius of rigid fixing e = 0.17272 m
coordinate m EIl, El3 pre-twist 6
(m) (kg/m) | (N'm?) | (N-m?) (deg)
0.0 -0.0508 | 5.9364 | 160708.84 | 444.82 0.5323—- 0.4398
0.0508-0.1524 | 4.5229 | 132728.28 | 239.63 0.4398- 0.2583
0.1524-0.254 3.9145 | 124118.88 | 124.12 0.2583- 0.0820
0.254 -0.3556 | 3.5870 | 127706.13 79.64 0.0820--0.0733
0.3556-0.4572 | 3.4474 | 147077.29 71.75 | —0.0733——0.1745
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Fig. 22. Influence of the rotation speed on the natural frequencies
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The results for natural frequencies are shown in Fig. 22, in comparison with the reference results
for this blade [7, 11]. Results obtained for this mechanical system are in good agreement with the
references.

4. CONCLUSIONS

All results obtained and your comparison with the reference results concluded:

The exact representation of centrifugal forces and their influence on the phenomena are the main
advantage of this semi-analytical method. The possibility to accurately calculate higher derivatives
for complex blades is the second advantage.

Another advantage of the method is that it points out the influences of all functional and con-
structive parameters of the blade. The convergence of the method was analysed with respect to the
maximum degree of the polynomial resulted from the truncated power series.

The dynamic characteristics for the coupled flap-lag-torsion vibration, obtained with this method
are in good agreement with the results of other methods. The method may be extended for discon-
tinuous blades, or blades with concentrated inertial loads.
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