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In this paper, Trefftz polynomials are used for the development of FEM based on the reciprocity relations.
Such reciprocity principles are known from the Boundary Element formulations, however, using the Tre-
fftz polynomials in the reciprocity relations instead of the fundamental solutions yields the non-singular
integral equations for the evaluation of corresponding sub-domain (element) relations. A weak form sat-
isfaction of the equilibrium is used for the inter-domain connectivity relations. For linear problems, the
element stiffness matrices are defined in the boundary integral equation form. In non-linear problems the
total Lagrangian formulation leads to the evaluation of the boundary integrals over the original (related)
domain evaluated only once during the solution and to the volume integrals containing the non-linear
terms.

Also, Trefftz polynomials can be used in the post-processing phase of the FEM computations for small
strain problems. By using the Trefftz polynomials as local interpolators, smooth fields of the secondary
variables (strains, stresses, etc.) can be found in the whole domain (if it is homogeneous). This approach
considerably increases the accuracy of the evaluated fields while maintaining the same rate of convergence
as that of the primary fields. Stress smoothing for large displacements will be the aim of further research.

Considering the examples of simple tension, pure bending and tension of fully clamped rectangular
plate (2D stress/strain problems) for large strain-large rotation problems, the use of the initial stiffness,
the Newton-Raphson procedure, and the incremental Newton-Raphson procedure will be discussed.

1. INTRODUCTION

The Trefftz (T-) functions [26] are those which satisfy all the governing equations of the problem, i.e.
the differential equations inside the domain and the boundary conditions on the domain boundaries.
The polynomial Trefftz functions can be found in a simple way for many important 2D and 3D solid
and fluid mechanics problems by the methods of symbolic algebra or by numerical methods [12, 14].
Also, the fundamental solutions of the governing equations in all domain (except the source point if
lying outside the domain) can be included into the T-interpolation functions. For general problems,
obtaining the solution satisfying all governing equations is difficult; only an approximate solution
can be found. The simplest way to satisfy the boundary conditions is the collocation method, where
the boundary conditions are satisfied in the discrete points of the boundary only [11]. Such an
approximation does not guarantee the convergence of the solution in the multi-domain formulation.
Further more, many other approaches can be found in which the inter-domain continuity and bound-
ary condition satisfaction is enforced in the weak (integral) sense (e.g. weighted residual, variational
form, integral least squares [10]).

In the hybrid FEM formulations, the internal and boundary fields are chosen independently; the
internal field variables are approximated by T-functions, and the boundary field enforces both the
inter-domain continuity and the satisfaction of the boundary conditions in a weak sense [10, 13,
21, 24, 25]. In such formulations, the internal primary fields (displacements in hybrid-displacement
FEM formulations) are incompatible between the elements, but usually the corresponding boundary
fields are taken as representative of the solution.

!This is an extended version of the article presented at the 8th International Conference on Numerical Methods
in Continuum Mechanics, Liptovsky Jan, Low Tatras, Slovakia, September 19-24, 2000.



470 V. Kompis, P. Novdk and M. Handrik

In this paper, FE approximation using T-functions is shown in the reciprocity based FEM formu-
lations; these are well known from the BEM [1, 7, 8]. If non-singular T-functions [5] are used for the
approximation of the variables’ fields, difficulties encountered with numerical integration [1, 3, 18, 19]
are not present. Numerical integration is a special procedure necessary for the integration of the sin-
gular integrals with weak, strong or hyper-singular kernels or the integrals with quasi-singularities.
The complexity of the interpolation fields, however, increases with the complexity of the solved
problem; therefore, the multi-domain solution yielding the T-polynomial reciprocity-based FEM
(TPR FEM) was formulated [6, 16].

The element form of both hybrid and TPR FEM can be more general than that by using other
FEM formulations because the integration is executed over the element boundaries only for linear
problems. Consequently, large elements can also be used for the regions with complicated fields of
variables (singularities, large gradients, local effects, elements with holes, etc.).

Finding the T-functions for a general problem is not possible for non-linear problems. The non-
linearity yields volume integrals, with non-linear functions in the integrand. In solid statics, a suit-
able form for TPR FEM is the total Lagrangian formulation. In this formulation, the reference
configuration does not change during the solution process and the integration is performed only
once. The volume integrals containing the non-linear terms update the right side of the discretized
form of the solution, leading to the initial stiffness formulation that does not converge by large
strains. Improvement is achieved using an updated (tangential) stiffness matrix obtained from the
nodal displacements of the previous iteration step.

The stress (and also strain) field is discontinuous between the elements in most FEM formu-
lations, and its rate of convergence is lower than the rate of convergence of the displacements. If
the stress is interpolated using T-polynomial interpolation functions with the moving least squares
procedure from the nodal displacements (and known static conditions in the points near the bound-
aries), much better accuracy can be obtained with same rate of convergence for both displacements
and stresses [15, 20].

Considering the examples of simple tension, pure bending, and tension of fully clamped rectan-
gular plate (2D stress/strain problems) for large strain-large rotation problems, the use of the initial
stiffness, the Newton—-Raphson procedure, and the incremental Newton—Raphson procedure will be
discussed.

2. FORMULATION FOR SMALL STRAIN, SMALL ROTATION PROBLEMS

When using the basic equations for time-independent small strain plasticity, the current state of
deformation does not depend on only the current loading but also on the complete history of loading.
At any loading time the total strain tensor can be split into the elastic and plastic parts,

€ij = Efj H 6‘% . (1)
The strain is derived from displacements by the kinematic relation
1

eij = 5 (i + uj) (2)

The stress—strain relation for isotropic material is

0ij = Cijui(en — &) = 2G [(Eij e ) ¥ T (e = L) G| (3)

v
1-v
where Cjj;x; is the elasticity tensor, G and v are shear modulus and Poisson’s ratio, respectively.
Einstein’s notation is used, in which the index after the comma denotes the partial derivative in the
corresponding direction and with summation after repeated indices. The equilibrium equations in
stresses

Tjij = —bi (4)
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are in displacements given by the Lame-Navier equations,

1 b

Uit o, Wi = TG (5)
with
7 P Hoau
b; =b; — 2G [Eij,j + 1_—_2_1/ €54i| (6)

where b; is a pseudo-body force and the bar denotes prescribed value. The last relation contains the
influence of the non-linear material behaviour.

The weak formulation of equilibrium (4) using the principle of weighted residuals can be written
in the form

L (0jij + b;) Ui d2 = 0. (7

We can choose the weight function Uj to be the displacement field of a linear-elastic reference problem
of the same body with body force absent. Capital letters will denote the quantities corresponding
to this field.

The tractions corresponding to the stress field o;; are given by

t; = ojjn;j ‘ (8)

where n; denotes the outer normal to the boundary.
Applying the integration by parts and the Gauss theorem to the first part of Eq. (7) we obtain

/ t;U; dI’ — / UijUj’i dQ + / b;U; dQ = 0. (9)
T Q Q

Using Hooke’s law and identity

Tijeij = Dijlji (10)
we can write

0ijUji = Tijuji — Sijel; » (11)

where ¥;; denotes the stress state corresponding to the displacement field U; . T-polynomial displace-
ments and tractions satisfy according to the definition of the following homogeneous equilibrium
equations

1
Ui+ T3V =0 (12)
i =0. (13)

Then Eq. (9) can be written in the form
/ LijUji df = / t;U; dI’ +/ Zijefj dQ-i—/ bju; dS2. (14)
Q 52 Q Q
Again, using integration by parts and Gauss theorem applied to the left side of the last equation,

together with the equilibrium condition of the reference problem, the generalized form of Betti’s
theorem is obtained

/T,-u,-dI‘:/tiUi dF+/ E,’jEfj dQ+/ b;U; dS2. (15)
r & Q Q
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This equation expresses the reciprocity of works done by two systems of forces: the one denoted by
low letters which is looked for, and the other, reference state (for which all, displacements, strains,
stresses and tractions are known inside and on the domain boundaries), denoted by capital letters.

In the BEM, the reference state defined by the Kelvin fundamental solution leads to the singular
integral equation problem. Using Trefftz functions for the reference state, all integrals are regular;
however, with complex problems many different reference states are needed for a numerical solu-
tion, and complex and inefficient high order T-polynomials are to be used. By using this formulation
for sub-domains, a FEM is obtained with element matrices defined by the boundary integral equa-
tions (15) and their corresponding numerical resolution by the BEM. The displacements between the
sub-domains will be compatible: the displacements on the element boundaries are common to the
neighbour elements. However, the tractions will be incompatible between the elements; therefore,
the inter-element equilibrium and natural boundary conditions will be satisfied in a weak (integral)
sense as follows,

/ dui (ti — ;) AT + [ du; (¢ — t?)dl' = [ Suit;dl'— [ 6u;t;dl =0, (16)
Fi Fe It

where I';, I'; and I, are the inter-element boundaries, the boundaries with prescribed tractions and
element boundaries, respectively. The upper indices A and B denote the neighbouring elements.

For the discretization, the boundary displacements and tractions can be expressed by their values
in nodal points (denoted by the dash) and shape functions, N,

ui(§) = Npu(§)dg; or u®=N,a (17)
t5(6) = Nn()t5;  or t°=Ni®, (18)

where £ is a local co-ordinate of an element boundary point and the capital letter index denotes the
nodal point. The upper index e denotes the correspondence to the element.

Note that the tractions are discontinuous in the corner points, and thus a double node for
tractions exists.

Then Eq. (15) leads to the system of equations

Tiry 4§y = Uik Bx + 77 + f7° (19)
or, in the matrix form,

Tu® = Ut® + 7 + f°, (20)
where u® and t¢ are vectors of element nodal displacements and tractions, and

Tiry =/F Tir(z(§)) Nju(§)dl = Z( 2 (z (g(j))J(g(j))w(j)),
Uitk =/r Uil(x(ﬁ))NKt(E)dF=Z(Uu(x(ﬁ(j)))NKt(é(j))J(f(j))w(j)),
¢ J
P o= / Br(o(9) & (4(©) 80 = 3 (Burale'®) e (€ ) € ).

= | vute a0 =3 (Uala(e >>>bi(w(§<a>>>J(d“hw(a)).

€; and w; are co-ordinates and weights in the Gauss quadrature formulas and J is Jacobian. Low
indices in these expressions correspond to the field (vector or tensor) components, the lower index
I corresponds to the I-th Trefftz function, and the lower index J corresponds to the nodal value.
In order to distinguish the integration over the volume of the element from that over the element
boundaries, we denote the volume Gauss points by a.
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Equation (16) written in the discrete form is
Narde o) N (€9) Npa(69) 7€) wDiip = 37 Ngu(69) £:(6D) T (¢D) w, (22)
el HpEiL CHbiDy

or in the matrix form,
> Mt = S ko (23)
e e

with summation over all elements. The lower indices K and L in Eq. (22) correspond to the nodal
displacements and tractions, respectively.

Setting for tractions from Eq. (20) into (23), the resulting system of discretized equations is
obtained

Y MU'Tw =" (pe + MU~ (# + £)) (24)
€ [
or shortly
Ku = p. (25)

This is a system of linear equations in which the non-linear term (containing the plastic strains) is
the second term of the right hand side of Eq.(24).

Note that in order to obtain non-singular matrices, the vector of element nodal tractions must
have as many, or more, independent components than the vector of element nodal displacements.
Also, we must choose as many, or more, Trefftz functions for each element than we have element
nodal tractions.

3. THE TOTAL LAGRANGIAN FORMULATION FOR FINITE DEFORMATION PROBLEMS

In this section, the application of the TPR FEM to geometrically and physically non-linear problems
in the total Lagrangian approach will be illustrated. The basic equations refer to the undeformed
configuration of the body.

Let X; denote the coordinate of a material particle X in the undeformed body. After the defor-
mation, the co-ordinate of this particle will be z; . The Cartesian components f;; of the deformation
gradient are defined by

fii(X) = a?)(:j() . (26)

Using the displacement u; of a material particle X,
u; = z; — Xi, (27)
leads to the alternative expression for the deformation gradient,

Ou;(X)

fij(X) = di5 + -—az‘

= 03 + ui j(X). (28)
Since the formulation used is presented in the undeformed configuration, partial derivatives denoted
by (-); are taken with respect to the undeformed co-ordinates X;. The deformation gradient can
be used to define the Green strain tensor,

¥ 1 1
e = (frifij — 6i5) = 3 (i =+ 055) + 5 Ukt » (29)
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and the symmetric 2nd Piola-Kirchhoff stress tensor
sij = Jfgtoufy'  with T =det(fi), (30)
both referring to the undeformed configuration. o;; is the Cauchy stress tensor.
The equilibrium equation
60,-]-
b =0 31

can be transformed to the initial (undeformed) configuration,

(sjkfir),j +6 =0, (32)
where bg and b; denotes the body force with respect to the initial and deformed configuration,
respectively. The relation between the tractions, tg , which measure the force per unit undeformed
area dA°, and the tractions, t;, in the deformed configuration dA4 is given by

dA & dA
m = OkiNg ao“ ’

t7 = fisnimi = i S
where n? and n; is the outer surface normal in the initial and deformed configuration.

By using the derivation of the reciprocity relations, a similar procedure as in the case of infinites-
imal displacements is followed, starting from the equilibrium equation of the deformed body relative
to the initial configuration (32). Again, the T-polynomial displacements will be taken as the weight
function in the weak formulation of the balance

/Q [(skufin) e + b9] Ui dQ = 0. (34)

The T-polynomials are taken in co-ordinates of the undeformed (initial) configuration. Due to the
total Lagrangian approach, 2 is the domain of the undeformed body, we omit its upper index 0
(similarly we do for the surface I') and all derivatives are taken with respect to this configuration.
Applying integration by parts and the Gauss’ theorem to Eq. (34) we obtain

/F toU; dI’ — /Q (skifir) Ui g dQ + /Q bU; dQ = 0. (35)
Substituting the displacement gradients for the deformation gradient from Eq. (28) results in

/F U, dr + /Q bYU; dQ — /Q 8iU; ; dQ — /Q (skuix)Us jdQ = 0. (36)

Again, the strain tensor can be split into the elastic and plastic parts

eij = €f; + el (37)

and because of the linear dependence between the elastic part of the Green strain tensor and the
2nd Piola—Kirchhoff stress tensor, the reciprocity relation can be found in the form
1
sijUji = i Bij + Suniuk; T + € D5 (38)

Using this relation, the integration by parts, and the Gauss’ theorem, Eq. (36) can be written in
the form

/t?U,-dH/ b?UidQ—/u,-T,-dI‘
r Q 1
1
—/ §uk7iuk,j2ij dQ—/Sjkui,kUi’j dQ—/eijij dQ = 0. (39)
Q Q Q

If Eq. (39) is applied for the computation of the relation between the boundary displacements u and
the tractions t° for each sub-domain (element), and the inter-domain traction continuity Eq. (16)
is used to the weak satisfaction of equilibrium, the procedure described in the previous section can
be used.
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4. LINEARIZATION OF RESULTING EQUATIONS FOR LARGE STRAIN PROBLEMS

For large strains we can linearize the expressions in the integrands. For this purpose the displace-
ments inside the element can be approximated from its nodal values using the shape functions as it
is by displacement FEM formulations [2, 27],

ui = Njugi. (40)
Similarly their derivatives are obtained from
uig = Njruy. (41)

The index denoted by capital letters will denote corresponding nodal displacement.
In the N-th iteration step the displacement will be given by

ugN) =Ny u(J]:’) ; (42)
The resulting discretized equations (24) can be now written in the form
(K + KNE) u®™) = pV-1), (43)

where K corresponds to the linear part of Eq. (39) and KN to its non-linear part, which will be
linearized for each iteration step and p{" 1) denotes the configuration dependent load corresponding
to the configuration of the previous iteration step. For this purpose we can write the integrand of
the fourth integral (39) in the form

1
5 Zij (ki) = Bij ufy " Nyjufy) (44)

or, if the integrand is written in the form

1
= Cijlm Un,|Un,m Ui,j (45)

5 Uk,itk,j Zij = 5

2
and for the isotropic material, in which
Cijim = Mij0im + p (610jm + 6imj1) , (46)

the linearized form is

1 4 b
(5 Cijim un,lun,m> = [u (ugx VN, 14 +u$” 1)NJ,) + /\&Ju(N 1)N‘],m] u(ﬁ). - (47)

The linearization of the fifth integral of Eq. (39) is realized using the 2-nd Piola-Kirchhoff stress in
the form

sij = p(uig + uji) + Aij (Ukk + Uk Uk1) + 1 Uk iU, (48)
as follows '
Uj,i(s,-kuj,k) [Uk ,s( )NJ,J + p (UJ ku(N U4 Umu(N 1)) Ny;
+ pUj, 1u(N b (ug 1)N Jm +u(N I)NJ’i)

+ My D (N + 20y 4 | A (49)
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Note that the field variables of the previous, (N —1)-th, iteration step are given by use of the nodal
displacements computed in that step, whereas the field variables of the current, N-th, step are
defined by the shape functions and the unknown nodal displacements of this step.

In the Newton-Raphson procedure, the increments are computed following Eq. (43) from

(K + KV Au™) = Ap@™) (50)
and the displacements in the N-th iteration step are
ul™) = oa@-1D L Ag™), (51)

The iteration is stopped if the quadratic norm of the last displacement increment related to the
quadratic norm of the displacements is less then specified value, i.e.

o2 Jau] /] 2

5. STRESS EVALUATION

Having obtained the nodal displacements, the tractions in nodal points in each element can be
computed from Eq. (20), as

t* = U~ (Tu® - 7 — ). (53)

The obtained tractions are discontinuous between the elements (according to the weak inter-element
equilibrium continuity) and have the largest errors in the corner points [6, 14].

A continuous stress fields can be obtained using the Moving Least Square (MLS) techniques
from displacements and tractions in the nodal points over some patches of nodes. Best results are
achieved, if the interpolation polynomials satisfy the governing equation (T-polynomials). Similar
ideas has been used in [4, 23]. We assume the displacement field (in a field point with the local
co-ordinates x with the local origin in the point where the stresses are to be computed), u(x), given
in the form

u(x) = U(x)c (54)

where U(x) is a matrix of T-displacement-functions and c is the vector of unknown coefficients.
If T-polynomials are used for the T-functions, we can easy express strain and stress fields from
displacements (54). The stress field can be expressed from

o(x) = S(x)c (55)

where the matrix of T-stress-functions S(x) is derived from the matrix U(x). Similarly, we can
express T-tractions

t(x) = T(x)c. (56)

In this approximation we use the full T-polynomials of the chosen order and the unknown coefficients
c are computed by LS method by minimizing

Zw (xi)c — u) +zw (x;)c — t;)? = min . (57)

where u; and t; are the displacements and tractions in the nodal points, and w and w! are corre-
sponding weighting functions necessary for the dimensionality.
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The accuracy of this method is high and its rate of convergence is the same as the rate of
convergence of primary (displacement) field as it was shown in [16].

If also body forces are present in the solution then the T-polynomials have to be derived from
corresponding non-homogeneous equilibrium equations. If the plasticity effect takes place, then the
plastic part of strains is taken into account according to Eq. (3).

In the case of finite deformations, this effective procedure based on the T-polynomials cannot
be used in the described form, as the T-polynomials are not available for the general deformation
state. The methodology is under development. Currently we use classical polynomials for the local
interpolation using same procedure as described in Eqgs. (54)-(57).

6. EXAMPLES
6.1. The first example

In the first example, a simple extension of a square domain of dimensions 1 by 1 by Young modulus
E = 1 and plain stress conditions was examined. First, Poisson’s ratio equal to zero was assumed.
The relation between the tractions ¢ and the stretching of the domain u is

#9 = (u; + 1.5u? 4 0.5u3) E. (58)

Numerically, the converged solution (e = 0.00001) was obtained for ¢ = 1.0 in four iteration steps
with the following results (Fig. 1).

iteration Uy
1 0.63636
2 0.53039
3 0.52144
4 0.52138

S

-1 205 0 05 1

Fig. 1. Simple tension with v =0

The result in the last step agrees with the analytical result in all digits. Note that initial stiffness
can be used for smaller deformations (¢ < 0.19) in this example.

6.2. The second example

For real material with Poisson’s ratio not equal to zero, the analytical solution is in the form

E

it
1-—v2

(14 u1) [ur + 0.5u? + v(ug + 0.5u%)] (59)

where us is the transverse contraction of the domain. The requirement for the transverse contraction
to be zero also leads to t; defined by Eq. (58) in this case.
The numerical FE solution is obtained in four iteration steps (Fig. 2).
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iteration Uy Ug

1 0.66364 —0.33581
2 0.54346 —0.24602
3 0.52292 —0.22460
4 0.52147 —0.22179

-0.5 0 0.5 1
Fig. 2. Simple tension with v = 0.3

Note that we have to distinguish between true loading and dead loading [9]. If pressure is to
be prescribed, it must be considered as a nominal traction (related to the deformed surface). The
traction is changed in each iteration step, too, and the converged solution (0.80628, 0.43218) is
reached in the 4-th iteration step.

6.3. The third example

If the domain is fully clamped, the solution corresponding to the second example is obtained in five
iteration steps (Fig. 3).

iteration Uy Ug

1 0.6044 —0.2206
0.5021 —-0.1733
0.4796 —0.1470
0.4758 —0.1429
0.4754 —0.1423

(S N VURE V)

~05 0 05 1

Fig. 3. Simple tension with one side fully clamped

6.4. The fourth example

In the last example, the pure bending of the beam of dimensions 8 by 1 is demonstrated. The results
with Poisson’s ratio equal to 0.0 (bending moment of 0.023) and 0.3 (bending moment of 0.0195)
are given in Fig. 4 and Fig. 5, respectively. Note that a larger moment is required to get the same
bending if the transverse contraction is greater. In this case also, the error measures according to
Eq. (52) are given. u; and ug denote the displacement components of the upper end point of the
beam.
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1r

iteration Uy U e

0.688 —6.877 T7.93E—2
1.523 —5.810 1.84E-2
1.746 -5.333 4.13E-3
1.695 —5.067 2.00E-3
1.898 —5.221 4.69E—4
2.115 -5.405 9.91E—4
2.274 -5.526 4.78E—4
2.348 —-5.580 1.06E—4
2.364 -5.591 4.91E—6

0.

ey

© 00 O Otk Wi

0 4 6 8

Fig. 4. Pure bending v =0

1 T T
|
0-
iteration Uy Usg e
=3 1 0.907 —6.160 6.70E—2
3 2 1.842 —5790 1.57E—2
3 2.240 -5640 2.34E-3
-3 4 2.341 —-5595 1.63E—4
5 2.375 —5.587 1.78E—5
-4 6 2.377 -5.581 4.04E—6
-5t
-6

0 2 4 6 8
Fig. 5. Pure bending v = 0.3
7. CONCLUSIONS

The paper presents the use of the Trefftz polynomials for the development of FEM based on the
reciprocity relations. The stiffness matrix of an element is formulated by non-singular boundary
integral equations (BEM). A weak form of the equilibrium is used for the inter-domain connectivity
relations. :

The formulation is shown for linear elasto-plastic problems and for the large strain problems
using the total Lagrangian formulation. It leads to the boundary integrals over the original (related)
domain computed only once during the whole iterative process and to the volume integrals which
can be treated in different ways and thus obtaining the initial stiffness or one step or incremental
Newton—Raphson formulations.

The Trefftz polynomials are used also in the post-processing phase of the FEM computations.
In this way a smooth fields of the secondary variables (strains, stresses, etc.) can be found in the
whole domain (if the material is homogeneous) using the Trefftz polynomials as a local interpolators
and the MLS procedure. This approach increases the accuracy of the evaluated fields considerably
and the same rate of convergence is obtained as the rate of the primary fields. Similar procedure
was not developed yet for finite displacements and classical polynomials are used as interpola-
tors.

The applications for linear problems are shown in the previous papers of the first author et. al. [15,
17, 20]. The applications for large strain, large rotation problems given in this paper show better
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convergence than results obtained by other authors [9, 22] using BEM or results obtained by ADINA
and MARC FEM programs (these results are not presented here). The procedure mostly converged
in one increment with few iteration steps even for very large strains and rotations.
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