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For some combinations of rotor speed and radial load, the pressure field of bearing fluid can perturb the
pure rotational motion and disturb the normal operation of a rotating machine. Classical approach to the
stability analysis of Jeffcott rotor in fluid-film bearings is modelling bearings as spring-damper elements
and disregarding the external rotor damping [1, 5]. Nonlinear models are used to verify results obtained
from a linearized model.

This paper deals with the influence of external rotor damping on the size of stability regions. Stability
analysis of the Jeffcott rotor in fluid-film bearings is performed by using both the linear model based on
the linearization of bearing force around the static equilibrium position and the nonlinear model of the
velocity linearization [2, 3].

1. INTRODUCTION

It is a well-known fact that, for some combinations of rotor speed and radial load, rotors horizontally
supported by fluid-film bearings can develop an unstable behavior. This phenomenon is intrinsically
linked with the fluid-film action within the bearings. The internal feedback mechanism transfers the
part of rotational energy of the bearing fluid into self-excited vibrations called whirling. The whirling
is the precessional motion of the rotor at its natural frequency.

The behavior of a rotating machine is stable if its shaft performs purely rotational motion around
an eccentric axis within the bearing (static equilibrium position) at a required rotational speed, and
no random perturbation can drastically change its behavior [4, 9]. The stability analysis of a rotor
in fluid-film bearings is inherently a nonlinear problem because the hydrodynamic bearing forces
are strongly nonlinear function of the relative journal displacement and velocity. A linear approach
to the stability analysis concerns linearization of the bearing force in the vicinity of the equilibrium
position. The nonlinear stability analysis is based on different models of solid/fluid interaction
phenomena and requires long numerical computations.

The objective of this paper is to investigate the influence of external rotor damping on the
stability of Jeffcott rotor in fluid-film bearings, considering both the linear and nonlinear approach.
A nonlinear approach is based on the Crandall model of the velocity linearization [2, 3] that allows
a relatively simple numerical stability analysis without very tiring and time consuming integration
used in more sophisticated bearing models. The results show that the Crandall procedure and the
linearization of bearing force are in a very good agreement.

2. JEFFCOTT ROTOR ON FLUID-FILM BEARINGS

The model of Jeffcott rotor in fluid-film bearings is used to study the instability fields of rotors.
The model consists of a rigid disc of mass m attached to a massless flexible shaft. The only force

!This is an extended version of the article presented at the 8th International Conference on Numerical Methods
in Continuum Mechanics, Liptovsky Jan, Low Tatras, Slovakia, September 19-24, 2000.
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acting on the disc is that due to the stiffness &k of the shaft. The shaft is horizontally situated and
supported in a pair of identical fluid-film bearings whose clearance is ¢ as shown in Fig. 1. In the
study of the flexural behavior, the shaft rotates with constant angular velocity €2 and undergoes
transverse motion only.

Fig. 1. Model of Jeffcott rotor in fluid-film bearings

With x = [ zi/e ] and y = [ /e ] being the nondimensional displacements of rotor and
_ za/c y2/c
journal, respectively, the equation of motion for rotor can be expressed in nondimensional form

n’x" +néx' + (x —y) = fr, (1)

where prime denotes the differentiation with respect to 7 = Qt, n = Q4/m/k is the nondimensional
rotor speed, {; = ¢;/v/mk denotes the nondimensional external rotor damping factor and fr =

[ 2(;‘ ] is the vector of the nondimensional radial load. If the radial load is simply the weight of

rotor, then ' = 572
The equilibrium requirement at each bearing yields

-(x-y)/2+fu=0, (2)

where fy is the vector of hydrodynamic journal force in nondimensional form.

3. JOURNAL FORCES EXERTED BY THE FLUID-FILM

The fluid-film bearing is sketched in Fig. 2. The cylindrical journal of radius R turns in the fluid-
film bore of radius R + ¢ and length L. The journal is statically or dynamically loaded in the radial
direction, and its position with respect to the center of bearing is defined by the eccentricity e and
the attitude angle 7.

The transverse motion of the journal disturbs the fluid flow in the clearance gap by creating
large local pressure changes within the bearing fluid. Because the clearance ratio ¢/R is generally
of the order of 1073, the pressure p is linked to the thickness h of the fluid-film as per Reynolds
equation. The Reynolds equation (in terms of cylindrical coordinates), applied on isoviscous and
incompressible Newtonian fluid operating in the laminar regime, has the form

1 8 [h3 Op 8 (h3 Oop oh oh
ﬁ%(?é@)*a(w)—mw%’ )

where p is the absolute viscosity of the bearing fluid. The film thickness h is easily expressed as
a function of the journal position,

h=c—ecosyp. (4)
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Fig. 2. Clearance geometry of fluid-film cylindrical bearing

The Reynolds equation (3) can be used to obtain the pressure distribution in the fluid-film. If
the bearing is relatively short, the flow in the circumferential direction may be neglected and the
short bearing solution obtained [10]. By neglecting the term linked with the circumferential pressure
change of the Reynolds equation (3), the pressure distribution in the fluid-film can be obtained from

s = 5 [s o e (1 - 2) n] (- ) 0

with the boundary condition z = :i:—é’— , p=10.

The pressure is positive betweep angles @1 and ¢ defined by o1 = § + o and @2 = 37" + a,
respectively, where a = atan e_n_@ 25

The bearing force components acting on the journal, parallel and normal to the eccentricity
vector, can be obtained by integrating the pressure distribution (5) on the positive portion of the
fluid-film only i.e., [¢1¢2],

L
%2 [ 3 TuRL3 1+2¢2 2¢ . Q
Fe = / [_ p((P, z) coschdgodz - c3 [2(1 > 62)5/2 e 7'((1 ik 62)2 6(7 A 5)] ) (6)
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¥ = /_%p(w,z) sinp Rdpdz = 3 [_ﬁ(1—62)26+ 2(1_82)3/2(8(7——2—)], (7)

where € = e/c denotes the nondimensional eccentricity.
When using the nondimensional time differentiation, the journal force components take the form

g? 1+2e2 2¢? }
1= o[ S+ - e &
€ 2¢ ; € "
bx ahd ["4(1 ) 7 R ) PR T R T 7] : ©)

where (g = muRL3/(c3V/mk) is the bearing factor in nondimensional form.

4. LINEARIZATION OF THE JOURNAL FORCES

Determination of the journal static displacement is essential for the linearization procedure. The
kinematic requirement for equilibrium is that the journal velocity relative to the bearing, vanishes;
ie., & =" = 0. To define the static journal displacement, the applied static load I' (without loss
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)
———————

. Fig. 8. Equilibrium condition for a fluid-film bearing

of generality) is directed along the vertical axis as shown in Fig. 3. The eccentricity magnitude eg
and the attitude angle g at the equilibrium position are obtained as follows,

ol
r = —_—
450
tanyy = ———w(l — )i (11)

where 8 = [16€3 + 72(1 — €2)]/2.

Assuming small displacement of the journal center from the equilibrium position, de and 47, the
journal force components in the polar coordinates (8) and (9) may be linearized around the static
equilibrium position to obtain

fe = feo + Tkeede + Theyeody + Degede!, Deeqendy, (12)
fy = Fro + Tkyede + Tkyye0dy + Teyede!, Teyyendy, (13)
where f, and f,, are the journal force components under the static conditions while (k. , kevy , kye

kyy) and (Cee, Cey, Cye , Cyy) are the stiffness and damping coefficients. The coefficients ke , ke
Cee s Cey s Cye and ¢y can be derived directly from Egs. (8) and (9) as follows,

Wl X =&+_€%>, ksl 8y oo ) A 9es) (14)
T Oe €0,70 B(1 - €3) Y I' 0e s Beo(1 — €2)1/2”

Cee = l% =M, Cony = lafe :_§ (15)
Lo, ., Beo(l—ed)/? T Tedy WSk g
10 8 10 2w (1 = e2)¥/?

e fB_J;y 0,70 _E, s fyf;’ €0,70 ¥ ( 13500) ' \9)

The stiffness coefficients ke, and k,, may be obtained by considering the consequences of a
perturbation §y of the equilibrium angle o with €y and I' maintained constant. The rotation &y
gives the following restatement of equilibrium force (see Fig. 3),

fe = feo cos(dy) — Fro sin(dy) = fe, — Fy0Y = feo +0fc, (17)
f'y = feo Sin(67) + f"/o cos(dy) ~ fvo + feody = f'yo + ‘Sf'y . (18)
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The coefficients ke, and k., are then

ek 19fe - 14fe L J = (1 —ef)/? (19)
i F&‘a’)’ £0,70 F6057 F&o ,380 ’

10f 1 6f. I 4
IR A =l = Sl 2
VY ST epy il s bR e is ol (20)

Figure 4 illustrates the values of stiffness and damping coefficients as a function of nondimensional
eccentricity at the equilibrium position €¢ . Similar graphs are reported in [7, 8, 12]
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Fig. 4. Stiffness and damping coefficients in the polar coordinates as a function of €o

5. LINEAR STABILITY ANALYSIS

The linearized journal force (12) and (13) can be written in the matrix form as

£y = £y + ['Key 0u + I'Ce, 00, (21)
o}, : : , kee key
where f., = is the vector of journal force in the polar coordinates, K., =
Iy kye kyy
and Cgy = [ :’3 (c:/" ] are the matrices of stiffness and damping coefficients, respectively and
s
ou = [ 56:;7 ] denotes the vector of small displacement from the equilibrium position.
0

If 6x and Jdy are small displacements in horizontal and vertical directions from the rotor and
journal equilibrium position, the governing equations of motion (1) and (2) take the form suitable
for the linear stability analysis,

n?6x" + 1¢:0x' + (6x — 8y) = 0, (22)
—%(Jx - dy) +I' T'K,,T 6y + ' T"'C,,Téy' =0, (23)

cosyp sinvyg

where T = [ 5
— 8-y COSYp

] is the matrix of transformation.
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Equations (22) and (23) have the following characteristic sixth-order equation,
bo + b1 4 baA? + b3A3 + badt + bsA® + bgA® = 0, (24)

in which A is the eigenvalue and by ... bg are the coefficients.

The behavior of Jeffcott rotor in fluid-film bearings becomes stable when all determinants of the
Hurwitz matrix applied to the characteristic equation (24) are positive.

6. NONLINEAR STABILITY ANALYSIS

The nonlinear stability analysis can only be performed by numerical methods. A general nonlinear
model of the bearing force increases the computational effort immensely even when the short bearing
solution is used. Fast development of computational mechanics is offering numerous new nonlinear
models based on different approximations [6]. Crandall [2, 3] has proposed the linearization of the
journal velocity response that allows for the nonlinear stability analysis without long numerical
computations. The nonlinearity of the equations of motion (1) and (2) is caused by the nonlinear
properties of the hydrodynamic bearing force.

The matrix form of the journal force components (8) and (9) can be expressed as follows,

fs'y =(B Z(nvev - Vn), (25)
& 0 ' o Z11 212
where v, = , | and vy = are the vectors of bearing velocities and Z =
ey en/2 221 222

is the matrix of journal displacement.
Elements of the matrix Z are considered from Egs. (8) and (9) as

e 1+ 262 £aby 1 o 2

By introducing the transformation matrix T into Eq. (25), a nonlinear set of equations of mo-
tion (1) and (2) is obtained as follows,

%"+ nGx' + (x—y) =fr, (26)
1 —_ =
—§(X - y) + CBT]T 1ZTy’ T CB T 1ZV,, =0. (27)

Equations (26) and (27) can only be solved numerically. By applying the classical perturbation
method, the stability of Jeffcott rotor in fluid-film bearings can be analyzed for a wide range of
nondimensional speeds 7 and nondimensional loads I'. The stability of Eqgs. (26) and (27) is examined
by studying the motion in immediate neighborhood of equilibrium position by superimposing a small
disturbance on the rotor velocity 7. For stable combinations of nondimensional speed and load, the
amplitude of the journal displacement from equilibrium position

& =/(y1 — y10)% + (¥2 — y20)?, (28)

converges towards zero (Fig. 5a) and the journal motion settles down to a decreasing spiral centered
on the equilibrium position (Fig. 5b).
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Fig. 5. Stable equilibrium position (¢; = 0.04, (g = 4, n =5, I' = 5); a) transient amplitude of journal,
b) transient orbit of journal
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Fig. 6. Unstable equilibrium position (¢ = 0.04, (g = 4, n =5, I' = 1); a) transient amplitude of journal,
b) transient orbit of journal

For unstable combinations of 7 and T, the amplitude & diverges (Fig. 6a) and the journal motion
settles into an increasing spiral which converges to a stable limit cycle (Fig. 6b) or diverges as shown
in [3]. In Eq. (28), (y10, y20) denotes the journal static displacement in a nondimensional form.

During the computations, Egs. (26) and (27) have been integrated using the numerical routine
Runge-Kutta 5. To ensure the linearization of the velocity dependence, the velocities ¢’ and (' —
n/2) were monitored throughout the computations. The value of |¢'| is of an order of magnitude
smaller than the value of |e(y’ —n/2)|, which makes this linearization allowable. The fraction of the
period over which magnitude of |¢(y' — n/2)| is comparable with magnitude of |¢'| is negligible.
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Fig. 7. Stability regions for different rotor damping Fig. 8. Stability regions for different bearing
factors {; with (B = 4; — linear model, * nonlinear factors (p with {; = 0.04; — linear model, * nonlinear
model model

As the result of stability analyses, the regions of stable dynamic behavior of rotor (in terms of
rotor speed and radial load) for different values of external rotor damping factor and bearing factor
are presented in Figs. 7 and 8. Solid lines represent borderlines obtained from the linear stability
analysis, while markers denote the instability thresholds obtained by the Crandall procedure of
velocity linearization. Each marker was obtained on a PC within few hours, by bisection method
with the tolerance of load factor I' = 0.02. Regardless of different methods of stability analysis being
applied, the obtained results show high level of agreement.

It can be noticed that the influence of external rotor damping (; on the stability of Jeffcott
rotor in fluid-film bearings is very significant. Higher values of the external rotor damping reduce
the regions of instability while the increase in bearing factor (g shrinks the instability regions in 7
direction and has no significant effect on their peaks.

7. CONCLUSIONS

The problem of instability caused by the fluid-film bearings is of primary importance in modern
high speed rotating machines. Poritsky [11] was the first investigator to notice the occurrence of
this instability for the nondimensional rotor speed 7 exceeding the value of 2. The recent investiga-
tions [3, 13, 14] indicate the existence of wide stability regions at higher operational speeds as well
as significant stabilizing effect of the external radial force applied on the rotor.

In the previous stability analysis of the rotors in fluid film bearings, the external rotor damping
had usually been disregarded [1, 5]. The results presented here show that the external rotor damping
has the appreciable influence on the size of stability regions. Solutions obtained from the linear and
nonlinear models are consistent. The linearized model is suitable for the stability analysis over a wide
range of the external rotor damping parameters. Numerical calculations based on the nonlinear
model verify the validity of results from the linearized model.
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