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The initial-boundary value problem in the weak form is formulated for the general six-field non-linear
theory of branched shell structures. The extended time-stepping algorithm of the Newmark type is worked
out for the non-linear dynamic analysis on the configuration space containing the rotation group SO(3).
Within the finite element approximation, an accurate indirect C° interpolation procedure on SO(3) with
a transport of approximation domain is developed. Numerical simulations by the finite element method
of 2D and 3D large overall motions of several flexible elastic shell structures are presented. It is shown
that values of potential and kinetic energies may oscillate in time, but the total energy remains conserved
during the free motion of the structures in space.

1. INTRODUCTION

Dynamic behaviour of flexible shell structures undergoing finite deformations and large over-
all motion has recently gained a considerable interest. We refer to Simo, Rifai and Fox [16],
Simo and Tarnow [17], Kuhl and Ramm [9], Madenci and Barut [12] and Brank, Briseghella,
Tonello and Damjanic [1], where references to other papers are given.

The complete set of field equations as well as initial, boundary and continuity conditions de-
scribing an arbitrary motion of irregular shell structures containing folds, branches and/or self-
intersections was derived in [3, 5, 6, 10, 15]. The 3D shell is represented by the 2D reference network
consisting of a finite number of surface elements joined together along parts of their boundaries.
Contrary to a variety of shell models discussed in the literature, the 2D balance laws of shell dy-
namics are given here in terms of through-the-thickness resultant quantities as exact implications
of basic laws of 3D continuum mechanics. The shell evolution in time is described by two fields
defined over the network: the vector field u representing the translatory motion of the reference
network, and the proper orthogonal tensor field Q representing the mean rotary motion of the shell
cross sections. The weak formulation of dynamics of the irregular shell structures based on this shell
model is summarised in Section 2.

The aim of this report is to develop for this six-field shell model a time-stepping algorithm for
transient dynamic analysis, and to perform some numerical simulations of the behaviour of regular

IThis is an extended version of the article presented at the NATO Advanced Research Workshop on the Compu-
tational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion, Pultusk, Poland, July 2-7, 2000.
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shells as well as branched, elastic shell structures in forced and free large overall motion.

There are many time-stepping schemes proposed in the literature, where stability and accuracy
are most discussed properties of the algorithms. Among recent papers in the non-linear structural
dynamics, we refer to Kuhl and Crisfield [8] who discussed several time-stepping algorithms with
the properties of numerical dissipation, enforced conservation of energy, algorithmic conservation of
energy and combined ones. Similar discussion within the non-linear shell dynamics was given, among
others, in Kuhl and Ramm [9]. In our shell model one of the two main independent field variables,
Q € S0O(3), is an element of the non-linear manifold but not a linear space. As a result, standard
time-stepping integrators used in non-linear structural dynamics cannot be directly applied.

The numerical time stepping algorithm developed here, in part dealing with the orthogonal group,
is based on ideas suggested, among others, by Simo and Vu-Quoc [18], Cardona and Geradin [2],
Simo and Wong [19] and Simo and Tarnow [17]. In particular, we take into account that: a) the
Newmark integration scheme assures the best possible convergence and stability; b) external loads
are well defined only in the spatial representation; c) angular velocity and acceleration vectors at
different time steps can be added directly only in the material representation; d) one should try
to conserve the total energy of the system in incremental force-free motion. We use our experience
in shell statics [3, 5, 6] and propose in the iterative process an exact calculation scheme of the
incremental, relative rotation vector. The material representation of this vector plays a crucial role
in the time-stepping algorithm.

For spatial discretisation the finite element method is applied. In order to increase the inter-
polation accuracy for SO(3)-valued fields, we have worked out an accurate, indirect interpolation
procedure with a transport of approximation domain into the neighbourhood of the neutral el-
ement 1 € SO(3). Within each finite element the procedure practically removes any singularity
following from a local parameterisation, and does not impose any particular parameterisation of Q.
This type of interpolation is of particular importance in dynamic problems of flexible shell struc-
tures undergoing large overall motion discussed here. In these problems both the translations and
rotations are not bounded at all.

Within the numerical analysis we perform several dynamic simulations of the 2D and 3D large
overall motion of flexible, regular and branched, elastic shell structures the results of which are given
in Section 6.

2. WEAK FORMULATION OF NON-LINEAR DYNAMICS OF IRREGULAR SHELLS

Within the general theory of irregular shell structures, the initial (undeformed) configuration of the
3D shell-like body is represented by a 2D surface-like continuum M called briefly an (undeformed)
reference network [6, 13]. The network consists of a finite number of regular surface elements M®),
k =1,2,...,K, joined together along parts of their boundaries 9M*). Each M®) is a bounded,
oriented, connected and smooth surface whose boundaries @M *) consist of a finite number of closed,
piecewise smooth curves. Common parts of boundaries of any two or more distinct surface elements
form a spatial curve, and a union of all such curves is called briefly a singular curve I' ¢ M.
Therefore, we have the following definitions,

K K K
M=J (M(k) U 8M(’°)) , T=|J oM™ noM®™, oM = (U 8M(’°)) A sinad(l)
k=1 m,n=1 k=1

With each regular point & € M we can associate the position vector & € E3 relative to an inertial
frame (o, e;), where o € £ is a point of the 3D Euclidean point space and e; € E3,4i=1,23, are
orthonormal vectors. If (%), a = 1,2, are surface co-ordinates, with each regular £ € M we can
associate the natural surface base vectors and the unit normal vector defined by

_ Oz

_6§_C'E$’a’ af - a,=05°

1
aq Ga.— 55"5 a, X ag, (2)



Non-linear dynamics of flexible shell structures 343

where € are surface permutation symbols.

The motion of the shell in time ¢ can be described by two fields defined over the reference network:
the position vector field y(z,t) representing the translatory motion of the shell reference network,
and the proper orthogonal tensor field Q(x,t) representing the mean rotary motion of the shell
cross sections.

The general mechanical theory of irregular shell structures was developed in [3, 6]. Within this
approach the 2D resultant balance equations of translational and rotational momenta as well as
the dynamical boundary and continuity conditions are exact implications of the balance laws of 3D
continuum mechanics. The 2D kinematic structure of the shell consisting of the appropriate inde-
pendent kinematic fields, the kinematic relations, as well as the kinematic boundary, continuity and
initial conditions is then constructed again exactly from the 2D virtual work identity. Unavoidable
approximations enter the shell theory only through kinetic and material constitutive relations. We
refer the reader to papers mentioned above as well as to Chroscielewski, Makowski and Stumpf [5]
and Libai and Simmonds [10] for details of the derivation process, necessary regularity assumptions
for all the fields and references to other papers.

In this report we confine ourselves only to geometric irregularities and allow the shell to have only
folds, branches and/or self-intersections. We assume from the beginning that the kinematic fields
y(z,t) and Q(z,t) are continuous during the motion, and yp(zr, t) = y(z,t)|r, Qr(zr, t) =
Q(z,t)|r, with zr € I'. We do not associate here any mechanical properties with the singular
curve I' as well.

When expressed in the weak form, the initial-boundary value problem (IBVP) for the irregular
shell-like structure can be formulated as follows: Given the external resultant force and couple vector
fields f(z,t) and c¢(z,t) on x € M\I', n*(x,t) and m*(z,t) along OMy, fr(x,t) and cr(x,t)
along the singular curve I' C M, and the initial values ug(z), Qqo(x), o(x), Qo(z) at t = 0, find
acurve u(z,t) = (u(z,t), Q(x,t)) on the configuration space C'(M , E3 x SO(3)) such that for any
continuous, kinematically admissible virtual vector fields w(z) = (v(z),w(x)) € Va(M , E® x E3)
we have

Glu, t; w] =/M\F[p-v+(m+vxp)-w] da+//M\F [nﬂ-(v,ﬁ+y,ﬁxw)+mﬂ-w,ﬁ] da

_// (f-v+c-w)da—/ (n*-v+m* - w)ds
M\T M
__/F(fp-vp—i-cr*-wp)d.s:o. (3)

Here, v(z,t) = y(x,t) = u(z,t) is the network velocity vector, u(z,t) = y(xz,t) —  is the
network displacement vector, p(z,t) and m(x,t) are the translational and rotational momenta
vectors, nP(z,t) and mP(x,t) are the internal stress and couple resultant vectors, respectively,
and vp = v|p, wr = w|r. In Eq. (3) it is implicitly assumed that the kinematic boundary
conditions u(z,t) = u*(z,t) and Q(z,t) = Q*(x,t) are satisfied on the complementary part
OMy = OM\OM;y, and the virtual vector fields are kinematically admissible if v(z) = 0 and
w(z) =0 on IM,.

In the shell theory the explicit expressions for the momenta p and m should be specified by the
kinetic constitutive relations, in general. In this report we shall use simple relations suggested by
Simmonds [15],

h :
p = mov = pohyv, m = Ilyo= % , ox1= QQT, (4)

where po(x) is the initial mass density, ho(z) is the initial shell thickness, and @(z, t) is the network
spin vector in the spatial representation.
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The resultants n® and m? should be given through the constitutive relations of the material the :\:
shell is composed of. In this report we restrict our interest to the hyper-elastic shells for which there
exists a 2D strain energy function W(eg, kg ;) of the shell strain vectors which are defined by

es=ys-Qag, Kkyx1=Q,QT. (5)
Then the constitutive relations of the shell material are given by 1
ow ow
e aset ALk s ©
€p 8;-@[3

The solution of the non-linear IBVP (3) is achieved by an incremental-iterative procedure which
reduces the problem to a sequence of solutions of linearised problems. Each linearised problem is for-
mulated at discrete values of both temporal and spatial variables. The main difficulty of the solution
procedure is associated with the structure of the configuration space C(M , E3 x S0(3)) involving
the proper orthogonal group SO(3). As a result, the solution procedure requires special techniques
for approximation, parameterisation, interpolation, and accumulation of the SO(3)-valued fields.

3. EXTENDED NEWMARK TIME-STEPPING ALGORITHM

Let the time interval [0,7] be partitioned by a finite number of time instants 0 = ¢ty < t; < -+- <
tn. <olp41 Ko <Ani= T such that [0,T] = UT]lV:O[tn, tn41] with At = t,1 — t, a typical time

step. Then, in general, the weak form of the IBVP at the time instant #,,1 can be written as
Gni1 = G[‘mn-{-l y tntl; Wn+1] =0 VWni1 € Vi, : (7)

for the unknown generalised displacement w41 ~ u(t,4+1) € C.

When integrating linear systems of dynamic equations the main attention is paid to the order of
accuracy of integration schemes, for the criterion of unconditional stability of the scheme can easily
be satisfied. In the non-linear computational dynamics the main interest is focused on numerical
stability of time integrators. It is known that unconditionally stable algorithms of linear dynamics
often lose this property in problems of non-linear dynamics. In the latter case a sufficient condition
for some kind of numerical stability of the scheme is the conservation or decay of the total energy
within a time step.

The energetic criterion for numerical stability can be written in the form

Un+1 31 Un F Kn+1 ) Kn S AGext ) (8)

where Upy1 =~ U(tpy1) and U, ~ U(t,) are numerically calculated strain energies U(t) at the
beginning ¢, and the end t,; of the time step At, K,,;; and K, are the respective kinetic energies
K (t), while AGext represents the work done by external loads during the time step. It may happen,
however, that the algorithm satisfying Eq. (8) can reach a solution point beyond which further
advances in time integration by an incremental-iterative procedure are not possible.

Taking into account Egs. (6), (4) and (3), terms in Eq. (8) have the following meaning:

U=/ W da,
M\
:-1-// (mov - v + jo - ®) da,
2 J/m\r

ot / o { / /M\P e vliogs @da :

+/ (n*-v+m*-a))ds+/(fp-vr+cr'wr)d3}dt,
oMy Iz
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where vp(zr,t) = v(z,t)|r, @r(er, t) = @(z,t)|r .

There are many time-stepping algorithms proposed in the literature for solving dynamic problems
in the linear space. Among engineers the most popular are those based on the implicit one-step
Newmark [14] formula with the Newton iterations, in which the actual state at time ¢, is calculated
from the former state at time t, alone. In case of the non-linear shell dynamics discussed here the
configuration space C does not have the structure of the linear space. In this case essential difficulties
arise in the extension of classical time-stepping algorithms to hold in C. Several extensions of
the Newmark formula to the rotation group SO(3) were proposed in [2, 17-19]. In the extensions
concepts of differential geometry such as exponential map and parallel transport play the important
role.

In the proposed time-stepping algorithm described below we also extend to the rotation group
S0(3) the Newmark formula, but in the algorithm on SO(3) the following properties of some fields
have explicitly been used:

1. The physical meaning of external loads is well defined only in the spatial representation. Thus, the
generalised momentum balance is formulated in the spatial representation as well. The linearised

dynamic equations are written relative to an instantaneous configuration ungzrl , that is at the i-th
approximation to W, 41 = W(¢tp+1), and not relative to w, . This eliminates the need of applying
the transformation relation of the type

Yn(QSZq) > g0

SO(3) — Tq, SO(3)

appearing in [2, 18], for in our case Y = 1.

2. Angular velocities and accelerations from different time instants can directly be added only in
material representation [19]. Therefore, temporal approximations of these fields are performed
in the material representation, then results are transformed into the spatial representation and
introduced into the linearised dynamic equations.

Let us remind that the time change of the rotation field @ € SO(3),

Q=0Q=q9, (10)
allows one to introduce angular velocities and accelerations either in the spatial representation

0=0QT=0x1, A=0=QQT-02R=ax1, (11)
or in the material representation

Q=-Q"0=0x1, A=0=QTQ-QQ=ax1. (12)
Both representations are related by

2=00QT, o=Qo,  A=QAQT, a=Qa. (13)

The generalised displacements uj, , velocities v, , and accelerations &, numerically calculated at
the time instant ¢, are denoted by

u, = ('U'na Qn) = (U(tn),Q(tn)),
Vn = (tn, mn) o (’iL(tn), G)(tn)), (14)
8y = (i, an) = (@(tn),a(tn))-

The basic problem of our time-stepping algorithm can be formulated as follows: Given w, , vy,
@, at the time instant t,, find Wy41, Vnt1, ®u41 at the next time instant ¢,41 = tn, + At in the
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way which is compatible with the problem equations (3) and numerically stable, e.g. in the sense of

Eq. (8).

In the iterative solution of the linearised problem equations we assume to know the i-th correction
of the incremental generalised displacements 511115:111 ) = (Jus:_rll )| bw S-tll )). Here 5w£:i'11 ) (0w x1=
SW = 6QQT) is the i-th correction of the incremental rotation vector in the spatial representation.
Since the part of algorithm associated with the translatory motion (u, %, %) is standard, we present
below only the main steps associated with the rotational part (Q, ®,a) of the algorithm. These
steps are:

1. Update the rotation tensor in the spatial representation

I L s A pue F [ e 5 SO U N (15)
szo—i)-l =Qn, 5“’1(11+)1 = Awﬁll) .

2. Calculate the complete increment of the rotation vector Awg ) in the material representation
exp(AWEH) = QTQUTY, AW = Awgt x 1, (16)

3. Calculate angular accelerations and velocities in the material representation according to the
extended Newmark scheme

: 1 ; 1
37(11:11) o B(A1)?2 [Awgﬂ) ~ Ata, — (At)? (5 £ 5) an] )
(17)
ekl o7 (1) 4 ifq o ¥ A =l
Ot = pag AWn ( Bk map
4. Transform the vectors (17) to the spatial representation
+1) +1) _(i+1 +1 i+1)_ (41
ot = v oReid Sl 5. ot i (18)

5. Formulate the problem linearised equations at the new iteration step ¢ — i + 1 and calculate the
new correction of dw.

The parameters 0 < 8 < 0.5 and 0 < v < 1 in Eq. (17) are free parameters of the Newmark
algorithm. Specialisation of 8 and v leads to a variety of time integration schemes known in E3 and
to various their extensions into E® x SO(3).

4. ITERATIVE SOLUTION OF THE NON-LINEAR PROBLEM

With the time-stepping algorithm developed in Section 3, the solution of the non-linear problem (7

is constructed by the incremental-iterative procedure based on the Newton-Kantorovich method [7]
applied in the configuration space C(M, E3 x SO(3)). Let an i-th approximation tu]s:il to the
solution w,4; has been found. In order to calculate the correction éunffj_'ll ), which would allow us to

find the successive approximation ungl +1) to the unknown solution w4, we linearise Eq. (7) at the

(1)

approximation unn +1)

e. [un,:H a1 W ] +6G [, tt1; W, bul n 5] (19)

The second term in Eq. (19) denotes a directional derivative of the functional (7), taken at the point

unn 11 € C in the direction 61\11,(1 +1) eT a9, C. This term yields the so-called tangent operator of the

non-linear problem, calculated at the approx1mat10n tmﬁh)L1 The first term in Eq. (19) represents

unbalanced forces at the approximation point unn 31
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5. SPATIAL DISCRETISATION AND INTERPOLATION IN 50(3)

The main advantage of the mechanical theory of irregular shell structures discussed in Section 2 is
that only C° continuity requirement is imposed upon the primary kinematic field w(u, Q). When
applying the finite element method we proceed as follows.

The shell reference network M (the domain) is divided into sub-domains By, e =127, B,
(finite elements) such that M = UeE:1 I - A typical finite element Il is a smooth image of
a compact, bounded region 7, € R?, usually a triangle or a rectangle. Let = (1, , ) be local
co-ordinates of 7y, A = {n, € m), a =1,2,..., A} be a set of A distinct points of 7,y called the
nodes, u(n) = (u(n), Q(n)) € C(n(), E3 x S0(3)) be a given smooth function on T(¢) With values
in the six-dimensional Lie group E3 x SO(3), and let w, = (uq, Q,) = (u(n,),Q(n,)) denote
values of w at the nodes n,. Within each m() we have to construct an approximating function
w(n) = (@(n), Q(n)) which takes the same values at the nodes 5, as w does (that is @(n,) = w, for
any 71, € A) and is “close” — in some defined sense — to the given function w(n).

The standard C? interpolation at the nodes n, of the E3-valued function u(n) takes the form

A
u(n) = Z No(n)ta, (20)
a=1

where N,(n) are given shape functions (usually products of the Lagrange polynomials, see
Zienkiewicz [20]) satisfying the conditions Ny (n;) = d4p for any n, € A.

For the SO(3)-valued function such a standard, canonical interpolation scheme is not available.
We proposed in [5] a kind of indirect C? interpolation procedure on SO(3) through interpolation of
three scalar functions 9x(n) of local parameters. Numerical test examples presented in [4] indicate,
however, that the procedure leads to a decrease of interpolation accuracy away from the neutral
element 1 € SO(3). Here we propose a modified, free from such a defect, indirect C° interpolation
procedure on SO(3) with a transport of approximation domain into the neighbourhood of the neutral
element 1 € SO(3) (see also [3]).

Let a local parameterisation of the rotation group be given by

Q -2 (%), (21)

where Q@ € U C SO(3) and (9%) = Q(Q) € V C R3, k = 1,2,3, are three chosen, independent local
parameters, and Q(n) = Q7 !(9x(n)). The modified interpolation procedure on SO(3) consists of
the following steps:

1. Establishing for the set of nodal tensors Q, = Q(n,) € U C SO(3) a constant, averaged
representative @ € SO(3).

2. Transporting the set @, by the kind of pull-back with QT vU-wcs O(3) into the “neigh-
bourhood” of 1 € W C SO(3),

AT
R, =Q Qa . (22)
3. Introducing three local parameters in the map (W, R) for the transported tensor field,
(Pk)a = R(Ra). (23)

4. Interpolating the scalar functions px(n) € R? through the nodal values (p;), according to the
scheme (20),

A
p(n) = Na(n)p,. (24)
a=1
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5. Calculating the interpolating tensor function R(n),
R(n) = R~ (p(n)). (25)

6. Transporting back the function R(n) into the initial position in SO(3) by the kind of push-
forward with Q@ : W — U C S0(3),

Q(n) = QR(n). (26)

Therefore, Q(n) interpolates the given function Q(n) € C(m(), SO(3)) at the set of nodes , € A
indeed. From Eq. (26) it also follows that the interpolating function Q(n) always takes values in
the rotation group. Within each finite element the proposed interpolation procedure practically
removes any singularity which may follow from a local parameterisation. The procedure itself does
not impose any particular parameterisation of Q. As a result, it can be used for any non-singular
global parameterisation of the rotation group SO(3).

In the incremental-iterative procedure described in Section 4 the corrections of the incremental
rotation vector dw and the virtual rotation vector w play different roles than the field of rotation
tensor @ itself. In the numerical procedure the fields fw and w appear as the “unknown” ones. If
they are expressed through the respective incremental §9 and virtual wy local parameters, the C°
interelement continuity requirement is transferred to the chosen parameterisation. The necessity to
fulfil continuity of the local parameters restricts applicability of the algorithm to problems contained
in only one local map (U,R). For a curved shell structure, and for dynamic problems in particular,
this decreases the interpolation accuracy as well [4].

The correction of the rotation tensor 6@ at each regular Q € C(m(ey, SO(3)) is an element of
the tangent space TQC(m(e), SO(3)) = C(m(e), T@SO(3)), where = indicates an isomorphism. We
also have further isomorphisms of spaces TQC(m(), SO(3)) = C(m(), s0(3)) and their elements
6Q — SW — dw where §W = 6QQT = éw x 1 is the skew-symmetric tensor having dw as the
axial vector. ?

The virtual rotation vector w (as well as dw) can be represented through components either in
the co-rotating ¢;(t) or in the fixed, global e; bases. If t;(t) = T'(t)e; = T;;(t)e; , where T € SO(3),
then

20 = 10t — wje; = ’lT)jTijti , (27)

where the corresponding components are related by w; = Tjjw; . With Eq. (27) we obtain the matrix
form of the interpolation formula

w1 (n) A Wig w1 (n) wi(n)
Wy(n) ¢ =T(n) Y Na(m){ W ¢, T(m):{ waln) p =3 waln) ¢. (28)
w3(n) a=1 W3q w3(n) w3 ()

Components of the nodal parameters w;, are given in the global, fixed base e; common to all the
elements and the nodes. This allows one to describe easily the junctions of different branches M *)
of M. The components w;, and w;, can easily be expressed in terms of nodal displacements which
provides an engineering interpretation to these components.

6. NUMERICAL SIMULATIONS

In order to illustrate the effectiveness of the time-stepping algorithm proposed in Section 3, several
numerical simulations of dynamic behaviour of shell structures undergoing large overall motion
have been performed. In the finite element discretisation of the structure we have used primarily
the accurate displacement /rotation based 16-node Lagrange shell element with the full integration
of the element matrices. The element denoted here as CAMe9 (FI) and CAMe16 (FI) are described
in 3, 5]. The numerical results reported here are obtained with the version of the Newmark scheme,
when 8 = 0.25 and n = 0.5 are used in Eq. (17).
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6.1. Free—free flexible beam undergoing large overall motion

This problem was analysed in several papers on beam dynamics in 2D and 3D formulation, for
example in [18] using the rod model. The beam initially at an inclined position in the plane (e; , e3) is
loaded at the lower end by a spatially fixed force P and torque M with components and time histories
as in Fig. 1. We solve here the same problem using the six-field shell model with the following data:
L=100: =8 L. =8 L=(1E+121" b=1hy =1 EA =10 EJ L Ebhs/12'= 500,
poA =1, poJ = 10. The beam is discretised by 1 x 10 CAMel6 (FI) and the time integration step
is At = 0.1 sec. The deformation history of plane configurations of the beam is given in Fig. 2,
while the sequence of plane configurations as seen from 3D perspective is shown in Fig. 1. Plots
of energies depicted in Fig. 3 indicate small oscillations of the kinetic and potential energies, but
the total energy remains constant in time. Our results confirm the dynamical behaviour of the rod
discussed in other papers.
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Fig. 1. 3D view of some configurations of the flexible beam in 2D free motion

Fig. 2. Deformation history of the freefree flexible beam undergoing large overall 2D motion
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Fig. 3. Energy history plots for the 2D free motion of the flexible beam

6.2. Free—free flexible beam undergoing rotary motion

To verify the importance of the sixth degree of freedom (drilling rotation) in shell dynamics we
analyse the rotary motion of the free—free beam under the action of the external couple applied at
the centre C of the beam, Fig. 4. Two solutions — based on shell theory, and based on plane-stress
elasticity (membrane) — are compared in 2D rotary motion. The data characteristics relative to the
previous example are united: L = Ly = 10, b=ho =1, E = 10*, v = 0, and po = 1. The beam is
discretised in the plane of motion by 2 x 10 CAMe16 (FI) with time integration step At = 0.1 sec.
Note that the couple applied at the central point C' is here the drilling couple. Such an example
cannot be analysed by other shell models without an independent sixth degree of freedom. In this
example, over the analysed 10 turns the shell theory gives similar results as the plane-stress elasticity

(membrane) solution.

shell
S s membrane (a-b)
Y i /
2.5+
0.0
-2.5+
) ¢ -5.0 PR A 788 )
0255 807 25 50 7.5X 10.0

Fig. 4. The comparison of the shell and the membrane solutions

6.3. Free—free thin strip powered by two couples

By reducing 100 times the thickness of the beam from the previous example, we discuss the dynamic
behaviour of the thin strip with data L = L, = 10, b= 1, hg = 0.01, E = 10%, v = 0.25, py = 1.
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The strip is powered by two dynamically applied couples: the couple M,(t) acting along the strip
axis, and a small perturbing couple My(t) = 0.05M,(t), Fig. 5. The strip is discretised by 2 x 10
CAMel6 (FI) and the time integration step is At = 0.005 sec.

The problem illustrates the complex 3D motion of the strip developed from initial rotation about
the X axis. Several spatial configurations at successive time instants are shown in Fig. 5, while Fig. 6
indicates the trajectories of the two end points (a) and (b) projected onto the X—Z co-ordinate plane.
This example indicates large relative elastic deflections and multiple turns of some strip parts. In
this problem the central point, where the couples are applied, should remain at the same spatial
position through the simulation time. In our analysis it remains at the same position indeed. This
can be regarded as an important control of correctness of the algorithm.

Fig. 5. Free—free thin strip powered by two couples: couple application data and spatial configurations of
the strip at successive time instants
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Fig. 6. Trajectories of the end points (a) and (b)

6.4. Right-angle cantilever beam subjected to an out-of-plane force

This problem was analysed by beam models in many papers, in particular by Simo and Vu-Quoc [18].
The right-angle cantilever beam is subjected to an out-of-plane concentrated force applied at the
elbow (a) by a hat time function, Fig. 7. In our example solved by the shell model we take the
data L, = Ly = 10, b = hy = (12/10%)/2 E = 10°/12, v = 0, py = 103/12, in order to obtain
the same sectional characteristics FA = 10%, pgA = 1, EJ = 103, as in the examples based on the
beam theory. However, our torsional stiffness and rotary inertia following from the shell data are
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Fig. 7. Right-angle cantilever beam: the applied force data and deformed configurations at five time instants
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Fig. 9. Energy histories for non-linear vibrations of the right-angle cantilever beam
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different from those used in earlier beam papers. Therefore, our results are not comparable to the
earlier beam results. The cantilever is discretised into 2 x 2 x 10 + 4 = 44 CAMe9 (FI) elements.
After removal of the force the cantilever undergoes finite free vibrations with combined bending and
torsion. The time histories of the out-of-plane displacement of the points (a) and (b) are given in
Fig. 8. While the values of potential and kinetic energies oscillate in a wide range, Fig. 9, the total

energy remains almost constant in time.

6.5. The hemisphere with an 18° hole

The octant panel of the hemisphere with an 18° hole, subjected to the two inward and outward
forces applied at the base edges, Fig. 10, with the data R = 10, hg = 0.04, o = 18°, E = 6.825 % 107,
v = 0.3, P = AP, Prer = 10, is often used as a solution convergence test for finite elements. In
dynamic analysis of the octant panel, we discuss its large overall motion as in [16]. The applied forces
are now ramped from 0 to a value of 50 over 5 sec and ramped back down to 0 in another 5 sec,
Fig. 10. The octant panel is discretised by 8 x 8 CAMel6 (FI) with totally 3750 dof, and the time
step At = 0.1 sec is used. Several stages of the deformed octant panel at specified time instants are
shown in Fig. 10, while Fig. 11 indicates trajectories of the points (a) and (b) in time, projected
onto the X-Y co-ordinate plane. Fig. 12 contains time history plots of the potential, kinetic and

total energies.
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Fig. 10. The octant panel of the hemisphere: the geometry and the applied loading, deformed
configurations at specified time instants

6.6. Large motion of a wavy cylindrical branched panel

Consider large motion of a flexible cylindrical panel with change of the curvature sign, reinforced
by a plate rib. The shell shape is indicated in Fig. 13, where the data have the following numerical
values: L =2, a =04, R=1, H =04, hy = 0.01, E = 10%, v = 0.25, pgp = 100, pghg = 1. Two
concentrated forces are applied at the points (a) and (b) by the ramp function from 0 to 10 in 1 sec
and back down to 0 in another 1 sec. After the 2 sec the shell is free from external loading and
moves freely in the space. The panel is discretised by (5+2+5) x 6 = 72 CAMe9 (FI) with totally
1950 dof and the time step At = 0.01 sec is used. The motion trajectories of the points (a) and (b)
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Fig. 11. The octant panel of the hemisphere: the trajectories of the points (a) and (b) in time
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Fig. 12. The octant panel of the hemisphere: time history plots of energies
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Fig. 13. Motion trajectories of the points (a) and (b) and the shape of the wavy cylindrical branched panel

Fig. 14. Deformed configurations in time of the wavy cylindrical branched panel
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Fig. 15. Energy histories for the wavy cylindrical branched panel

are shown in Fig. 13. Several stages of the motion depicted in Fig. 14 show very large deformations
of the flexible shell structure. The energy histories given in Fig. 15 indicate that the total energy is
conserved throughout the simulation time.

When the external forces are removed, the mass centres of shells discussed in Examples 6.5
and 6.6 move with a constant velocity along straight lines in space. The accuracy of reproducing
the motion in numerical simulations provides a good test for accuracy of the shell theory, its finite
element approximation and the time-stepping algorithm applied.

Additional numerical tests were performed by Lubowiecka [11].

7. CONCLUSIONS

In this report we have tested the general, dynamically and kinematically exact, six-field theory
of branched shell structures developed in [3, 5, 6, 10, 15] on various non-linear problems of shell
dynamics involving also the large overall motion. The Newmark type time-stepping algorithm has
been developed and extended to the rotation group SO(3). With two free parameters used, our
dynamic algorithm can be adjusted to a variety of time-stepping schemes. We have discussed an
accurate, indirect C? interpolation procedure on SO(3) with a transport of approximation domain.
The procedure has allowed us to solve problems with unbounded rotations. Applying the extended
time-stepping algorithm, several dynamic simulations of the 2D and 3D large overall motions of
various beam and shell structures have been performed. The numerical results confirm that our
shell model, its finite element implementation and the time-stepping algorithm can successfully
be applied to simulate dynamic behaviour of highly non-linear problems of flexible complex shell
structures.
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