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A Nordsieck form of multirate integration scheme has been proposed for flexible multibody dynamic
systems of which motions are represented by large gross motion coupled with small vibration. Based on
the conventional flexible multibody dynamics formulation, vibrational modal coordinates with floating
reference frame and relative joint coordinates are employed to describe the motion in this research. In
the multirate integration, the fast variables of the flexible multibody system are integrated with smaller
stepsize, whereas the slow variables are integrated with larger stepsize. It is assumed that vibrational
modal coordinates are treated as fast variables, whereas the relative joint coordinates are treated as slow
variables to apply multirate integration method. A method that decomposes the equations of motion
for flexible multibody systems into a fast system with flexible coordinates and a slow system with joint
relative coordinates has been also proposed. The proposed multirate integration method is based on the
Adams-Bashforth—-Moulton predictor—corrector method and implemented in the Nordsieck vector form.
The Nordsieck form of multirate integration method provides effective step-size control and at the same
time, inherits the efficiency from the Adams integration method. Simulations of a flexible gun and turret
system of a military tank have been carried out to show the effectiveness and efficiency of the proposed
method.

1. INTRODUCTION

In flexible multibody systems, such as a space satellite system with flexible antenna or lightweight
high-speed mechanisms, a flexible body is allowed to have large motion coupled with small vibration.
Thus, the equations of motion are expressed in terms of two sets of coordinates; one for describing
large translational and rotational motion and the other for expressing vibrational motion. Although
they are coupled through inertia matrices in equations of motion, they are varied with different
frequency rate. In most cases, the coordinate set associated with deformation can be treated as
faster variables. In numerical integration for such systems, it is difficult to solve equations of motion
efficiently, since smaller stepsize must be used to meet the accuracy requirement for the solutions
of such fast variables.

A multirate integration method is known to be one of the efficient methods, if the system has
two or more distinctive different frequencies. In the multirate integration, the fast variables are
integrated with smaller stepsize, whereas the slow variables are integrated with larger stepsize. Thus,
the multirate integration may provide an efficient means to analyze flexible multibody systems.

Hofer [4] introduced a method with the multistage one-step type that combines implicit and
explicit formulas. Gear [3] investigated dual rate methods for ODE systems. Srinivasin [11] applied
a multirate integration method to planar flexible multibody systems. Solis [10] applied conventional
multirate integration method to a mechanical system with high stiffness elements such as hydraulic
subsystems. This kind of system is known to be a force-coupled subsystem. In the structural dynam-
ics area, Daniel [1] investigated subcycling algorithms which apply different integration time steps

IThis is an extended version of the article presented at the NATO Advanced Research Workshop on the Compu-
tational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion, Pultusk, Poland, July 2-7, 2000.
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to different sizes of finite elements in a structure. Kim (5] proposed a multirate integration method
for multibody dynamic analysis with a decomposed subsystem method. System equations of motion
can be decomposed into several small sizes of the equations of motion. Different rate integrator has
been then applied to solve each subsystem.

In this paper, a constant stepsize multirate integration scheme is developed for flexible multibody
system analysis, based on the Nordsieck form of Adams-Bashforth-Moulton integration method.
The system equations of motion for a flexible body are derived using a recursive formulation.
A method to decompose flexible multibody system equations of motion is introduced to make a
suitable form for the multirate integration. Section 2 explains derivation of equations of motion for
flexible multibody systems. Section 3 introduces the constant stepsize multirate integration method
that is implemented in the Nordsieck form of Adams-Bashforth-Moulton integrator. The proposed
method is applied to a flexible gun—turret system of a military tank to investigate the efficiency in
Section 4. Finally, the conclusions are made in Section 5.

2. FLEXIBLE MULTIBODY SYSTEM EQUATIONS OF MOTION
2.1. Equations of motion for a flexible body based on modal coordinates

To describe the configuration of a flexible body, it is necessary to define a set of coordinates that
define the position of the every point in a flexible body. Figure 1 shows a flexible body in the
deformed state. The X-Y—Z frame is the inertial reference frame. The z;—y;—2; is a body reference
frame chosen to define the position and orientation of a flexible body in the undeformed state,
relative to the inertial reference frame. The position of a typical point P on a flexible body can be

represented in the deformed state as
r? =r; + A;p? =r; + A;(s? + u'P) (1)

where r; is the position vector of the origin of the body reference frame, A; is the orientation matrix
of the reference frame, s'? is the position vector from the origin of the body reference frame to the
point P in the undeformed state, and u'? is the deformation displacement of the point P with
respect to the body reference frame. In order to make practical analysis, a Ritz approximation is
employed to represent the displacement field that can be expressed as a linear combination of the

deformation modes, i.e.
uw'Peegla; (2)

where W% is a modal matrix whose columns consist of linearly independent deformation modes.
Deformation modes represent displacement field that is expressed in terms of nodal coordinates

Fig. 1. Generalized coordinate of the i-th flexible body
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associated with the point P and a; is the modal coordinate vector of the flexible body 7. Thus, the
position vector of the point P in the flexible body ¢ can be written as

r? =r; + A;(s? + PPa;). (3)

The variational equation of motion of a flexible body is written as [12]
—/ psePT P 40 +/ srPT £P A0 + / srPT TP do = / 5P’ TP dQ = sw; (4)
Q Q o Q

where p is material density, ¥ is the acceleration of the point P, fF is body force density at the
point P, T is surface traction at the point P, érf is a virtual displacement of the point P, 7% is
stress vector, and def is strain variation vector. The acceleration of the point P can be obtained
by differentiating Eq. (1) twice. The virtual displacement of the point P is procured by taking
a variation of Eq. (1). Substituting those acceleration and virtual displacement terms into Eq. (4)
yields

—[orT, 6nl, da] | { M | @; | +8;i— Qi3 =W, (5)

a;

where dr; is the virtual displacement of the origin of the z;—y;—z; frame, d7; is the virtual rotation
of the flexible body reference frame, and da; is the variation of modal coordinates of the flexible
body 4. The detail expressions of generalized mass matrix M;, velocity coupling vector S;, and
generalized force vector Q; can be found in [12].

The internal virtual work term in Eq. (5) can be represented in terms of modal coordinate
variation and corresponding restoration force vector, using the linear strain—displacement relation-
ship and the linear stress and strain relationship. This derivation is based on small deformation
assumption. Thus, the right hand side of Eq. (5) can be written as [12]

0
al — / JePTTP = [5rzT, 571'?, (5alT] 0 = [5r1T, (51r;fr, 6a1T]Ui(ai) (6)
" Kiai

where K; is modal stiffness matrix.
Therefore, the following variational form of equations of motion for a flexible body is obtained
by substituting Eq. (6) into Eq. (5) as

I
[or], on], 6a | {Mi | @i | +8i — Qi+ Ui(ai) p =0. (7)
a;

2.2. Flexible multibody system equations of motion using recursive formulation

A flexible multibody system is composed of rigid and flexible bodies that are interconnected by
kinematic joints. To derive system equations of motion, the recursive formulation [8] can be used.
Figure 2 shows a pair of contiguous flexible bodies. To explain transformation between the reference
frames, we denote frame name as follows: The frame F' represents the inertial reference frame. The
frame F’ denotes body reference frame before deformation occurs. The frame F” is the joint reference
frame that is attached to body at the joint definition point. The frame F" denotes alternate joint
reference frame that is fixed to the joint definition points. The frame F" is also parallel to the
frame F”’ in the undeformed state. This frame is used to define joint rotation due to deformation.
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X

Fig. 2. Adjacent flexible bodies

Using these definitions of the frames, the orientation matrix of body j reference frame can be
obtained by the following sequence of transformation matrices,

A; = A, Bjj(a;) Ci; Dyj(qi5) Cj; Bj(ay) , (8)

where A; is the orientation matrix with respect to the frame F, the matrix Bj; is the transformation
matrix from the frame F" to the frame F' and the matrix C;; is the transformation matrix from
the frame F” to the frame F". D;; is the transformation matrix from the frame FJ’; to Fl’]’ and is
also function of joint relative coordinate g;; .

The position vector of the origin of body j reference frame can be written as a vector summation

rj =1 + A(sj; + uj;) + dij(Ayj, gi5) — Aj(s]; +ufy) 9)

where the vector d;; is the position vector from the joint definition point P;; to the point Pj; , and
also it is the function of joint coordinate g;; .

In the recursive formulation [8], a state vector of velocity is introduced to have more efficient
expression of velocity relationship between the inboard body ¢ and the outboard body j. If we define
the composite velocity vector of the body i as Y; = [ £; w; ]T, then the state vector can be obtained
from the following transformation as

- I r;

Thus, the state vector relationship between the body ¢ and the body j can be obtained by differen-
tiating Eq. (9), and augmenting angular velocity relationship between the body i and the body 7,

Y; =Y+ Aija; + Bijgi; — Ajia;, b
where

= od;;

o o] Bl + 2%

BZ_] = l: Jt 1;[{1 qu }’ AU =
1)

AT 47 AT
A, WY

b}
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and H;; is a matrix of which columns consists of unit vectors for joint axis. ¥’ and ¥¥ are modal
matrices of which columns consist of translational and rotational nodal displacements associated
with the point P;; on the body i, respectively.

The state variation relationship between the body ¢ and the body j can be expressed in the same
manner as the state vector relationships,

52]' — (SZ,‘ 3 Aijdai i Bij (5qij — A 6aj ; (12)

This state variation can be also obtained by following transformation of the virtual displacement
and rotation in Cartesian coordinate as

& I f‘,; (51‘1' e ] )
5% = [ B Hém ] = T37; . (13)

Differentiating Eq. (11) yields following acceleration state relationship between the body 7 and the
body 7,

Yj E= Yi + Eij + Ayja; + D” + Bij Qij — Ej; — Ayja;, (14)

where Dij = Bijqij ; Eij = Ajié-j .
The relationship between acceleration state vector and Cartesian acceleration vector is also ob-
tained by differentiating Eq. (10).

Y]‘ = T;l Yi -I—Ti_l Yi. (15)

Once the kinematic relationships between the inboard body 7 and the outboard body j are
obtained as shown in Egs. (8), (9), (11), and (14), the position, velocity, and acceleration state of
each body in the open chain multibody system can be computed recursively from the base body to
the tree-end body [8].

The equations of motion for a flexible body shown in Eq. (7) can be now transformed into the
one in terms of state variation and acceleration state vector, using Egs. (13) and (15),

[ 62T ¢aT | {M [ Z } -Qi} =0, (16)

where
w= [T 0 [T 0]
b& 1 81 Mom . NIge
T X
i T 1 0 R; Q2
o =% 1] (] T ]-srura)-[G]
1 0 I 1 0 1 1 Q?

For the flexible multibody chain system that consists of n+1 number of flexible bodies intercon-
nected by kinematic joints, the system equations of motion in the variation form can be expressed
as [8]

g {67 (M ¥+ My d; - QF) +6al (W™ Y + M & - Q¢) } =0, (17)
=0

Once Eq. (12) and Eq. (14) are substituted into Eq. (17) with proper indices from the tree end
body to the base body, recursively, then following system equations of motion are obtained in terms
of the base body, joint, and deformation modal coordinates [8],

Mg = P, (18)



396 S.-S. Kim

where
Mee MY MW P a
M = M%7 MY |, P.= | Biila i Cl i
symm My PY Yo

the superscripts a, ¢, and y, denote terms that are related to modal, joint, and base body coordinate,
respectively.

3. NORDSIECK FORM OF ADAMS MULTIRATE INTEGRATION
3.1. Nordsieck form of constant stepsize Adams predictor—corrector method

The Adams family of integration methods is known to be a multistep integration method for solving
nonlinear differential equations such as equations of motion. Although numerical methods of solving
differential equations are explained in the several literatures |2, 9], to explain the constant stepsize
Nordsieck form of Adams method, basic formula of the Adams method is briefly mentioned in this
paper.

To solve the following first order differential equation with time variable t and state variable x,
and an initial value,

g flt,7) with  ~z{tg) = zg. (19)

The conventional form of the Adams predictor-corrector integration method [2] with constant step-
size can be given by following formulation:

3rd order Adams—Bashforth predictor:

xn,(o) = an—l y (20)

4th order Adams—Moulton corrector:

Xn,(m+1) = Xn,(m) k5 CG(xn,(m))7 m 2> 0, (21)
where
x";(o) s [ xn:(o) hj:nv(o) hj:n—l hx.’"‘_z ] ) (22)
Xp—-1 = [ Tn-1 hin_1 hIn_o hi,_3 ]T, (23)
j. 23 .16 .5 3
12 12526 8
003, e i il 1
s ek 2 3 i (24
0.0 o0 0
G(xn,(m)) = hf(xn,(m) ) tn) £ (3h ZTp-1 —3hTpn_o + hin—B): (25)

and the subscript n represents the n-th time grid point in the descretized solution curve and the
subscript m in the prenteses () denotes iteration numbers of the fixed point iteration in the corrector
stage, and h is a stepsize in the Adams integration method.

The polynomials of the conventional Adams method, which approximate solution curves, are
represented as a linear combination of basis polynomials, so called cardinal functions, based on
the Lagrange polynomial formulation. However, Nordsieck made use of Newton’s divided difference
formula for the interpolated polynomials, instead of the Lagrange formulation. In this formulation,
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the value of the dependent variables at the current time step is approximated by a combination of
the dependent variables and their higher order derivatives at the previous time step.

The constant stepsize Nordsieck form 3rd order predictor-4th order corrector formula can be
obtained from the conventional Adams formula given in Egs. (20) and (21) by the following trans-
formation,

an,(o) =k xn,(O) , (26)
where
, W vt I
An,(0) = | Zn,(0) s hxn,(O)a ‘éTxna ?mn ) (27)
and
7 QUL )
ek e Ul
Emgigaigsnl jlo (28)
4 4
o b -4 1

Thus, the 3rd order Nordsieck form predictor is given as

a, (0) = Aan_1 (29)
which is followed by the 4th order corrector given by

n (m+1) = 8n(m) T 1 F(an,(m)), m > 0. (30)

Substituting Eq. (26) into Egs. (20) and (21) yields the coefficients of the method that can be
expressed as

5o b el |
0 =la2 15
= et
A = TBT b o Gl (31)
T i e |
3 Bk
I_Tc‘_|:'8_a 17 Za _é] ) (32)
1 hA
F(an,(m)) £ G(T_ xn,(m)) = hf(fﬂn,(m),tn) —h <i‘n_1 + hEp_1 + Ei-:i)n_1> : (33)

There are two important features of the Nordsieck form of Adams integration method to apply for
multirate scheme, compared with the conventional Adams method. First, the conventional constant
stepsize Adams predictor—corrector method requires a dependent variable and its first order deriva-
tives at a number of previous time steps, whereas the Nordsieck form of Adams predictor—corrector
requires a dependent variable and the higher order time derivatives of just one previous time step.
Second, as shown in Eq. (27), the Nordsieck vector, obtained using the predictor-corrector formula
in Egs. (29) and (30), contains higher order derivative information at the current step. Since, in the
multirate integration, some variables are integrated with smaller stepsizes and some are integrated
with larger stepsizes, variable dependency of just one previous time step enables the stepsize to be
adjusted more straightforwardly. In the multirate integration, which will be explained in the next
subsection, higher order derivative information is also required. This information is readily available
using the Nordsieck vector.
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3.2. Nordsieck form of multirate integration with decoupled equations of motion

Multirate integration methods are usually used when a system has largely different frequency con-
tents. To apply multirate integration, a system must be decomposed into the one associated with
high frequency contents and the others with low frequency ones. The fast variables related to high
frequencies are integrated with smaller stepsize, whereas, the slow variables related to low frequen-
cies are integrated with relatively larger stepsize.

In order to explain a method to decouple the flexible multibody equations of motion for the
multirate integration method, typical equations of motion are represented symbolically as follows,

li Mgs Mgt :l [ (.js } b2 l: gs(qs, qf’ qLS, (if,t) (34)

mg mg || 45 9/ (@, @5, @s, 5. t)

where the left hand side matrix represents a generalized mass matrix and the right hand side
vector represents a generalized force vector, variables g, g, and ¢ represent position, velocity, and
acceleration, respectively, and subscripts s and f denote slow and fast variables, respectively.

In Eq. (34), the slow and fast acceleration variables are coupled through inertia matrix. To
apply Nordsieck form of multirate integration, taking inertia force term to the right hand side and
rearranging Eq. (34) yield

l:mss 0 :l[ijsjl_I:QS(QSanaqu,quat)_msfijf

= f e - s & pd (35)
qf g (qS7Qfaanqf7t)_mfsqs

0 my

Since Eq. (35) is now decoupled, the first and seconnd equations can be solved separately, if each
of the inertia force term in the right hand side vector is known. However, high frequency acceleration
gy in the right hand side of Eq. (35) is unknown, so the value of gs must be estimated using the
approximation method. Since it is high frequency acceleration, approximated value of right hand
side term may cause overall solution unstable. In order to overcome this difficulty, first we solve
for the second equation of Eq. (35) to obtain expression of ijf in terms of g, explicitly, and then
substitute this expression into the first equation to eliminate the dependency of ¢ 7 in the right hand
side of Eq. (35). Then the following decoupled equations of motion can be obtained,

I:me O}l:(js:l_l:gs(q_sanaqs’Qf’t)_%gf

e f(s = A% = as ) (36)
0 my a5 9’ (s, A5, s, G5, t) — Mgpqs

where me = mgs — ﬂ;n%”ﬁ . Now, the right hand side of the first equation of Eq. (36) does not depend

on the acceleration ¢; anymore. To apply the Nordsieck form of Adams-integrator, Eq. (36) can be
changed to the first order form of differential equations as

X & Fs(xs,Xf,kf,t) (37)
)'(f Ff(xS,Xf,)'cs,t)

i = 3T = < L3P
where x; = [§gs, ¢s| and x; =[gr, gr] .

If the Nordsieck form of multirate integration is applied to the above equations, with larger
stepsize for the slow variables, and smaller stepsize for the fast variables, the second equation must
be evaluated with extrapolated values x} and x} for slow variables x,; and their derivatives x; as
follows,

Xs = Fs(xs »Xf axf 7t)7 (38)
xp = FI(x} x; %5 t). (39)
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solutions
A

Fig. 3. Schematic diagram of multirate integration

Figure 3 shows schematic diagram of the Nordsieck form multirate integration. Approximated

values of slow variables and their derivatives at ¢, 3, ... tx_; are extrapolated using information
at t; by the following equations,
a;|ti :AC(a) an|ti t; :t1+(‘i—1) X h'fasta ’i=2,...,k‘— ]., (40)
where
=50 =020
0.0 0 (’L % 1) X hfast
Cla) = d =
Sk S e Reios
g 5.0 o
Thus, xj and x} can be easily obtained from only 1st and 2nd equations of Eq. (40) as
: h = h o
Xt = X; + ahgion <xs e ;"’“’ (xs + 0‘3ﬂ xs>> (41)
. % « i ahslow 5
=% Fohes T X, + = —a (42)
Fast variables are then integrated using the predictor—corrector method with extrapolated values
x; and xj at the time points 2, t3, ... tx—;. Slow and fast variables are then integrated together

with the Nordsieck predictor—corrector method at ¢ .

In the conventional multirate integration for multibody dynamics [10], one must solve the equa-
tions of Eq. (34) simultaneously for the accelerations. After then one must form the first order
form differential equations and must extrapolate only slow variables using information from sev-
eral previous steps. Whereas, in the proposed Nordsieck multirate integration method, Eq. (34)
is converted into the decoupled equations of motion as shown in Eq. (36) and it is solved and
evaluated separately for slow variable acceleration and for the fast variable acceleration. The first
order form differential equations can be then separately formed for fast and slow variables. In this
multirate integration, not only slow variables but also their derivatives are efficiently extrapolated
using Egs. (41) and (42), since the Nordsieck vector provides higher order derivatives.

4. A FLEXIBLE GUN-TURRET SYSTEM ANALYSIS WITH THE MULTIRATE
INTEGRATION

In order to investigate the efficiency of the proposed multirate integration, the method is applied
to a flexible gun-turret system as shown in Figure 4. The flexible gun—turret system [6] consists of
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mount gun

chassis

Fig. 4. Gun and turret system of tank

a chassis, a turret, a mount, and a flexible gun. The turret is connected to chassis by a revolute
joint. The mount is connected to the turret by also a revolute joint to allow the gun elevation. The
flexible gun is fixed to the mount, since the recoil motion is not considered in the simulation. The
chassis is assumed to be attached to ground.

For deformation modes of the flexible gun, the first and the second bending modes in vertical
plane and in horizontal plane, respectively, are employed. To excite vibration of the gun, the turret
and the mount are activated with following torques, simultaneously,

Ty (t) = —45500sin(27t), (43)
Ty(t) = 17600 sin(27t) — 33451. (44)

The torque in Eq. (43) is imposed to the turret to rotate the gun and the torque in Eq. (44) is
for elevating the gun.

The resulting flexible gun—turret system equations of motion using the recursive formulation are
written as

I:Mss Msf][ds]Z[Qs] (45)
My My |1 ay Qs
where g, is the joint acceleration vector for gun rotation and elevation and qy is the deformation

modal acceleration vector for the flexible gun. As explained earlier in Section 3.2, Eq. (45) can be
decoupled to apply the Nordsieck form of multirate integration as

[ l\ge Moff ] [ 2; ] E [ Qs —Ql\jlfsds ] (46)

where M, = M — MsfMﬁles and Q, = Q; — MsfM_Blef- Although there is inverse matrix
computation, it is not necessary to evaluate inverse matrix, since modal mass matrix with the Eigen
modes is identity, i.e., Mg = I. The right hand side term q, in the second equation of Eq. (46)
must be extrapolated using Eq. (40) for fast variable acceleration calculation.

In the equations of motion, 4 modal coordinates are assumed to be fast variables, whereas, the rest
of variables(i.e., 2 joint variables) in the system equation as slow variables. Four cases of simulations
are carried out, according to the stepsize ratio of the slow to the fast variables. In the first case,
the same ratio between the fast and the slow variables is used and the stepsize is 0.0001 sec. With
the fast variable stepsize being fixed to 0.0001 sec., the slow variable stepsize is increased twice,
five-times, and ten-times for the 2nd, 3rd, and 4th simulations, respectively. Figure 5 shows the
muzzle displacements of the flexible gun for four cases of simulations. The muzzle velocities of the
flexible gun are also shown in Fig. 6. Essentially the same results are obtained from four simulations.

Figure 7 shows the modal coordinate histories for the four cases of the simulations. Comparing
with the simulation results for the four cases, the maximum values of modal coordinates for the
first bending mode in the horizontal plane are different, although overall trend is the same. The
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Fig. 5. Muzzle position of the gun
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Fig. 6. Muzzle velocity of the gun
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modal coord. in vertical and harizontal plane
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Fig. 7. Time history of modal coordinate

maximum deviation of the solution of the case 4 from that of the case 1 is about 1072. It is thought
that this deviation is due to the extrapolation of the slow variables.

In order to investigate efficiency of the multirate method for the analysis of the flexible gun—
turret system, CPU times taken for the four simulations have been compared. In this comparison,
Pentium MMX 200 Mhz personal computer is used. CPU time comparison is shown in Table 1
for one-second simulation. The larger stepsize ratio is used, the shorter the CPU time takes, as
expected. Especially in the case 4, about 1.7 speed-up is gained, in comparing with the case 1.
The reason that the speed-up is about 1.7, although stepsize ratio is 10, is due to the number of
fast variables is 4, whereas the number of slow variable is only 2. Thus, there is not much gain
to solve smaller equations with larger stepsize in this particular example. If the system has a few
number of fast variables and the large number of slow variables, then more speed-up gain could be
obtained.

Table 1. CPU time comparison with various cases

Simulation | H fast | H slow | H ratio | CPU time | Speed
no (sec) (sec) (sec) up
Case 1 0.0001 | 0.0001 1/1 251.06 5
Case 2 0.0001 | 0.0002 1/2 197.34 1.2
Case 3 0.0001 | 0.0005 1/5 162.74 1.546
Case 4 0.0001 | 0.001 1/10 148.90 1.696
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5. CONCLUSIONS

A Nordsieck form of multirate integration scheme has been introduced for dynamic analysis of
a flexible multibody system. The recursive formulation has been used to generate equations of
motion for flexible multibody systems. To apply multirate integration method, a method has been
developed to decouple the equations of motion for flexible multibody systems into a fast system with
flexible coordinates and a slow system with joint relative coordinates. The decoupled equations have
unknown acceleration terms of the slow variables in the right hand side. Nordsieck form of multirate
integration method provides predicted values of those unknown accelerations, since higher order
derivative information is readily available in the Nordsieck vector. The Nordsieck form of multirate
integration method also provides effective stepsize control, since it has been transformed into an
one-step method. Simulation results of the flexible gun and turret system of the military tank show
that the proposed multirate method is effectively applicable to the flexible multibody system and
improves solution efficiency.
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