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We investigate the evolution of Tollmien—-Schlichting waves in boundary layers in the presence of moderate
buoyancy arising from the heating or cooling of a compliant wall. We exploit the multi-deck structure of
the flow in the limit of large Reynolds numbers to make an asymptotic analysis of the pertubed flow, along
the upper-branch of the neutral stability curve, to derive linear neutral results. These results are discussed
and are compared to rigid wall results. Also, a brief parametric study, based on the linear neutral results,
is presented and the results are discussed.
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1. INTRODUCTION

Laminar-turbulent transition in wall flows is of great technological significance since delay in tran-
sition can result in considerable drag reduction. The study of instabilitites that occur in any fluid
flow problem helps in the understanding of transition, and the supression of instability waves results
in considerable transition postponement leading to significant drag reduction. Most experimental
and theoretical studies in hydrodynamic stability are aimed at: identifying all possible modes of
instability, finding all factors which influence transition or stability and seeking ways to delay tran-
sition, hence reduce drag. Some of the methods influencing the stability of boundary layer flow
over rigid surfaces include: injection [18], suction [11], heating or cooling [19] and the use of com-
pliant boundaries [2, 3]. In this paper we look at the combined effect of compliant boundaries and
heating/cooling on the linear stability of accelerating boundary layers.

Boundary layer flows over a compliant surfaces are susceptible to a variety of instabilities which
can be divided into two broad classes: Tollmien—-Schlichting instabilities (TSI) and flow-induced
surface instabilities (FISI). This classification was used by Carpenter and Garrad [2, 3]. The TSI
are similar to the ones which exist in flows over rigid surfaces but are now modified by the presence
of the compliant surface. Some of the instabilities which fall into the class of FISI are divergence and
travelling wave flutter (TWF) instability. Sometimes the TWF and the TSI interact and coalesce
to form a stronger instability [3].

There is now ample evidence from linear stability theory [2-5, 12, 20] that certain types of
compliant surfaces are capable of producing significant transition delays through the attenuation
of the TSI. In fact it has been shown that as wall compliance increases, the growth of the TSI is
progressively suppressed. However, the presence of FISI frustrates the transition-delaying capability
of the compliant surface [3|. In view of this fact, the focus of most researchers has shifted from trying
to establish whether or not compliant surfaces delay transition through the reduction of the TSI.
Instead, the factors limiting the transition-delaying performance and properties giving the optimal
performance of compliant surfaces are now being sought see for example [6].
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In this paper we use the self-consistent approach of Smith and Bodonyi [16, 17] to look into
the effect of heating/cooling in accelerating boundary layers over compliant surfaces. The work
presented here is in the same spirit as the work of Motsa et al. [14] who investigated the effect of
bouyancy on channel flows with compliant boundaries. Here we have extended the work to boundary
layer flows [1], developed an asymptotic theory, also in the spirit of Smith and Bodonyi [16, 17],
for high Reynolds number flows to take into account the FISI. An important conclusion which can
be drawn from the work of Carpenter and Gajjar [1] is that the asymptotic theory gives accurate
results for the hydroelastic instabilities (FISI), and also gives a reliable, albeit qualitative, guide
to the effects of wall compliance on the Tollmien—Schlichting waves. With this in mind, in this
paper we address the TSI but we further extend the original problem [2] by introducing another
complication — heating/cooling. It is worth mentioning here that not much research has been done
on boundary layer flow over compliant surfaces with heat transfer. The effect of heating/cooling of
boundary layers over compliant surfaces may have important applications in marine biology and
naval engineering. For instance, it has been conjectured that laminarization of the boundary layer
by body heat is responsible for the seemingly low drag of the porpoise [19].

The effect of introducing heat transfer in the upper-branch stability of Tollmien—Schlichting waves
in boundary layer flow over rigid surfaces has been considered by Gajjar and Cole [8], Gajjar [7] in
compressible flows, and Mureithi et al. [15], in incompressible flows. The work [15] was concerned
with the effect of increasing the level of buoyancy on the upper-branch Tollmien—Schlichting waves.
It was shown that for moderate thermal stratification the five-zone disturbance structure of Smith
and Bodonyi [17] remained unaltered. However, as the buoyancy was increased to O(Re!/?), where
Re is the Reynolds number, the five-zone structure collapsed into a two layered structure with
the disturbances now governed by the Taylor-Goldstein equation. In this work, we have restricted
ourselves to the case of moderate buoyancy, in which case the five-zone structure is retained (even
in the presence of a compliant boundary).

The outline of the paper is as follows: in Section 2 we outline the general mathematical formula-
tion of the linear stability problem of boundary layer flow over a heated/cooled compliant surface.
In Section 3 we present the disturbance structure and give the appropiate expansions in each region
from which we derive the disturbance solutions. In Section 4 we derive the eigenrelations giving
the linear neutral results and in Section 5 we give a discussion of the results. In Section 6 we give
a summary of our findings.

2. MATHEMATICAL FORMULATION
2.1. General formulation

The equations governing a two-dimensional incompressible fluid flowing over a heated/cooled com-
pliant plate expressed in dimensionless form are, under a Boussinesq type approximation, given
by
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where 045 , 0yy and oy, are defined by

- ou Ov = g ov —— du D 0 0 0
Oyz = — b a—y'i"a—m s Oyy = u,a—y, Orz = /1«5‘:;, ﬁ—&+u%+va—y.
Also, p is the coefficient of dynamic viscosity, p is the pressure, § is the temperature, g is the
gravity constant, z and y are the streamwise and normal coordinates respectively, u and v are the
streamwise and normal velocity components respectively and ¢ is time.
Equations (1)—(4) have been nondimensionalized by making the following substitutions,

(') = L(z,y), (,0) =Ux(u,v), P =pUsp, #=pp, t=(L/Ux)t,
"
oo i

where the primes denote dimensional quantities, the asterisks refer to the values of the quantities
at y = 0, the infinity subscript refers to the free stream values and L is taken to be a characteristic
length measured from the plate’s leading edge.

The nondimensional constants appearing in the above equations are the Prandtl number Pr, the
Reynolds number Re and the Eckert number Ec given in turn by

8=

UsoLp« 75
, Re= ——, Ec= —=2—.
E s cp(0x — boo)

Also, G = GrRe™2, where Gr is the Grasshof number defined by

_ gaL®p?

Gr e

(0* i 000)7

where c;, is the specific heat capacity at constant pressure, k, is the thermal conductivity and «
is the coefficient of volume expansion. We also assume that the viscosity-temperature relation is
governed by the Chapman’s Law

u=C0 (5)

where C is a constant given by C = p. /6, .

2.2. Wall model and boundary conditions

The compliant wall is modelled as a spring backed elastic plate (see for example [2]). Assuming
that the motion of the compliant wall is restricted only to the vertical direction and taking vertical
displacement to be 7', the mechanical fluid pressure Ap' due to 7’ is given by

327]'
axl2 F
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The wall parameters are: T" tension, pp, density of the plate material, b’ the plate thickness, d'
damping coefficient, B’ the flexural rigidity of the plate and K' is the equivalent spring stiffness.
We non-dimensionalize Eq. (6) by making the following substitutions,

P = _x_, = _77_, t= —‘“tIUoo P (Sp, s GIP*L
E’ L’ i\’ pU% 3
T3 i 3
F.’=KLP* szmb d:dL, B:B’p*p,*L,
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to obtain

T B 0? d 0 B ot K
PP S Vi O i Ke iy "
Ré? 0z2 0t2 Re 8t Re?0z* RE
At the compliant wall, the boundary condition for the flow is
0

u=0, v=7 at y=n(a,1). (®)
We shall use an isothermal boundary condition for the temperature at the compliant surface, that is
we suppose that the temperature at the wall is prescribed as 8 g, hence the temperature boundary

condition is
0 =0pw at  y=1lz,t). 9)

In the far field limit we assume that the velocity and temperature approach their free stream values.
In the limit as Re — oo, the basic boundary layer takes the form

u=Ug(z,Y)+---, v=ReY?Vp(z,Y)+---, 0=05(z,Y)+---, p=Pg, (10)

with Y = Rel/ 2y being the boundary layer coordinate. For general accelerating boundary layers, the
basic velocity profile Ug(z,Y’) and the temperature profile 8(z,Y’) have the following additional
properties,

Ug o JaY 4+ 2g¥° F s as Y 50,
0 ~ Ry+ RiY + RyY? +--. as Y =50,
and in the far-field limit we have

Ugp—1, 6g—0 as Y — oo

where Ap and A; are the curvature and skin friction respectively. The coefficients Ry, R; and Rs
are heat transfer coefficients.

3. DISTURBANCE STRUCTURE

In this work we adopt the five-zone asymptotic structure of Smith and Bodonyi [17] to investigate
the stability of general accelerating boundary layers along the upper-branch of the neutral stabil-
ity curve. The five regions (see Fig. 1) are: the main part of the boundary layer R1 of thickness
O(Re™1/2), a thinner inviscid adjustment region R2, of thickness O(Re™7/12), containing the critical
layer region R3, the viscous wall layer R4 of thickness O(Re?/3) and finally, the outer potential
flow region R5 of thickness O(Re™%'2). We restrict our attention to linear stability and to this end
we introduce infinitesimal disturbances of size (<K 1) to the basic flow. Smith and Bodonyi [17]
found that linear stability theory holds for disturbance sizes & less than O(Re™"/ 36). It is only when
§ rises to, and beyond, O(Re~"/3%) that nonlinearity comes into play.

The streamwise and temporal variations of the disturbances depend on X and 7, where z = €° X,
t = elr with e = Re~'/!2. The free compliant surface is in the boundary layer and thus is of O(€®).
The disturbances are taken to be in the form of a modulated wave-train, periodic in X, and we
replace the derivatives 8/8z and 8/0t by €~ >(ag + ey + -+ )8/0X and —e~*(og + €0y + - - - )8/0X,
where «;, o; (¢ > 0) are unknown constants of O(1) and are taken to be real so that we only
consider neutrally stable conditions. Here we have expanded the wavenumber « and the frequency
o as

a=eS(atem+:), o=-ctog+eor+-),

because we are interested in wavenumbers of O(e°) and frequencies of O(e*) respectively.
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R5

Compliant wall

Fig. 1. Schematic sketch of multi-deck boundary layer structure

The essential difference between the current work and that of Smith and Bodonyi [17] arises from
the introduction of compliance and the contributions due to temperature changes. The presence of
wall compliance makes the current work different from that of Mureithi et al. [15]. The analysis
of [15] showed that in the presence of strong buoyancy forces, the five-zone structure is altered.
However, for moderate buoyancy, up to O(e~®), the five-zone structure persists with some minor
modifications. Throughout this work, unless otherwise stated, we set G = ¢ °Gy, where Gy is of
O(1). The appropiate expansions and solutions in each region are as follows:

Region R1
u=Up+ 0(uo + €uy +---), v = 0(evy + vy + - --) (12)
8 =05 +6(60+eby +---), p=pp+0(epo+ e2py + )

Here, we have defined y = €Y where Y = O(1). Substituting (12) in the governing equations (1)-(4)
and solving the resulting equations yields the following solutions,

ug = AoUpy , v = —apAoxUs, 6o = A¢fpy, po = Py + GoAo(0B — Ry). (13)

At the next order, the results are:

¥ POX ¥ (OB - RO)
v = —apA1xUpB + apcgAox + agUp 7z dY + agUpGoAox / ——U2 dY, (14)
Yo B Yo B
: i Y
P, P, 0 — R
uy = ~ 2 AgUpy + AUpy — UBY/ "‘g“ Y~ UBYGOAO/ (3—20) dy
(o)) Yo U Us Yo Ug
2 Gads 2B Bl (15)
Up
Y Y
P, 0 — R
6 = — =% Agfpy + A10py — Opy —5 dY — 65y CoAo / ‘(3—20) dy, (16)
Qg vo Up Yo Us

i
pp =P — ang/ U% dY + Gy (Al - %Ao) 0p
0 0

¥ Y1 A =
~Go [ oy ([ 020t =Rl 4y ) gy, a7)
0 Yo B
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where A; = Ai(X), Pi = P;(X) (¢ = 0,1) are unknown functions representing the displacement
effect and the pressure at the wall respectively. In the results above we have set 4; = A;e!X + c.c,
P, = PietX +c.c (i =0,1), where c.c denotes complex conjugate. The lower limit of the integrals,
Yy, is a non zero constant introduced for convenience, whose value does not affect the eventual
results for wavenumbers and frequencies.

Region R2

In this region we define y = €Y with ¥ = O(1) and the expansions follow from the expansion
in R1,

u=eMY +0V?2+6w® + e +...), v = de(ev® + 20 4 ...,
0 = Ry + eR,Y + Ry Y2 + (0@ + 6V 4 ..., (18)
p=pp+8ep® +pV+..),  n=es(m+em+-).

Substituting (18) into the governing equations (1)—(4) and solving the resulting equations gives

aopy) p
u(o) = M4o ’ 'U(O) = I X Olvox)\lf, 9(0) ==lly Ao + )\26 p(O) s P(O).
(19)
Using the boundary condition (8) gives
P(o) = CO)\l(AO + ’l’]o).
At the next order we obtain
1 = GoR1cpA
o) = i [aoP;(}) + arcoA1(Aox + Mox) — 0!061)\1on] — Aixagé; — ao_o/\lzt_:o;ox
1
c2 2\
~ aphaAox (52 +2:2¢ {Inf¢] + 6%} - —"5) - Sy (& {Imf¢] + %} - 2
A 22 e 9
agGoR c
+ 2050 (oxelinlel + 4~ Ao + mx)({in el + 641 +1)) (20
2\
u®) = X4 (2§ +25% [1+ {Infé| + ¢i}]) f\°°’7° (1+ {nj¢| + ¢*}) - al’\lA" + A1\
1
GoR -
- S (Lgo(1+ {inle] + 4} - 2o + i) @
R co\? co(no + Ao) ar Ry co(Ao + no)
9(1)=—12(+—)<A+ 2B fogin s Solfla o)
por il g e Sy o e s Bk
Ry (1) = alRy co(Ao + m0)
+ —'a )\2§ (aoP + alc()/\l(A() + 17()) aoclz\le) /\15 Ay + W:
RiX2Ao (o + c2 2R1>\200770 + Co
2326 {1 = 8 o CEOTRIN o)
+ 2220 (2122 {infe + 4*) S (¢ (infe] + 4} -
2R, Co appox
a o |
+ R1A + B, <1 = /\lf) ( % +a0)\1onf)
GoR? coA C
T [Ao{lnm 5} - S5 - Ao+ mo)({In el + 9%} + 1)5-1] ;@)
1
c c
pt) = PD 4 GoR, [Ao(f +30) + 5 (Ao +m){In f¢] + ¢*}] ; (23)
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where PO = PO (X), P = PO)(X), £ =Y — §* and the functions ¢* are introduced to connect
the solutions on either side of the critical layer. Here we have assumed that the phase shift in the
normal velocity and in the pressure are equal.

Compliant wall model

Equation (7) can be written in the form

Ap = p' = Tfs"lmz e Msfs'ntt 5 Jent = Bsflsnzx:rx =5 ks€—577 (24)

where the constants T', M, By, d and k; are related to the original parameters by

=TT = riadE Y
M, = Me3 v = .
RS A e R -

ke® Berid®
- Sogpuarning g,

Re?
This choice of scalings enables the scaled parameters to appear as O(1) constants in the eigenvalue
relation and therefore allows a greater range of compliant properties to be studied. The fluctuating
pressure at the wall p* and the vertical displacement 7 are respectively expanded as

I

pr=0(epo+eprt-r), =0 (notem+ ). (25)
Setting n; = 7;¢™X (for i = 0,1,...) and using Eqs. (24) and (25) we get

Po = Somo - (26)
At the next order we obtain

P = P = som + 2Tapannoxx + deoconox — 2Mageg(aper + caco)moxx + 4Baonmoxx  (27)

where
so = —Taf + Myadc? — Bsoy — ks .

Region R4

In this region, y = n(z,t) + €z, where z is an O(1) coordinate and the flow expansions are
u=Ug+dtg+---, v = ny(z,t) + 639 + - - -, (28)
9=03+5é0+’ p:pB+6€ﬁ0+

Substituting these expansions into the governing equations (1)-(4) and then solving the resulting
disturbance equations, subject to the boundary conditions at the compliant wall and the matching
(as z — oo) with the results from R2 (as Y — 0), yields

’fl,o = p—o(l T~ e_mz) = )\1’!70, (29)
Co
SE ﬁ_o . - iaOﬁO —mz _
9y = —ia (Co >\1770>z iy (e 1), (30)
6o = —Rimo, (31)
where

1
OpCoN % i

m = gt i
(C'Ro)

The above results were obtained by looking for solutions of the form g = GpetX, By = Dpe™X, etc.
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Region R5

In this region we define y = €4, where § = O(1) and the appropiate expansions follow from Eq. (12)
in the limit Y — oo and are given by

u =1+ de(to + €ty + ---), v = 0¢(Dg + €b1 + - -+ ),

9=56(90+691+---), p=pp + 6€(Po + €p1 + - ). s
From these expansions we obtain the following solutions,

Po=Poe ™9, Go=—iPe™9, o= —Be I  §,=B,, (33)

where P is an unknown function which describes the disturbance pressure at the outer extreme of
the boundary layer. Using the temperature condition at the outer extreme of the boundary layer
we find that By = 0.

The next order solutions are

pL= [ﬁ& e Otlﬁpo] e~ v, b = —i [ﬁl — (019 — co)Pg] e~ Y,
R i 2 . (34)
i = — [Pl — oy ~ CO)PO] Rl 61 =0,

where P; is an unknown.

4. MATCHING OF SOLUTIONS AND EIGENRELATIONS
4.1. Leading order eigenrelation

The matching of pressure between R1 (in the limit as ¥ — oo) with R5 (in the limit § — 0) yields

Py =Py — GoAoRy. (35)
Matching of leading order normal velocities between R1 and R5 gives,

Py = ap4y. (36)
From Eqgs. (35) and (36) it follows that

Py = Ag(GoRy + ayp). (37)

Next we consider the mathcing between R1 (in the limit ¥ — 0) with R2 (in the limit ¥ — oo).
Matching of the pressures gives

po = Py = P = cy; (A + mp). (38)
Matching pressure between R2 (in the limit ¥ — 0) with R4 (in the limit z — 00) gives

p0 = B, = pO) = 5070 - (39)
Combining (38) and (39) yields
coMAg (0) socoA1 Ao
E ol >0 d PV = — — -
" So — /\160 i S0 — )\160 (40)

We can eliminate Ay, Py and P, by combining Eqs. (37), (38) and (40) to get

_ 20(GoRo + ag)(so — coA1)
)\180

(41)

where oy = agpcy .
The result of Mureithi et al. [15] may be recovered by setting Ry = 1 and taking the limit
8o —* 00, corresponding to the rigid wall case, in Eq. (41).
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4.2. Second order matching and eigenrelation

The matching of pressure components between R1 (as Y — oo) and R5 (as § — 0) yields
P1 P -« A()Io + Go(A1 - ——-Ao) — GoJoAp z (42)

where 6% = limy_, 6p and the constants Iy, Jo (and other I;’s, J;’s for i = 1,2..., below) are
defined in the Appendix.
Next matching the normal velocity component between region R1 and R5 at second order gives

—ipl = iCOP() - a0A1XU§° + agcgAox + Oz()UgoPoxfl + Oé()UgoGvole i (43)

where US® = limy_,0o U . Matching the pressure terms across regions R2 (as Y — co) and R1 (as
Y — 0) gives

_ piy 4 Gofaco
A1

(Ao +m0)¢™ — Go (Al = —0) 0% (44)

where 0% = limy _,0 6 . Matching of the normal velocity across regions R2 and R1 yields

—20{060/\2
A1

agGoR1 Agx

)\1 d)+ - Alxao)\l = DvoX HE GOEOAOX = aOAIX)‘l ) (45)

(Aox +mox) ot +
where the constants Dy, Ey (and other D;’s, and E;’s for i = 1,2,..., below) are defined in the
appendix. Matching of pressure between R2 and R4 gives
p1= PO 4 ————GOROCO
A1

(Ao + mo) { + ¢ } (46)

A matching of the normal velocity between R2 and R4 gives

1 2002\ =
e (aoP)((l) + a1coA1 (Aox + Mox) — 0001)\1on) + 0)\20 2 (Aox +m0x)é™ + cocoArx
1
aoGoR1¢o — _ lagpo
+ AoxGoE1 + Aox Dy — T(QAOX +nox)¢” = as = LR = OO - (47)
1

The relations (35)—(47) above may be used to eliminate A, , P, , P(), Py, Py and n; to obtain
a relqtion which determines the higher-harmonic components of A; . If we restrict our attention to
the e*X components, then after some algebra Eqs. (35)—(47) lead to

3 2icgciA
1Dy Ay + 1E2GoAg — %(Ao + T)o)(¢+ - ¢—)
1
QpCoA y = 5 . ;
R e s (—2za0a1Tn0 — dagcono + 2iMsapco(aper + arco)no — 4zBsagam0)

S0
109coGoR1 A
4 teeraboluto

; (4o +m0)($" — §7)
1

(¢* - ¢7) + i (1 4 9°—A1) L

S0 )\1

. A . 2
=+ iaoCO/\lAlUgo g iOt() (1 = 923—-1—) [a()AlUB == G0A1 (0 = 90 )] o ﬂ;‘)\fgg = ()i (48)
0 0

Since UP =1, 0% =0, 0% = Ry, the coefficient of A; in (48) is

A
10gCo A1 — QY (1 — %) (a0 + GoRy)
0
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which is zero according to the first dispersion relation. The results for linear theory are derived by
taking the jump across the critical layer, ¢ to be equal to —in (see for example [13]). Taking the

real parts of (48) then gives
a())\% d"agcg)\f e 20(0C3/\27I’ = 2aoCoG0R1ﬂ' <So ¥4 C())\l)
V21 3(2) A1 A1 S0

where dj, is the real part of d and m = y/agco/CRo. Equations (41) and (49) are the crucial
eigenvalue relations which fix the neutral wavenumber to the neutral wavespeed. These relations
can be solved simultaneously to give the required linear neutral results.

(49)

5. RESULTS AND DISCUSSION

The main results for this work are the eigenrelations given below,

ao)\% dlragcg)\% f 20{063)\2# 20[000G0R17r So = CO)\l (50)
V2 8 A1 A1 S0 i
coA180 = (s0 — coA1)(GoRo + ), (51)
and where
so = —Tod + Myo*c3 — Byag — ks . (52)
d1r =0 Cl1r -
12f 60
10 -
8 40
Uo 6 030
i AR L AP - = e
4 10
s T e it 3 1 St b o e o
0 10 20 30 40 0 20 40 60 80 100 120
k k
@ ° ®
60 v 80
so} d, =10 -4 fi0
e 60 Pl
40 L Pt
o -t o ol
B 301 & 0740 R
~° P g
- e
20 5 1 o 7
P 20t e
1% g g A i
__. ..................... 5 /
0 R I B T o T i R S g N ST W AT IT ST RO . P SreH 0 R T S R R e N W v e e
0 20 40 60 80 100 0 20 40 60 80 100
k k
(c) » (d .
Fig. 2. (a) Linear neutral wavenumber ao against k; for dir = 0, Go =5 (=), Go =0 (---), Go = =5
(-=-—- ); The values of M, B and T are all zero; (b) linear neutral phase speed co against ks with the same
values of the other parameters as in (a); (c) linear neutral wavenumber ao against ks for di, = 10, Go = 5

(=), Go=0(-+),Go=-5(—-—" ) and the values of M, , B; and T are all zero; (d) neutral wavespeed co
_ against ks with the same values of the other parameters as in (c)
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Note that if we set CRg = 1 and take the limits Go — 0, sp — o0, we recover the results of
Smith and Bodonyi [17] corresponding to the case of a boundary layer flow over a flat plate in the
absence of heating/cooling. For a given set of wall parameters, T, ks, M, By, di, and buoyancy
parameter Go, Eqs. (50) and (51) can be solved numerically to obtain the neutral wavenumber
ap and wave speed cg. In the numerical results presented in this paper, we have used the basic
velocity and temperature profiles given by Up = y — y?/2 and 6 = 1 — 3y/2 respectively (these
basic flow profiles were also used by Mureithi et al. [15]). This gives \; = 1, Ay = —1/2, Ry =1
and R; = —3/2. We have also set C = 1. The results presented in Figs. 2-9 are for a selected set
of parameters, and the general trends shown in these figures are confirmed by the analysis of the
limiting cases below.

In Fig. 2a-d we show the variation of the neutral wavenumber o and the neutral wave speed
co against ks for a selected values of Gy with My, By, T set equal to zero. We note that as kg
increases, the rigid wall results are recovered. When G > 0, di, = 0 the most pronounced deviation
from the rigid wall result occurs for small values of k, . It can be seen from Fig. 2a,b that there is
a finite range of k; where the neutral modes are absent. When the damping parameter is not equal
to zero, see Fig. 2c,d, we find that as ks increases there exist another mode (in addition to the rigid
wall mode) with wavenumbers and wave speeds which increase as k, increases.

In Fig. 3a,b we show the variation of ag, ¢y against dy, for ks = 100, Go = —5,0,5 with all
other wall parameters set to zero. From this figure we see that the rigid limit is not obtained at
large values of dy, for the case Gy = 5. It is seen that as damping increases in the cases Gy < 0,
two distinct roots of the dispersion relation exist. One of the roots is the rigid wall solution. The
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Fig. 3. (a) Linear neutral wavenumber o against scaled damping d;, , with ks = 100 and Ms = Bs =T =0,

Go=5(-),Go=0(--),Go=-5(—-—" ); (b) linear neutral phase speed co against di, with the same

values of the other parameters as in (a); (c) linear neutral o and (d) co against di, with ks = 100, T = 0.05,
M;=B,=0,Go=5(-),Go=0(--),Go=-5(-—-—" )
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Fig. 4. (a) Linear neutral wavenumber oo against scaled damping d1, , with ks = 10, 7 = 0.05 and M, =

B;=0,Go=5(-),Go=0(),Go=-5(—-—- ); (b) linear neutral phase speed co against d;, with the

same values of the other parameters as in (a); (c) same as (a) but shown on a different scale; (d) same as (b)
but shown on a different scale
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Fig. 5. (a) Linear neutral wavenumber oo and (b) c; against scaled tension parameter T with k, = 100,
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other has ag and ¢y which decrease as dj, increases. In Fig. 3c,d we show the variation of o and
co against dy, for ks = 100, Gy = —5,0,5, T = 0.05 with all other wall parameters set to zero.
It is seen that as damping increases in the cases G < 0, beyond a critical value of damping, three
distinct roots of the dispersion relations exist. In Fig. 4a-d we show the variation of o and cg
against dj, for ks = 10 with all other parameters being the same as in Fig. 3c,d. It can be seen that
for larger damping, the rigid wall solution dissappears and is replaced by one with much larger ag
and enhanced wave speeds ¢y (see for example the Gy = 0 mode).

In Fig. 5a,b we show some results for ag, ¢y against the scaled tension parameter T, for dy, = 10,
ks = 100, Gg = —5,0,5 with all other parameters set to zero. It can be seen that for small values
of T three roots of the dispersion relations exist. As T increases, the other two roots disappear and
only the rigid solution remains. In Fig. 6a—c we show a9 and ¢y against M for a fixed value of k,
with all other parameters set to zero. As M, increases there exist two distinct modes when Gy < 0
and one mode when Gy > 0. The most pronounced deviation from the rigid limit occurs at smaller
values of M, .
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Fig. 6. (a) Linear neutral wavenumber ag and (b) co against scaled mass stiffness parameter M, for k, = 100
withdy, =T =Bs =0,Go=5(—),Go=0(-+-),Go=—-5(-—-—- ); (c) same as (b) but shown on a different
scale

5.1. Analysis of limiting cases

In this section we present some results for the limiting behaviour of the neutral wavenumber «y,
and the neutral wavespeed cp, as the buoyancy parameter Gy, and some of the wall parameters
are increased. Firstly we consider the limiting case Gy — *o0o0. The physical significance of the
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limit Go — +00 (Go — —o0) corresponds to increasing (decreasing) buoyancy force through, for
example, an increase in wall heating (cooling).
From the eigenrelation (50) and (51) we have, in the limit Gy — oo,

R\
A2

R
)G0+---, COZT;"GO‘*'"W (53)

Qo = (—Ro +
whereas in the limit Gp — —oo we get

N ACRBM i il
a) = —RyGo +0(Gy!), = W GHEPRIEESY, (54)
]

The results (53) and (54) were obtained when the following choice of parameters were used,
(i) T =B, = M,=digi=0,"k#0,

(i) By =M, =0, dyy >0, ks#0, T#0,

(i) My =0,dyy >0, ky#0, T#0, B,#0.

In the above case we note that in the limit Gy — +o0 the neutral wavenumber aq and the neutral
wave speed ¢y increase whereas in the limit Gy — —o0, ag increases while ¢y decreases. This suggests
that as the buoyancy parameter is further increased, the wavelength of the neutral modes becomes
progressively shorter and a new limit must be reached as |Gy| — oo (see [15]). The consequence of
this new limit arising is that the flow structure described in Section 3 will be modified. Mureithi
et al. [15] analysed this new distinguished limit and found that as the factor G became large and
positive, the flow structure collapsed and became two layered with the disturbances to the basic
flow being governed by the Taylor-Goldstein equation. Similarly, for G' large and negative, it was
found that the flow structure was two layered with the disturbances to the basic flow being governed
by the Taylor-Goldstein equation in the majority of the boundary layer coupled with a viscous wall
layer. In Fig. 7a,b we show the variation of ag, ¢y against Gy for case (iii) above (similar curves
were obtained for cases (i) and (ii)). A different situation is encountered in the following cases

(iV)T=Bs:Ms=O, ks #0, dir #0,
(v) By=T=dy, =0, ks#0, M,#0.
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Fig. 7. (a) Linear neutral wavenumber oo and (b) co against buoyancy parameter Gy for ks = 100,
di, =10, T =1 with Bs = M, =0
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In Fig. 8a,b we show the variation of g and ¢g against Gy for the choice of parameters in (iv). As
it can be seen from the graphs, in the limit Gy — oo we obtain two distinct roots of the dispersion
relations. These two roots appear to merge at some finite value of Gy beyond which no mode exists.
This means that as Gy becomes large, no new limit is obtained in this case and consequently, the
inviscid modes will not be observed. In the limit Gy — —oo there are two distinct modes. The first
mode resembles the modes of Fig. 7a,b with ¢ increasing and co decreasing as Gy — —oo while in
the other mode both g and ¢p increase as Gy — —oo.
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Fig. 8. (a) Linear neutral wavenumber ao and (b) co against buoyancy parameter Go for ks = 100, di» =10
withT=B, =M= 1)

In Fig 9a,b we show the variation of ey and ¢g against Go for the choice of parameters in (v)
above. Here we see that for small values of Gg > 0 there exist at least three distinct modes. Two of
these modes disappear as Gy becomes large and the remaining mode is similar to the one obtained
in cases (i)-(iii). In the limit Gp — —oo we find that there are two distinct roots of the dispersion
relations with ag increasing and ¢y decreasing as Gy — —oo in both modes.

Next we consider the limiting cases where some of the wall parameters become large.

(i) ks #0, and dyr, Gy finite with one or more of T, B, , My becoming large. When one or more
of T, By, M, becomes large sp — oo and ¢y, o approach their rigid wall values ag, , cor

which may be deduced readily from the pair of equations

corM1 = agr + GoRyo,

1
_(CRo)iNog, _ 200,63, dom _ 2a0c0rGoRurm (55)
ﬁcé A1 M :
:

Note that when we set Go = 0 in (55), we get

i3
Cor: = —)\T ’ Qop= e

V2(—m)g)

=] =

which reduces to the result of Smith and Bodonyi [17] if we set CRy = 1.

(ii) T = My = B; =0, di, =0, Gy finite. If k; = oo, then sp — —o0 and from the eigenrelations
we can show that ag, ¢ remain O(1) and approach their rigid wall values which may be
obtained from solving (55).
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Fig. 9. (a) Linear neutral wavenumber oo and (b) co against buoyancy parameter G for ks =100,
M;s = 0.1 with di» = T = B, = 0; (c) same as (b) but shown on a different scale

(iii) T = M, = B, = 0, dir # 0, Gy finite. In this case if k; — 0o, then sy - —oo and one
possibility is that ao, co remain O(1) and approach their rigid wall values given by (55).
Another possibility is that both oy and ¢y become large (see Fig. 2c,d), and are given by

ap ~ ag ks , co ~ corks ,
where
-1
2)\27‘(‘ 2d1,~)\%
cl = —————— app =2 (1+4/1 - —1L
= —dlr)\fam 4 n )\27r

(iv) dir — oo. From the dispersion relations we find that both ap , cg become large with

Qo

Cyg~ — .,
A1

The precise limiting form depends on the value of T, M,, By, k, , Go. For instance, if T' # 0
and Mg = B; =0, ks # 0, Gy finite, then

1
ap ~ [ Nr_\*
—2XomT?

IfT#0,B; #0, ks # 0 M, =0, Gy finite, then we have

5 1
o )\1dlr 4
g —2AmB2 ]
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T #0, By =0, ks # 0 M, # 0, Gy finite, then
1
A8 31
Y i SEU L 3
“ (—2,\2st2) Ir

6. SUMMARY

A systematic approach, based on a multi-deck disturbance structure of the flow, has been used to
investigate the effects of heating and cooling on the stability of upper-branch Tollmien—Schlichting
waves. We have extended the now well known theory of boundary layer flow over heated or cooled
surfaces to include surface compliance.

By varying the buoyancy parameter Gg in the range —oo < Gy < oo we were able to infer the
effect of heating and cooling on the upper-branch Tollmien-Schlichting waves in boundary layer flow
over a compliant surface. On the whole, buoyancy was found to be destabilizing to the boundary
layer. Hall and Morris [10] and Mureithi et al. [15] arrived at the same conclusion in the rigid surface
case.

When the linear neutral wavenumbers and wavespeeds were varied against the spring stiffness,
ks , tension, T, and mass stiffness M, parameters it was found noted that at least two modes exist.
One of the modes is the rigid wall solution and the other modes arise because of the introduction
of surface compliance. Among the compliant modes it was observed that the case Gy > 0 led to
wavenumbers and wavespeeds which are smaller than the wavenumbers and wavespeeds obtained
when Gy = 0. The case Gy = 0 leads to wavenumbers and wavespeeds which are smaller than the
modes obtained when Gy < 0. This suggests that heating (Go > 0) leads to more stable compliant
modes than the case where there is no heat transfer (Gy = 0) which in turn leads to more stable
compliant modes than the cooling case (Go < 0). In the case when o and ¢y were varied against
the damping parameter, d,, it was found that cooling leads to the most stable compliant mode
followed by the Gy = 0 case, with heating leading to the least stable compliant modes.

The analysis of the limiting cases where Gy becomes large indicated that inviscid modes similar to
the ones observed in the rigid surface case would be obtained. The analysis of this large G limit was
not done extensively in this work because it has been considered in detail in other previous studies
(see for example [15]). The analysis of the limiting case where the damping, d;, becomes large also
pointed to the importance of a new Rayleigh structure for the flow with enhanced wavespeeds and
shorter waves. Gajjar and Sibanda [9] arrived at the same conclusion in their study of the stability
of channel flow over compliant surfaces. It is the intention of the authors to further investigate the
new structures which are expected to arise when d;, and some of the other parameters becomes
large. Also the effects of heating and cooling on flow induced surface instabilities, and divergence
are to be considered. It may also be interesting to move into the nonlinear regime and consider
nonlinear effects.
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APPENDIX

The integrals and constants appearing in the text are defined below. Here the ** in the integrals
denotes that only the finite (Hadamard) part is taken.
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