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The aim of this paper is to present an application of the global optimization method of Boender et al.
to a material function identification in a mechanical problem. These material functions are found in the
evolution equation for a volume void fraction parameter describing nucleation and growth of microvoids
in the flow of porous ductile solids and they play an important role in proper constitutive modelling
of postcritical behaviour and fracture. In the evolution equation a plastic strain controlled nucleation
process is simulated and uniaxial tension deformation history is considered. In nonlinear regression the
minimization of the mean squares functional is assumed. The problem is treated directly as a global
optimization one. The necessity of the use of a global optimization approach follows from the hypothesis
that there can exist many local minima in the considered problem. The possibility of the existence of many
local minima is not usually taken into account. The global optimization method of Boender et al. was
applied to minimize the least squares functional. We determine the material functions parameters on the
basis of the given Fischer’s [8] experimental data set. This data set has been obtained for axisymmetric
tension of steel specimens. The results of numerical calculations presented in the paper proved the validity
of the hypothesis about the existence of many local minima.

Keywords: plastic flow of voided media, material functions identification, global optimization, nonlinear
regression, nonlinear programming

1. INTRODUCTION

The Levenberg-Marquardt method (cf. Levenberg [13], Marquardt [14]) is usually used to minimize
the least squares function with respect to the unknown parameters to be estimated. The possibility
of the existence of many local minima is usually not noted. The Levenberg-Marquardt algorithm
converges to one of the existing minima. The limit point depends on the starting point. However,
many local minima may be expected in our case, since the parameters appear nonlinearly in the
considered model.

In many mechanical problems of plastic flow and fracture of dissipative solids the intrinsic micro-
damage effects are observed. In literature, to describe the intrinsic microdamage effects a set of the
internal state variables or one porosity parameter £ and some material constants are introduced.
In such constitutive models all parameters have to be determined by the proposed evolution equa-
tion. The evolution equation for porosity parameter ¢ has to describe the nucleation and growth
mechanisms of microvoids.

The formation of microvoids in commercial grade materials is attributed to the presence of
inhomogeneities in the form of dispersed inclusions or second phases. This fact has been indicated
by Argon, Im and Safoglu [3] and Argon and Im [2]. The microvoids appear either as cracks in the
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particles or as failure of the particle-matrix interfacial bonding. The actual microvoid morphology
depends upon the interrelation of various microstructural parameters as well as the local deformation
state. In very high purity materials the voids were observed to nucleate at dislocation structures
which had evolved into cell boundaries. Void formation may be associated with diffusion control
processes in which grain boundaries act as sinks or sources for vacancies.

The volume fraction of microvoids £ as a function of equivalent plastic strain €, for carbon
steel given by Fisher [8] is presented in Section 5. Since this measure of voids is to be used in our
forthcoming analysis, it is worth separating the nucleation and growth parts from the full measure
of £. As in Perzyna and Nowak [17] the relationship between £”, {9 and €, can be obtained, and it
is realised in Section 5.

It is postulated that the evolution equation for porosity parameter has the form (cf. [16, 17])

(f) = (é)nucleation =+ (é)growth == h(gp, f) o:DP + l(Ep, f) jl ot g(Ep, f) D?:1 (1)

where h, I, g are the material functions, I denotes the unit tensor, €, is the equivalent plastic strain,
o is the Cauchy stress tensor, D? denotes the plastic rate of the deformation tensor and J; = tr(o).

It is assumed that the nucleation mechanism occurs mainly at second-phase particles, by decohe-
sion of the particle-matrix interface and by the particle cracking. The growth process is postulated
to be controlled only by the plastic flow phenomenon. Both assumptions are justified by the exper-
imental observation results for metals (cf. a review paper by Needleman and Rice [15]).

The first term in the evolution equation (1) for the porosity parameter ¢ describes debonding of
second-phase particles from the matrix as the plastic work progressively increases and the second
term is responsible for the cracking of the second-phase particles. The nucleation material functions
h and I depend on the equivalent plastic deformation €p and the porosity ¢. The third term in
Eq. (1) is related to the growth mechanism. It is assumed that the growth material function g
depends on the equivalent plastic deformation €, and porosity £. Furthermore it is assumed that
material function ! = 0.

The form of the evolution equation (1) obviously requires further study and improvements. In this
paper we focus on the identification of material functions with the Fisher’s [8] experimental data.
Some parts of our work parallel and extend what has been carried out by Perzyna and Nowak [17],
where both material functions h and g are also determined.

In this paper we focus on the traditional least squares formulation of the identification problem
where the sum of the second power of deviations of the calculated and measured values is minimized.
We have expected the existence of many local minima in our problem. Therefore we have prepared in
standard ANSI C language the global minimization procedure of Boender et al. in the form presented
in Térn and Zilinskas [23]. It combines the clusterization approach with the local minimization.
Locally we have used the BFGS quasi-Newton method with the numerical gradient estimation. The
BFGS method is an unconstrained optimization method; however, in our implementation we have
introduced box constraints on the parameters.

The Gurson’s voided media plastic flow model itself is a set of differential equations. Involvement
of the Bridgman’s solution for the stress state reduces this set to one differential equation. To
obtain the calculated porosity parameter £ we had to solve poorly conditioned differential evolution
equation (1). Finally we have decided to solve it by means of the Rosenbrock method for stiff
differential equations. Numerical algorithms mentioned above are briefly presented in Section 6.

The material functions formulae are described and the resulting least squares problem is in-
troduced in Section 4. Data used for parameter estimation are presented in Section 5. The com-
putational results are shown and discussed in Section 7. Some conclusions and observations are
also stated. The presentation of the whole set of local minima in the included tables of results
is restricted to ten sectors due to the lack of space. Finally, Section 8 contains some concluding
remarks.
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2. FORMULATION OF THE IDENTIFICATION PROBLEM

Our task is to find the optimal estimates of the unknown parameters in the material functions h
and g which appear in equation (1). It is assumed that the nucleation mechanism is controlled by
the plastic strain only and material function [ = 0 in Eq. (1). We start with the presentation of
the general approach to parameter identification. When using the standard least squares approach
usually the second power of the distance between the observed output values Y; and the calculated
output values Y; (Y; = F(&y , z)) is minimized. Here F represents the assumed model and it connects
the input variables values with the output values, the independent variables, €,;, and accordingly
x — the unknown parameters

in|Y - Y|? 2
min | [ (2)

where V' C R" denotes the set of admissible parameters values (n is the number of the unknown
parameters to be identified). Substitution of the formula Y; = F(€,;, z) into (2) yields

M
minZ{Yi — F(&u, 2)}%. . (3)
=1

eV 4

The second term in Eq. (3) represents the calculated output values Y;, and M is the number
of observations (measured input and corresponding output values). In (3), the second power of the
distance is used. If V' = R™ (the unconstrained case), the minimization of the distance is equivalent
to the minimization of its second power. Therefore, in the least squares method usually the second
power of the distance in the observations space is minimized.

In our case the calculated output is obtained as a result of the integration of an ordinary dif-
ferential equation, where on the left-hand appears its derivative with respect to the input &,. The
right-hand side of the differential equation depends on the input and output variables and on the
unknown parameters. Unknown parameters appear exclusively in the so-called material functions
being a part of the right-hand side of the differential equation. See for details Sections 3 and 4.

The parameters should belong to the set V of feasible values of parameters, defined in Section 4.

3. POROSITY MODEL
3.1. Porosity evolution at the neck

In the following considerations the uniaxial test is assumed for room temperature. We assume,
following Hill [12], that after a neck has been formed in a cylindrical tensile specimen the distribution
of the stress across a transverse section is not uniform. Our analysis is based on the constitutive
relation for the porous plastic solids. We put it into the form introduced by Rudnicki and Rice [19].

We have assumed an augmented version of the Gurson’s porous material model [10] with a
following porosity evolution (1)

1
R

E=h tr(eDP) + g(1 — &) tr(DP). (4)
It is the Gurson’s form of the equation of porosity evolution with varying g as proposed by
Perzyna [16]. Varying g was meant to reflect the influence of voids from the neighbourhood on
the growth of a particular void. In Eq. (4) plastic strain controlled nucleation criterion suggested by
the Gurson’s [10] analysis of experimental data obtained by Gurland [11] is assumed. The nucleation
of microvoids is not dependent on the hydrostatic stress. We assume that A and g are functions
depending on plastic strain and unknown parameters.

Our purpose is to determine the material functions h and g on the basis of the given experimental
data set. We have tested many formulae on h and g described in Section 4.
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Let us consider an element of the solid to be subjected to all around displacement boundary
conditions. Attention here is focused on an element at the center of the neck which is formed in
an axisymmetric tensile specimen. The element is assumed to be sufficiently small to be regarded
as homogeneously deformed, yet large enough compared with relevant microstructural length scales
(e.g. grain size, inclusion and void spacing) to be treated within the continuum framework employed
here. At the neck there exists a complex state of stress and maximal deformations. A material point
is identified by the Cartesian convected coordinates z* (i = 1,2,3) in the reference state. In the
current deformed state the coordinates of the material point, relative to the cartesian frame, are
denoted by #'. To implement the numerical method we applied the incremental analysis procedure
(cf. Perzyna and Nowak [17]) in which the evolution equation (4) for a porous plastic solid has the
following form

13 [ 1 ( i o > i
==|lh——{ A +X—"24+1)4+g(1=8ENM+A+1 5
Ep 1_6 lazz 20'zz g( é)( 1 2 ) \/)7 ( )
where
EE, e 2 3 A
A= —, Ay = ==, and A= <[(A)° + (A2)° + 1]
N T SO0+ (M) + 1]

3.2. Stress state at the neck

We employ Bridgman’s [5] solution for the stress state at the center of the minimum section of the
tensile cylindrical sample. This analysis of stress distribution is obtained with a radical simplification
based on the experimental observation that the elements in the minimum section are deformed
uniformly (at any rate). As consequence of such assumption, the circumferential strain rate Eyy is
equal to radial strain rate E,, in the minimum section and it follows that oy = oyy there (cp.
Hill [12, p. 273]). After inserting this in the equilibrium equations and combining with the yield
condition (provided the influence of a hydrostatic stress and the influence of porosity on yielding is
neglected; the yield condition in Bridgman’s analysis is simply 0,, — 0z = &, when z = 0),

_ R2 + 2RpRr _ R? + 2RpR
am—ayy—aln(w>, O'ZZ—O'<1+1H W y for z,Yy, zi=1 (6)

The analytical expression for the stress depends on the matrix flow stress, & and the geometry
of the neck, i.e. on the ratio p% , where R is the radius of the minimum section and pg is the neck

contour radius. Similarly as in Saje, Pan and Needleman [20], it is assumed that
R

— = 0.833(¢, — 0.2), for €, > 0.2,

PR

A (")
— =0.0, for € <0.2.

PR

Taking Eq. (7) into account in the Bridgman solution we obtain for axisymmetric tension

Ouis . (O
Tzz _ Ty _ (8)
Oz2 O22

where

2
o B2+ 2Ror
y B 2Rpr

R% +2Rpp\
1 ln(—-—szR

(9)
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Furthermore, we have assumed the constitutive relation for the porous plastic solids introduced
by Gurson [10]. This constitutive relation can be put into the form introduced by Rudnicki and

Rice [19], E’ij 25 %P,-ijl okl where & is the Jaumann rate-of-change of Cauchy stress. Using this
relation we can determine Ay and Ag,

35z, + 0a
e ¥ o4 (10)
where S,;j =0ij — %akkaij and
a = €sinh (%—’;ﬁ) . (11)

4. MATERIAL FUNCTIONS

There exist certain requirements upon the shape of the material function h. We started trying to
follow the ideas of Chu and Needleman [6]. So, as the Case I, the Gauss normal distribution function
for function h was applied,

R o0ty
h(&, a1, b1, c1) = I;L eXP<—§ [f‘p—b;ﬂ] )7 (12)

127!'

where a1 , b , ¢; are the unknown parameters. All of these parameters have their mechanical mean-
ing. Namely, a; denotes the maximum value of the porosity parameter, b; is the width of the voids
distribution region and ¢; represents the value of the equivalent plastic strain €, at the time moment
when the porosity parameter reaches its maximal value.

The second material function g describing the growth of microvoids must be uniformly equal to 1
when initial void or voids are isolated in an unbounded matrix. It means that voids do not interact,
no nucleation of new voids and no coalescence of voids in growth process are considered. These three
phenomena are closely interrelated and can occur simultaneously. In our analysis function g is not
necessarily constant. In Case I the following formula for function g (as in Perzyna and Nowak [17])
was used

9(&p, a2, bz, c2) = az exp [ba2(6,)?] . (13)

Unfortunately, in this case, the mechanical interpretation of the unknown parameters ag, by and c;
is not so clear.

The identification was also carried out with two other different forms of material functions h
and g.

In Case II:
h = a1(&)" exp(c1§), (14)
g = ay/(&)? +ba(&) + ez, (15)
In Case III:
h = a1[1 + tanh(b1€, + c1)], (16)
e (a7

We will refer to the case with h given by Eq. (12) and g given by Eq. (13) as Case I throughout
the rest of the paper. Our aim in considering various forms of material functions was to obtain
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the “best” fitting of the model to the data in the sense of the lowest value of the mean squares
functional (3)). Furthermore, it is necessary to impose some bounds on the parameters to assure
their appropriate mechanical interpretation and to avoid overflows in calculations (specially for
g function). In our computations we have used the following strategy — at the beginning a broad
range of feasible parameters was assumed, e.g.

In case I: 0.01 < a7 <£0.05, 0.2 < b; <0.6, 09 < <1.3;
1.0 < a9 < 1.5, 0.01 <b <0.3, 0.01 <cp<0.2,

In case II: 0.0001 < a; <£0.1, 1.0<b; £1.5, 10 <) <1'%;
0.01 < as <0.6, 0.1 < by <0.5, 0.8 < ¢y < 1.0,

In case III: 0.001 <a; <£0.1, 25<b £5.0, —-4.0<¢ <0.01,
1.0 S as S 2.5, 3.0 S b2 S 4.5;

Next, we have continued our calculations taking at the next steps small intervals containing the
previously found optimal values of parameters as their new feasible ranges. At each such main step we
have found several local optima. Many of them had some variables equal to their bounds. Because of
that we have adopted special strategy consisting in subsequent minimizations with restricted range
of parameters. It gave us an opportunity to better explore the whole range of parameters we were
interested in. The second and very important reason for such strategy was the large computational
effort and memory required to store many local minima and points leading towards them if we
decided to run the program assuming excessively broad range of parameters. The third and not
less important reason were numerical difficulties encountered in the integration of the differential
equation. Its right-hand side contains singularity and is very sensitive even with respect to relatively
small changes in some parameters. Very often the integration procedure stopped calculations with
an unpleasant message that stepsize is insignificant. It was simply impossible to satisfy the accuracy
requirements in the double precision arithmetic of the workstation.

5. BRIEF DESCRIPTION OF FISHER’S DATA USED FOR ESTIMATION

In J.R. Fisher’s experimental investigation two carbon steels with 0.17 (type B) and 0.44 (type W)
weight percent carbon, respectively, were used for the quantitative studies of microvoid nucleation
and growth. The samples were subjected to the following sequence of heat treating operations. Rod
sections of approximately 0.0826 m in length were austenitized at 50°C above the A3 temperature
for 1.5 hours. The austenitized specimens were then rapidly quenched in ice water in order to obtain
fine bainitic or martensitic structures. The quenched rods were then tempered at 700°C for a) 1 hour
b) 24 hours and c) 120 hours in order to obtain different particle size distributions in specimens of
the same type. The heat treated rods were machined into standard tensile specimens of 0.0254m
gage length and 0.0064m diameter. All testing was done at room temperature. Metallographic ob-
servations were made on both undeformed and deformed specimens using both optical and electron
microscopy. For each specimen, a series of transverse sections was prepared corresponding to suc-
cessively smaller axial distances from the minimum cross section. Each new section was obtained
by grinding to the next premarked position and thus the previous sections were destroyed. There-
fore, all data required from a given section had to be obtained before preparation of the succeeding
one. Each section was carefully polished and etched after preliminary use of various grades of abra-
sive papers. The microstructural parameters were determined in both deformed and undeformed
specimens. For the deformed specimens the areal density of voids n4 and the volume fraction of
voids £ were obtained from transverse sections by standard metallographic techniques performed
on scanning electron micrographs taken at a magnification of 2000 times. It is observed in Fisher’s
experiment that the voids tended to have elliptical cross sections similar to those of the particles, as
might be expected since the particles were nucleation sites for these voids. In Fisher’s experimental
work in the summary it was observed that:
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(i) Voids are generally associated with particles of greater than average size. They rarely form at
very small, isolated particles, even for the severe state of deformation which exists in the neck
of a tensile specimen.

(ii) Particles situated on ferrite grain boundaries are favoured sites for the nucleation of voids.

(iii) Voids often form by decohesion of the interfaces of particles which are closely spaced along the
tensile axis.

(iv) The maximum gradient in the void nucleation profile occurs at strains of € = 1.15 and
€ = 0.80 for B and W type specimens respectively.

(v) Voids elongate in the tensile direction but maintain elliptical cross-sections, indicating that
plastic hole growth, and not ferrite grain boundary separation, dictates the final void geometry.

(vi) Non-equiaxed or irregularly shaped cementite particles are often subject to internal fracture.
The resulting cracks tend to be oriented normally to the tensile direction and may sometimes
be associated with boundaries between contiguous particles.

The total volume fraction of voids { and the nucleation part of volume fraction of voids ¢"
obtained by Fisher [8] are plotted as the function of equivalent plastic strain €, in Fig. 1. Since this
measure of voids is to be used in our forthcoming analysis, it is worth separating the nucleation
part from the full measure of {. As in Perzyna and Nowak [17] the resulting relationship between
the nucleation part of {" and €, is shown also in Fig. 1.

Total, nucleation and growth void volume fractions, Fisher's data[13]
0.035 T T T T T T

* total void volume fraction, &
0.03

T
1

+ nucleation void volume fraction, §"
o growth void volume fraction, &9 *

0.025 i

0.02} e J

0.015

Porosity, &, [%]
*

0.01

0.005

1.4

Equivalent plastic strain, €°

Fig. 1. Volume void fraction, £ (data from Fisher [8] for the B1 type steel) and the calculated nucleation
volume void fraction, {", as a function of equivalent plastic strain, &,
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In this work, the thorough analysis of the data set was omitted since we decided to concentrate
on the computational aspects of the problem of parameter estimation. We were interested in the
question of whether it is in fact the global optimization problem. Furthermore, we wanted to obtain
the decisive answer to the question of whether the assumed model does fit at all to the given data
set.

6. NUMERICAL METHODS

We have decided to use the traditional least squares formulation of the identification problem where
the sum of the second power of deviations of the calculated and measured values is minimized (see
Section 2). We have expected the existence of many local minima in our problem. Therefore, we
have prepared in standard ANSI C language an implementation of the global minimization method
of Boender at al. in the form presented in T6érn and Zilinskas [23]. It combines the clusterization
approach with the local minimization. Locally we have used the BFGS quasi-Newton method with
the numerical gradient estimation. The BFGS method is an unconstrained optimization method;
however, in our implementation we have introduced box constraints on the parameters.

The example voided media plastic flow model itself is a set of differential coupled equations.
Assuming Bridgman solution, we could simplify our set of differential equations.Therefore, to obtain
the calculated porosity parameter we had to solve only one poorly conditioned differential evolution
equation. We have decided to solve it by means of the Rosenbrock method for stiff differential
equations.

6.1. Global optimization method of Boender et al.

As it has already been mentioned, we expected the existence of many local minima. Therefore,
a global optimization method of Boender, Rinnoy Kan, Timmer and Strougie [4] was chosen for this
purpose. Its output contains information of several global and local minima. It is important for us
for interpretation purposes.

To simplify presentation of the algortihm we assume that our problem (2) has the following
general form,

3, Hah 1)
where: vector 27 = (ay, b1, ¢1, a2, by, c2) (2T denotes the transposition of the column vector z),
n = 6 (sometimes 3 or 5) and V denotes the set of feasible values of parameters. Formulation (18)
will be more convenient for presentation of the method.

Boender et al.’s method is a stochastic one involving combination of sampling, clustering and
local search. Its goal is to find all local minima that are potentially global. Since it incorporates
stochastic uniform over V' sampling and our function f is continuous the sample point with lowest
function value tends to a global minimum with probability 1 (see Solis and Wets [21]). Involving
local minimization we have increased efficiency.

The method of Boender et al. carries out several local searches after each sampling phase. The
sample points with the lowest function values are used as the starting points for the local minimizer.
Additionally, some elements of clustering technique are included into the rules of the method.

The steps of the algorithm are as follows:

Step 0. Select N — number of sample points generated in one phase and 7 — fraction of the sample
points with the smallest function values. Xt — the set of all local minima found so far; X ()
— the set of sample points leading to a minimum z € X*. Choose parameter ec; > 0 used
in the clusterization.

Step 1. Select N randomly generated points z!, z2, ..., z!V € V. Let f* = f(2*) fori =1,...,N.
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Step 2. Construct the transformed sample by taking the fraction 7 lowest points of the current
sample (NT denotes their number), performing one step of the steepest descent method
and replacing those points by the resulting points. Drop the rest of the points.

Step 3. Apply the clustering procedure to the transformed sample. The elements of X™* (set of
global points — local minima found up till now) are first chosen as seed points followed by
the elements of X1 (set of sample points leading to a minimum z € X1).

If all points z!, 22, ..., 2V " are classified then STOP, otherwise go to the next step.

Step 4. Fori=1,...,N* do

if ¢ is classified neither to X+ nor to X() then

a) apply the local search procedure starting from z* to obtain z'*.
b) if 2t € Xt then add z* to X() (new seed point leading to an existing minimum),

¢) if z't ¢ Xt (2** is a new local minimum) then add z** to X+ and z* to X(1).
Step 5. Return to Step 1.

For clustering, a kind of a nearest neighbour method was used (see T6rn and Zilinskas [23]). The
unclustered points are added to a cluster, initiated by a seed point either in X* or in X, if the
distance to some point in the cluster is less than an a priori given distance e¢;. Hence, accordingly
statements z € X+ and z € X() should be understood in this way. As the result we are storing
local minimizers (X*) and points leading to a minimizing point in X(!). Calculations are stopped
in two situations - first when all points from the transformed sample could be classified and second,
when either the number of local minima found or the number of points leading to a minimum is
greater than their maximal permitted number.

The criterion in Step 4 of the method of Boender et al. [4] is rather difficult to satisfy. The
calculations are usually very time consuming in our problem where each function evaluation requires
the solution of an evolution equation (5). Therefore, we have assumed an additional stopping rule.
We stop whenever either the number of global minima found or the number of global seed points
(i.e. sampling points leading towards a global minimum) is greater than the user defined maximal
value.

It is necessary to stress that the stopping criterion in any global optimization method involving
stochasticity has a subjective character. If the region of attraction of a global minimum is very
narrow, then it could be easily missed even if one allows huge numbers of iterations to be carried
out.

6.2. Local minimization method

An important part of the implemented global optimization method forms a local minimizer. For
that purpose we have realized a specialized variant of the BFGS (Broyden, Fletcher, Goldfarb,
Shanno) method. It belongs to the class of the so-called quasi-Newton methods (see for instance
Fletcher [9], Findeisen et al. [7] or Stachurski and Wierzbicki [22]). The BFGS method starts from
a given starting point z° and realizes typical for gradient unconstrained optimization steps of the
form

ghtl = ok 4 7k 4 gk (19)
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where d¥* = —H*V f(z*) is the search direction and 7% is the stepsize coefficient selected in the
directional minimization function. It utilizes the gradient and independent variables differences to
update the approximation H¥ of the inverse of the second order derivative (V2f(z*))~! of the
minimized function according to the following formula,

(,rk)THk,,.k> sk(sk)T Sk(,,.k)THk 2 Hk,r.k(sk)T (20)

k+1 _ prk o
H™ =H"+ (1 i (rk)T sk (rk)T gk (rk)T gk )
where r¥ = pF+1 _ pk sk — gk+1 _ gk and p* = Vf(z*).

Iterations of the local minimizer are stopped when the norm of the gradient (derivative) of
function f is smaller than a given accuracy egrgs > 0. In the directional minimization we have used
successive quadratic approximations of function f(7) = f(z* + 7 * d*). Search along the direction
is stopped when the so-called Armijo step-size rule is satisfied, i.e.

ok 5k Lk gRNT ke

Parameters egrgs and w are specified by the user.

We have modified this general scheme of the minimizer to take into account box constraints on
variables. This is in accordance with the modern optimization routines which are usually imple-
mented so that they minimize a function subject to box constraints, i.e. solve the problem

min f(z)
s.t. wiLngzzU, fonciz=ild 7. s

It was also necessary to modify the stopping criterion. The Kuhn-Tucker necessary optimality
conditions in the case of box constraints take the form:

(i) the following inequalities should be satisfied on the boundaries

if zFtl =gzl then pft >0,

i

if zF1 =2V then pf“ <0,

)
for 5=1l,.:.,1;

(ii) the norm of the gradient in the subspace of variables that are not on their bounds in the new
point z¥+1 should be equal to 0. Of course, in practice we verify whether it is sufficiently small.
The resulting algorithm is as follows

Step 0. Specify bounds z” and zU on variables. Select a feasible starting point z° satisfying the
box constraints. Choose accuracy parameters — eprgs > 0, w € (0,1). Calculate values of
gradient p° and function f° at the starting point z°. Take H® = I where I is the identity
matrix, k := 0.

Step 1. Calculate the current search direction according to the following formula

d* = —H*p*.

Step 2. Find 7 < 0 such that the Armijo step-size rule is satisfied, i.e.

(V£ (a* + Trd)Td¥| _
—(Vi@)TaF =Y
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Step 3. Calculate the next point
gEHl — ok o kg

and the gradient at the new point p*+1.

Step 4. Check the stopping criterion (the Kuhn-Tucker conditions). If the stopping criteria are
satisfied then STOP.

Step 5. Compute the gradient r* = p¥*! — p*¥ and independent variables s*¥ = z*¥+! — ¥ differences.
Update the approximation of the inverse Hessian using formula (20).

Step 6. Set zF*! = a:k, pk = pk. Increase the iteration index k by one. Calculate f(z*). Return
P y
to Step 1.

Directional minimization implemented in Step 2 is not typical. In fact, we minimize the function
f(P(z* + 7d¥)) instead of f(z* + 7d¥) where P represents the projection operator on the set of
feasible points defined by the box constraint. So this means that we maintain the inverse Hessian
approximation in the whole space, generate the descent direction in the whole space and carry out
the directional minimization in a specific way. It differentiates substantially our approach from the
typical active set method for problems with linear constraints.

6.3. Integration of the ordinary differential equation

The considered model has the form of an ordinary differential equation. The right-hand side of
Eq. (4) contains singularity. Presence of term 1—i£ causes the right-hand side to vary rapidly when
¢ approaches 1. Generally, it has appeared that our equation is stiff and standard Runge-Kutta
methods with automatic selection of the step-size coefficients failed in our calculations. Obviously,
we could apply a Runge-Kutta method with constant step-size, however we have decided to postpone
that possibility due to the difficulties with the accuracy specification.

As a result, we have assumed that our equation is stiff and selected a Rosenbrock method for
solving stiff sets of ordinary differential equations (see Numerical Recipes [18]).

7. NUMERICAL RESULTS

In this section the results of parameter estimation will be presented. It is impossible to present all
aspects of the calculations in a short paper. Therefore we restrict the full presentation of all minima
found only to some selected sectors and to indicate in this way the characteristic elements in the
behavior of the program used for calculations.

The results are collected in Tables 1a, 1b, 2a, 2b, 3a and 3b. Each line of Tables la, 2a and 3a
contain the following information about a minimum (the functional values and the corresponding
values of parameters) and Tables 1b, 2b and 3b contain frequently used statistical information:
standard deviation s,

. (=M, % - ¥iy?]

(23)

where M is the number of observations, Y; are the observed values of the output and Y; = F(&,,x)

for i = 1,..., M are the calculated values of the output; weighted standard error sg, = ¥ (where



216

Z. Nowak and A. Stachurski

Table 1. a) Results for Case I, b) Statistical results for Case I;

h — Gauss function with a1, by and c¢; ; g — exponent function with as, b2 and c»

ay

by

C1

a2

by

C2

f

O 00 =3, :De: OV " Q0 DD =

—
o

1.241248e—2
1.618972e—2
1.899431e—2
2.313844e—2
1.059191e—-2
2.661567e—2
2.063523e—2
1.866313e—2
2.046574e—2
2.073439e—2

2.678213e—1
2.859666e—1
3.425415e—1
3.740792e—1
2.616696e—1
3.937362e—1
3.204170e—1
4.277909e—1
4.648678e—1
4.322754e—1

1.027411
1.082775
1.142513
1.207354
0.998871
1.247294
1.130544
1.167299
1.210805
1.196344

1.325793
1.112041
1.133089
1.274346
1.208910
1.219216
1.078865
1.314933
1.333576
1.321222

9.582941e—2
1.767954e—1
1.643974e—1
1.000000e—-2
2.481699%e—1
1.000000e—-2
1.056202e—1
1.033405e—1
9.190177e=2
5.280925e—2

1.259289e—1
9.087024e—2
2.994370e—2
4.404039e—2
1.142236e—-1
7.691108e—2
1.380099e—1
1.634633e—1
1.798287e—1
1.484434e—1

1.765069e—7
1.822506e—7
2.865987e—7
3.527062e—7
3.907237e—-7
3.932288e—7
7.410887e—7
1.113769e—6
1.310531e—6
1.483868e—6

Se

Sew

Tyy

tStudent

© 00 N O Ot A W N -

i
[==]

5.883563e—9
6.075018e—9
9.553290e—9
1.175687e—8
1.302412e—-8
1.310763e—8
2.470296e—8
3.712562e—8
4.368438e—8
4.946226e—8

6.698777e—3
6.811169e—3
8.519307e—3
9.452369e—3
9.968912e—3
9.961483e—3
1.364173e—2
1.674371e—2
1.816057e—2
1.943638e—2

9.999611e—1
9.999593e—1
9.999484e—-1
9.999318e—1
9.999153e—1
9.999451e—1
9.999123e—1
9.998092e—-1
9.997675e—1
9.998754e—1

—5.443949e—1
—4.501236e—2
—1.720928
—1.439367
—2.441371e—1
—2.599829
—3.064458
—1.895669
—1.768998
3.333778e—3

M
& et Y3 . .
Y= [Z'%l is the mean value of the observed output); correlation coefficient r,; between the
observed and calculated output:

Tyy

e —lm(fz Ly

(S, - 72" [y

Y- )]

(24)

= Mo picies
(where Y = %‘1 is the mean value of the calculated output); values of the t-criterion, i.e.

(25)

(26)




Global optimization in material functions identification

217

Table 2. a) Results for Case II, b) Statistical results for Case II; h — powered exponent function with a1, by
and c;; g — square function with az, b2 and c2

a) a; by c1 as bs C2 f
11]9.046740e—3 1.293135 1.293855 4.231977e—1 2.668830e—1 9.615650e—1 1.505891e—6
2 | 8.308979e—3 1.226094 1.399982 4.168414e—1 1.10908%e—1 9.512816e—1 1.513673e—6
3| 8.909187e—3 1.125933 1.182042 5.315358e—1 3.861025e—1 8.901577e—1 1.876370e—6
4 | 8.844457e—3 1.264524 1.215909 5.303751le—1 3.683762e—1 8.897531le—1 2.540529e—6
519.041638¢—3 1.271911 1.130437 5.976880e—1 1.483844e—1 1.000000 2.640661e—6
6 | 9.697199e—3 1.283282 1.295817 3.757060e—1 2.567556e—1 8.894673e—1 4.105814e—6
7| 1.546990e—2 1.153664 1.000407 1.023656e—1 1.895401e—1 9.550388e—1 2.940338e—5
8| 1.472176e—2 1.146364 1.234183 1.108397e—1 2.367317e—1 9.367317e—1 2.186483e—4
9 | 2.053909e—2 1.084802 1.000000 5.236047e—2 1.000000e—1 9.046464e—1 4.711965e—4
10 | 1.604174e—2 1.159577 1.255324 1.732044e—1 3.212940e—1 8.212940e—1 7.88475%e—4

b) Se Sew Tyy Student

1] 5.019637e—8 1.947700e—2 9.997308e—1 —1.482688
2 | 5.045577e—8 1.950426e—2 9.997362e—1 —1.846877
3 | 6.254566e—8 2.169656e—2 9.996820e—1 —1.890806
4 | 8.468432e—8 2.522520e—2 9.995007e—1 —1.799602
5| 8.802202e—8 2.585770e—2 9.994130e—1 —5.581049%¢—1
6 | 1.368605e—7 3.142103e—2 9.998197e—1 —1.063759%+1
7 19.801125e—7 8.258295e—2 9.97525le—1 —3.494708
8 | 7.288275e—6 1.945753e—1 9.988241e—1 —1.098827e+1
9 | 1.570655e—5 2.635223e—1 9.966151e—1 —1.143741e+1
10 | 2.628253e—5 3.256617e—1 9.993503e—1 —8.153208

This last value allows us to test the hypothesis that the expectation of the error z =Y — Y is equal
to zero under the assumption that the error distribution is normal and o2 is unknown (see Afifi and
Azen [1]). In such case t; determined by formula (25) has Student t-distribution with M —1 degrees
of freedom. Let § = E(z) be the expectation of z. We test the H, hypothesis that the expectation
0 is equal to zero, i.e. H, : 6 = 0. As the alternative hypothesis H; : 6 # 0 is used. Then critical
probability (P-value) is P = 2Pr(t(v) > [to]).

Hypothesis H, is rejected if P < k, where x denotes the level of significance. Instead of it one
can check equivalently whether t; belongs to the interval (—tl_n/Q(M —1), typ(M - 1)), where
t1—z/2(M — 1) denotes the critical value with the level of significance equal k. For M = 30 and the
level of significance x = 0.1 the critical value is ;_,/2(29) = 1.697.

Tables 1a, 2a and 3a contain the global minima for each interval in Cases I, IT and III, respectively.
They are presented here to show the variety of possible solutions to the minimization of the mean
squares function if the parameters appear in the model nonlinearly. It seems that the presented
numerical results justify our hypothesis about the possibility of existence of many local minima in
the considered problem.
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Table 3. a) Results for Case III, b) Statistical results for Case III; h - shifted hyperbolic tangent function
with a1, b1 and ¢1; g — hyperbolic function with as, bs and c;

a) a1 by a as by 2 f

2.613975e—2 2.832813 —2.590365 2.427288 4.011257 0.0 1.815666e—7
2.576480e—2 2.921375 —2.645284 2.012904 3.525663 0.0 1.892425e—7
2.563549¢—2 2.868868 —2.592992 2.288288 3.864572 0.0 2.319430e—7
2.529889e—2 2.500000 —2.324462 2.404474 3.718682 0.0 3.750747e—7
1.573926e—2 2.746651 —2.271808 2.500000 3.138761 0.0 3.625997e—6
2.937236e—2 3.932955 —3.413079 1.439093 3.878186 0.0 6.229797e—6
7.227557e—2  2.500000 —2.927299 1.000000 4.053395 0.0 7.238592e—6
3.851723e—2 2.805516 —2.971102 1.748733 3.018904 0.0 1.846002e—5
1.000000e—1 2.504127 —3.246445 1.937504 4.499889 0.0 3.302284e—5
5.943800e—2 2.500000 —2.959125 1.679795 3.071635 0.0 3.587069e—5

© 00 N O Ot s W N =

—
o

Se Sew Tyy tStudent

© 00 N O O W N

—
o

6.052220e—9
6.308083e—9
7.731434e—-9
1.250249e—8
1.208666e—7
2.076599e—7
2.412864e—7
6.153340e—7
1.100761e—6
1.195690e—6

6.792539e—3
6.942618¢e—3
7.654595e—3
9.722458e—3
3.096390e—2
3.896229e—2
4.307644e—2
7.086173e—2
9.580245e—2
9.552565e—2

9.999608e—1
9.999573e—1
9.999612e—1
9.999404e—1
9.995494e—1
9.993616e—1
9.992222e—1
9.977709e—1
9.958560e—1
9.967818e—1

—7.209498e—1
1.785760e—1
—3.094756
—3.211188
4.160066
—3.538134
4.267485e—1
2.859486
2.805669
—2.069778e—2

8. CONCLUSIONS AND COMMENTS

We expected that the problem of estimation of parameters appearing nonlinearly in a model is in
fact a global optimization problem. The results presented in our paper fully justify the hypothesis
that parameter estimation is a global optimization problem in this case. Our calculations have led
to finding several local minima in all cases. The best fitting error is of order 10~7 (see Fig. 2).
However, we have found several other local minima of the least squares function which are slightly
worse with respect to the fitting error. This fitting error is also relatively good (from 107 till 1079)
and the parameters are reasonable from the mechanical point of view.

Therefore, we may claim that our approach is successful and we have proved experimentally the
existence of many local solutions of the identification problem. An open question is which of them
should be chosen.

In the paper only some selected estimation results are presented. Broader presentation covering

more examples of material functions and deeper analysis of the identification results shall be pursued
in another forthcoming paper.
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Case |. h - normal distribution function, g — exponential function
0.035 T T T T T T T T

0.03+ * Experimental void volume fraction, Fisher‘s data[13] /* -

— — Calculated void volume fraction x*

T
1

0.025

0.02 p

0.015 7 ]

Porosity, &, [%]
%

0.01

T
1

0.005 e .

O { 1 1 1 1 | 1 1

0.5 0.6 0.7 0.8 0.9 1 14 1.2 1.3 1.4
Equivalent plastic strain, &P

Fig. 2. Comparison of computed and experimental values of total porosity versus equivalent plastic strain

The estimated material functions h and g are plotted in Fig. 3 for our optimization approach.
We would like to stress our material function was determined with following important assumptions.
The matrix material is plastically incompressible, g, = 0 and the elastic part of a strain rate tensor
is neglected, D;; = ij . The shape of the material function h in these figures is in agreement with
the material function proposed by Chu and Needleman [6]. However, the growth material function g
as in Perzyna and Nowak [17] can be not constant and has the shape of an exponential function.
Another open question is the formulation of the minimized function. It is not clear whether the
euclidean distance in the space of observations is the best measure. One can use in Eq. (2) the
l1-norm or l,-norm or any other suitable norm. The problem will then be nondifferentiable and will
have completely different features but it can also be handled by our computational program. It is
the next possibility we intend to study — the use of other measures of deviations of the calculated
output from the measured one. The existence of many local minima is also expected in this case.

The results prove also something more. It is doubtful whether the global optimum should be
chosen in all cases since there frequently exist other completely different local minima with similar
standard error values, each of them acceptable from the statistical point of view. The problem
of selecting the “best” solution requires further investigation. To determine uniquely the material
functions h and g it is most probably necessary to include an additional formula mutually connecting
those functions. At the present stage of research only mechanical interpretations and conditions may
suggest the best choice.

We have got exclusively porosity data for carbon steel metal specimen. Unfortunately any data
base containing laboratory experiment results for other materials is not available for us and we
are not able to carry out laboratory experiments ourselves. We have to rely on data published in



220

Z. Nowak and A. Stachurski

Case |. h — normal distribution function

g - exponential function

0.02 H 1:57
0.015¢ 1.475¢
£ 0.01} o 1.45 e R T S
0.005 1.425
0 1.4
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Case Il. h — powered exponent function g - square root function
0.08 T T 0.8
0.06 0.7
< 0.04} o
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Equivalent plastic strain, €”

Fig. 3. Computed nucleation material function h and computed growth material function g as functions of
equivalent plastic strain €, in Cases I, IT and III

the literature, which are very limited. Currently we continue our work assuming other forms of
the porosity evolution equation. The results shall be presented in a forthcoming paper. We shall
apply our identification code to parameter identification for other elastoplastic materials if we find
appropriate porosity experimental data.
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