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This paper is intended to summarise the actual work in the area of large deformations of tension sys-
tems. The previously conducted research [23, 24] adds significant contributions to the understanding of
the response characteristics of pneumatics and suspended membranes with wrinkling allowed. Here the
attention will be focused on the applications of the one-dimensional tensioned cable systems. Two- and
three-dimensional tensile structures, will be forced to work with compressed members. Since cables can
not transmit any compressive forces a verified numerical algorithm, based on the monitoring of the load
displacement path is proposed. The special computer code NAFDEM (Nonlinear Analysis by Finite Differ-
ence and Element Methods) [13] was adapted to solve undertaken highly nonlinear problems. Calculated
results were verified numerically and compared with the solutions obtained by the numerical integration
technique.

1. INTRODUCTION

Not only have tensioned structures become accepted solutions a covering large interior-support-free
facilities but also their use seems to be increasing. They have commonplace appearance and supply
standard solutions, providing covering for unobstructed large areas, such as recreational and sport
facilities, semi-permanent storages, exhibition pavilions, or market places. Not only civil engineering
applications of such structures may be found, but they can model household items used daily (bags,
clothes) and even certain organs of our body (veins, muscles or skin).

Membrane structures usually are made of very light flexible materials like rubber, cloth, or
translucent plastic sheets reinforced with cords, steel or plastic cables. Their shape can be maintained
only due to a small internal overpressure (pneumatic structures) or an initial prestressing (suspension
membranes or cable nets). It is assumed that the membrane and cables may carry only tension and
work in a plane or uniaxial stress state. They cannot withstand compression or bending; if this
happens, wrinkling zones in the membrane and cable slack may appear.

Traditionally in case of fabric roofs the main emphasis has been laid on the fabric or membrane
component, with little attention paid to the cable components present in the majority of the ten-
sioned structures. Edge cables are commonly used to gather the tensile forces from the membrane
and redirect these distributed surface forces to conveniently located and isolated anchorage points
at mast tops or foundation levels. Ridge or valley cables are often used to control or reduce fabric
stresses as well as to influence the amount of the clearance underneath a membrane structure.

The analyses of cable-reinforced membrane shells performed in the past have usually neglected
the membrane contribution. The membrane has been regarded only as a medium transmitting the
loads to the cables. This is true if cable stiffness is much higher than that of the membrane and
the membrane size is small. But in practice these conditions are not satisfied and the modelling of
tensioned structures should consider the co-operation of cables and membrane in the whole system.
Therefore it is desirable to treat both with the same algorithm and take their co-operation and
interaction into account. Although the use of flexible cable structures in engineering is very popular
and well known in literature [19, 20] and engineering practice [12, 18], the numerical algorithms useful
in considering such special local effects as cable slack and membrane wrinkling are still lacking.
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Thus applications of cable-modelled systems as well as their interaction with the membrane in
reinforced structures were considered in this study. The complexity of such an analysis practically
excludes any analytical techniques and only numerical considerations may yield the intuitively
correct solutions.

2. OBJECT OF THE ANALYSIS

Let us focus our attention on the tensioned structure represented by a membrane reinforced with
edge cables as shown in Fig. 1. The rectangular membrane made of elastic material, fixed at the
corners, was loaded by the traction forces q, . The behaviour of such a system will be considered in
view of cable and membrane interaction.
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Fig. 1. Square membrane reinforced with edge cables

The special features distinguishing the cable and membrane tensioned structures from the more
conventional structural forms (e.g. beams and shells) are:

e form of their surface strongly depends on the static and geometrical conditions;

e these structures are ideally flexible, carry only tension and work in a plane or uniaxial stress state.
They cannot withstand compression or bending, in such a case folded zones in the membrane or
cable slack will appear. These phenomena cause local instability of the structure and should be
accounted for;

e the loading process of the separate cable element or membrane sheet is possible only if they are
initially stressed in tension at least in one direction;

e after the load is applied, the structure usually undergoes large deflections caused by the initial
internal flexibility.

As a result of the membrane and cable features listed above, acting loads trigger very large
deformation of the structure. This deformation includes large displacements with possible membrane
wrinkling and cable slack.

The static consideration of the cable systems in case of cable slack frequently deals with a mecha-
nism. If the loads are transmitted through the membrane surface the deformation of the membrane
with respect to the response of supporting or reinforcing cables has to be calculated. Hence the
mathematical model of co-operation between membrane and cables has to be considered. At first
a full joining of membrane and cables will be assumed. The cables will run along the membrane
edges and will have the same element edge nodes. In this approximation the cable slip will be ex-
cluded and the nodes stiffness will be accumulated. For the connection to work [22] the membrane
wrinkling and resulting cable slack will be allowed for.

Although such a problem has been theoretically considered by many researchers, still the quest
for the formulation best suited for the numerical analysis of the deformations of cable-reinforced
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membranes with wrinkling has not been concluded. The problem at hand belongs to the non-trivial
boundary value problems with unilateral constraints. In such a case it is impossible to find any
analytical solution and only numerical modelling may yield reasonable results.

For the last thirty years there have been many publications dealing with the analysis of tensioned
structures. It is obvious that complex analysis of such systems needs to distinguish at least two con-
figurations, initial and actual and formulate the problem within the theory of nonlinear continuum
mechanics. In such a case only a limited subclass of flexible structures (axially symmetrical shape
and load) may be solved analytically. The practical solutions in any arbitrary case may be obtained
only if numerical method such as Numerical Integration Technique (NIT [26]), Finite Difference
Method(FDM [28]) or Finite Element Method (FEM) [1-3, 6, 24] is applied.

The actual “state of the art” in the domain of analysis of flexible membranes with wrinkling
was presented in [22]. In the present paper attention is focused on the application of a natural
approach [1] to the case of cable systems as well as their interaction with compatible membrane
elements. The literature devoted to the shaping of cable systems is very numerous, but the analytical
solutions are rare and limited to the simple shapes.

Application of FEM to the analysis of large deformations of cables was initiated by Argyris
and Scharpf in [3] and Argyris, Angelopoulos and Bichat in [2]. In these papers the authors used
the concept of geometric and elastic stiffness matrices in form finding analysis. The initial form
of the system satisfying the equilibrium conditions for the initial stress state is searched for. The
force density method was the other technique applied in such a case by Schek [21]. The idea of
this method is based purely on mathematical calculation of the equilibrium without considering the
elastic properties of the structure. This technique was extended to a more general assumed geometric
stiffness method for membrane systems by Haber and Abel in [10, 11]. In proposed technique the
designer has to assume both the prestress distribution as well as the geometric stiffness of the system,
which is not a trivial task at the beginning of the deformation process. Moreover this technique is
unsuitable in case of local instability caused by membrane wrinkling and cable slack.

It is very important to point out here that the design process of cable systems includes three
main stages coupled together. As pointed above, the flexible system can exist only under an initial
tensioned stress state, which determines the initial shape of the structure. Therefore it is crucial
for further analysis to establish the initial configuration of the system. In the literature [10, 21]
this stage is called form finding, shape finding or initial equilibrium problem. It is important to
distinguish this stage, with an assumed initial stress state, from the large displacements of the
structure caused by the application of the external loads.

Besides the already mentioned mathematically based methods, the dynamic relaxation intro-
duced and applied to cable systems by Day [8] and Lewis et al. [16] was used. The extensions of this
technique to a prestressed net and membrane were performed by Barnes [4, 5], Wakefield [29] and
Ong et al. [18]. This technique seems to be an attractive approach since the shape finding as well
as large displacements can be accounted for within the same numerical algorithm. The fictitious
motion of the system is traced from the beginning of the loading to the final equilibrium state
using D’Alembert’s principle. The convergence and speed of the iterative process is governed by
the fictitious masses assigned to the nodes, the damping coefficient, and the time step size during
integration process. The dynamic relaxation seemed to be very popular engineering technique, but
it did not find any application in the case of membrane wrinkling and cable slack. An engineering
simplification to approximate the geometric nonlinearity using Taylor’s expansion in the description
of the deformed shape of the cable proposed by Kwan [15] and Kneen [12] is also worthy of notice.

Special attention was devoted in the literature to improving the convergence of the iterative
process. To this end a second order of approximation of cable element geometry was introduced by
Gambhir and Batchelor [9] and Argyris et al. [1]. The latter also presents a family of higher order
isoparametric cable and membrane elements. Numerical applications and mutual comparison of
higher order cable and membrane elements were presented by the author in [25] and [24] respectively.
The approach enhancement, using the curvilinear shape of the initial cable geometry resultant of
loads, was successfully considered by Patkowski [20].
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The early use of the finite element method with quadrilateral elements to analyse the nonlinear
behaviour of cable-reinforced air-supported structures was considered by Li and Srivastava [17]. In
this work the pattern of the cable net was assumed to be the same as for membrane elements,
and any wrinkling or cables slacking at point of contact was neglected. The complete finite element
approximation of both membrane and cables was presented consistently by Tabarrok and Qin in [27].
In the paper three main stages in the design process of tensioned structures were distinguished, i.e.
form finding, load analysis and cutting pattern. The first one is based on determination of the
initial shape of the structure satisfying the architectural and statical requirements while the second
requires the investigation of the system response to the various service loads and the third is in the
plane fabric layout stage determination. In [27] the cable and membrane co-operation as well as the
convergence of the iterative algorithm in case of local instability were not considered. These will be
undertaken in our study.

3. LARGE DEFORMATIONS OF TENSIONED STRUCTURES — FINITE ELEMENT
FORMULATION

The tensile cable reinforced membranes are, in practice, shear-free prestressed mechanisms in which
the form is governed by the surface and cable stress distribution.

As has been pointed out at the introduction, the large displacements and deformations as well
as uniaxial boundary conditions are characteristic features of the considered structures and result
in the geometrical nonlinearity of the problem. The essential feature of this nonlinearity is that
equilibrium equations must be written with respect to the deformed geometry — which is not known
in advance. Therefore the initial and actual system configurations, shown in Fig. 2, have to be
distinguished, hence the Total Lagrange approach will be applied.

The complete formulation of membrane elements with wrinkling, applied in this paper, was
presented by author the in [22]. Hence only certain modifications for cable elements allowed for
slack will be presented. To preserve the membrane and cable compatibility, the main characteristics
of the cable elements will be recalled based on [1, 25] and revised.

Two node isoparametric cable elements with linear approximation of the geometry and strain
field will be considered. The geometry of the element during the deformation process is shown in
Fig. 2, and will be described in the initial undeformed configuration by the geometry vector

’x = ox(£1 ) 62), where 61,2 € (0’ 1) (1)
/
while in the actual configuration
x=°x+u=x({, &) (2)
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Fig. 2. Basic, initial and actual configurations of the cable element
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In both configurations the so-called local element will be defined as a simple two node element
tangent to the total element (Fig. 2) with length measures equal to

i
m= (X Xy ) T, m = (XeXye)

D=

(3)

in the initial and actual configurations respectively. The symbol || denotes the directional derivative
in the direction of e vector and the superscript ® denotes the reference to the undeformed config-
uration. The local element in the actual configuration can be mapped to the basic element in the
reference configuration by the rule

xr = z1:1&1 + 21262, 12 €(0,1) (4)

where z1,; and x5 are the local nodal co-ordinates of element Sy, .
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Fig. 3. Natural co-ordinates and strain of cable element

The description of the element deformation will be presented based on the natural approach
which separates the real element deformation (change in length) from its rigid motion (rotation and
shift). In this approximation the position of the current point of the element will be described by
two dependent co-ordinates {&;, &2} (Fig. 3), where &; + €5 = 1 (this preserves the compatibility
of description of the geometry and the displacements for cable and membrane elements [1]). The
natural element elongation and its increment are presented as

pN =m — °m, dpy = dm. (5)

In order to take into account the higher-order terms of Cauchy geometric equations, the Green
strain and its increment take the forms (Fig. 3)

1 m2 o8 om2

m
EGg = 5 om? 3 (56@ = ——dm. (6)

om2
Consequently, adequately to the Green strain, the Piola-Kirchhoff stress will be introduced by
the incremental constitutive equation :

éop = Epbeg (7

where Ep is the linear elasticity modulus. Using the interpolating scheme for isoparametric elements
the geometry and displacement fields may be represented by the nodal values as

x=(IN)x;, u=(I3N)uy, (8)

where (I3N) = (I3® N1, I3s® Ny, ..., I3® N;); N is a sequence of j shape functions (j = number
of nodes); I3 represents the identity matrix, x; and uy are the hypervectors of the geometry and
the displacements of element nodes, and ® denotes the Kronecker-product.

The increment of change in the length of the element in actual configuration can be calculated
as
L. 1 t ribe 2 1aze e e

llelle

(&
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and using the interpolation scheme (8)
1 1
om = — (*xr + ur)’ (I3Ne)" (IN)) dur = — béuy, (10)

noindent where b is the so-called geometry matrix. Using this equation the strain increment can be
presented as the product

deg = o_}‘fbdul' (11)
m

Equilibrium equations of the element in the actual state will be derived using the virtual work
principle for the local element in the form

5(WL) = 5(dWL) = Up5€G %A OSL = PN(SpN y (12)
SL
where °A, °Sy, A, Sp describe the area and length of the local cable element (see Fig. 2) in the
reference and actual configurations respectively and Py denotes the natural axial force correspond-
ing to the natural element elongation py . The increment of virtual work in the total element is
represented by the equation

1 1

oW = —/ Gp(SEGOAOSLdSB=—/ Pndpn dSp. (13)
SB Sp SB Sg

Substitution of Eq. (5) and Eq. (9) yields the increment of virtual work in terms of nodal displace-

ments and actual geometry

oW = (L/ PNB dSB) 5111 = Ug (5111 (14)
SB Jsp

where B = b #, Uj; represents the nodal forces corresponding to the nodal displacements uj.
Since Eq. (14) is valid for all increments of the displacement vector, the set of nonlinear equilibrium
equations in terms of the Piola—Kirchhoff stresses or natural forces is found to be

1 1 1

PGty 94°S8;: dSp. = — PyB =3l .
S5 9h, omszPb S dSp 559y ~nBdSp I (15)

Consideration of two close configurations in equilibrium and calculation of the increment of nodal
forces provides

1 1
0U; = (U +6U;) = Uy = o [ (B+0B)'(Py+0Py)dSp— = | B'PydSp

B JSp B JSg
1
o Rt e e / B'6PydSp + — | 6B'6PydSs. (16)
SB Jsg SB Jsg SB Jsy
This takes a well-known form
0U; = kgéuy + kgduy + 6Jy, (17)
where
rgsipeabdfio s i/ L (N (1sN) °A dSp ) du (18)
b el = s A s arm 5, om P13INje) (131N} B I,
Kt~ ) DRSS (i/ ™ ppoAB'BAS )511 (19)
Bour = o o N doB S5 Is, om? P B I
68J; = x éB!6Py dSp (20)

SB Jsy
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are the elastic and geometric stiffness matrices respectively and 6J; denotes the error in the nodal
load vector due to numerical calculations. Corresponding nodal forces in case of dead load repre-
sented by the intensity vector q = {q1, g2, g3} may be calculated as the equivalent forces by the
rule

(5qu[ = é A éuthL dSB (21)
B

and using the interpolation scheme

P; = SL / (I3N)!qSy dSp. (22)
B JSp

The equations presented above let us consider the cable structures with slack cables using the
same numerical algorithm as for membrane systems with wrinkling admitted [22]. For the simplicity
of our consideration the joining of the cable and membrane nodes will be assumed, leading to the
membrane reinforcement. Hence a separation of cables and membrane is not allowed. In the discrete
model, cables lie along the sides of the reinforced elements and deform with them.

In some cases the applied loads cause the local instability of the structure. Certain cables slacken
and do not transmit any forces. In this case the total natural strain start to be negative. This may
be written in the natural measure as a sufficient codition of slack

= if ¢ <0 then opy =0 and consequently Py = 0.

The switching off of certain cables in the cable model of the suspended structure is performed by
incremental modification of the actual stress state of the cable which does not have any compressive
rigidity. The main problem in the numerical analysis of large deformations of cable systems with
slack cables admitted lies first in finding the right size of the load increment, to find the switching off
of elements at the beginning of the slack state, and second, in the estimation of the fictitious rigidity
at the nodes which are positioned at the intersection of slack cables, thus avoiding the singularity
of the global stiffness matrix. It is obvious that the use of too large a load increment or of fictitious
rigidity in switched-off nodes will drive an erroneous solution.

4. NUMERICAL IMPLEMENTATION

The Newton-Raphson technique was used to solve the set of nonlinear equilibrium equations (15)
for cable-reinforced membrane structures. The flow chart of this technique is presented in Fig. 4. In
this algorithm a verification step of the actual natural stress state in case of its negative value was
introduced for cable as well as membrane elements. The algorithm was implemented in the computer
system written in FORTRAN 90 called NAFDEM (Nonlinear Analysis by the Finite Difference
and Element Methods) [13]. This system is based on the macro-language structure introduced by
Zienkiewicz and Taylor [30]. The main advantage of this program is the joining of the finite element
and difference methods in one tool, thus giving the possibility of their cooperation, not rivalry.

The system is built of five main units responsible for data control and memory management
(PCONTR), data input (FEAP), mesh and geometry generation and modification (PMESH), mod-
elling and control of the calculation process (MACR) and the post-processing (STOP). The structure
of the system is presented in Fig. 5. After data preparation in the PMESH unit, the execution is
transferred to PMACR segment, in which the required iteration scheme is performed. This scheme
is executed in a sequence of macro-commands appropriate for the required algorithm. An important
advantage of the NAFDEM lies in the monitoring of the iteration process. The system controls the
successive displacement increments and loads residuum and any unexpected jumps are registered.
Two norms applied by the system have to be satisfied in order to finish the iteration. The first one
is the load residuum while the second represents the displacement increment value.
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Fig. 4. Flow chart of nonlinear analysis of cable system
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Fig. 5. Main segments in the NAFDEM system

ISW=1 - input and control of element and material data
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Fig. 6. The structure of the element subroutine

There is already a complex one-, two- and three-dimensional elements library, but for the sake of
our consideration special cable and membrane elements had to be constructed. The structure of the
element subroutine, shown in Fig. 6, consists of eight steps used in the calculation process depending
on the algorithm. This may be easily prepared for any type of element as well as difference star and
should be written in C or FORTRAN language.

In order to solve a highly nonlinear boundary value problem using NAFDEM code, a special data
transmission subsystem was developed. This is based on the element (node; star) information packet
which consists of its main characteristics. The structure of the information packet is configured by
the user in order to deliver all values required in the iteration process. Currently, the system is
capable of analysing the structures modelled by one- two- and three-dimensional isoparametric
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elements. Moreover the coupling of the finite element and difference methods can be carried out at
various stages of the numerical analysis and is still developed [14] in case of very complex engineering
boundary problems in local and global formulation.

5. NUMERICAL EXAMPLES

The main idea of the finite element modelling of the behaviour of cable and membrane structures
under a compressive regime is based on the iterative algorithm (see Fig. 4). At the beginning of
the iteration process the structure has both tensile and compressive rigidity and after first solution
the geometry is updated and the strain-stress state is calculated. Then the cable axial forces are
analysed in order to eliminate compression. If the cable internal force is going to be negative this
force is set to zero using the assumption of lack of cable compressive rigidity. Next, the residual
forces are calculated as a difference between applied external and internal forces. The process is
repeated until the convergence is achieved.

1.2 & oo residual force increments

- displacement increments
R R
0.8
0.6——; P
il B A YOl B T 1?2_L3"f4

number of iterations

Fig. 7. Deformation of two cables system loaded at the Fig. 8. Convergence of iteration process
apex

1.043

Fig. 9. Four cables 3D system
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The NAFDEM computer system presented above was used to solve a number of tests. As an initial
test the system of two cables with tensile rigidity of EA = 10.0 N was loaded by a concentrated
force P = 1.0 N as shown in Fig. 7. The final equilibrium configuration was found after 13 iterations
and positions of the loaded node 2 on the path to reach an inverted shape have been depicted in this
figure, numbered 1,2,...,7. The convergence of the iteration process was depicted in Fig. 8. It may
be easily seen that elements in the system are compressed through the first seven iterations and
do not produce any cable reactions. Hence the residual forces remain equal to the applied load P
during the iteration process. After the 7th iteration the cables start to work in tension. As a simple
verification test a concave cable system was analysed (dashed lines in Fig. 7) and the same final
configuration was achieved. These results were repeated in the case of the three-dimensional cable
system presented in Fig. 9. Now the sudden jump of the residual forces and displacement increments
caused by the singularity of the system in the stage close to the plane is observed (see Fig. 10).

Next a three-dimensional system with supports in different vertical planes was analysed. The
structure is built of three cables fixed at nodesr 1 and 3 while node 2 is a roller supported in {yz}
plane. The geometry of the system was shown in Fig. 11. The material and load parameters were the
same as in the previous test. After the deformation, cable 1-2 slack inwards while cable 1-3 rotated
under the applied load. The only working cable was the tensile element 3-2' shown in Fig. 11. Its

50.0- 2.0
5 1
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3 o 1
40.0 1 :
residual force 1.5 ]
increments 1 displacement
30.0 4 increments
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20.0- ]
: 0.5— 15 )
10.0- ] /
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Fig. 10. Convergence of iteration process in case of four cables system
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0

Fig. 11. Three-dimensional cable system Fig. 12. Convergence of iteration process
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elongation was the same as for the separate cable hung vertically at point 3 and loaded by the
concentrated force P at node 2. The solution was obtained within 13 iterations and the process was
depicted in Fig. 12 in terms of residual force values and displacement increments. Similarly to the
previous test the first seven iterations were used to rotate the system to the stable position.

A cylindrical membrane of infinite length subject to vertical uniform apex line load was analysed
next. Because of the symmetry of the load, geometry and boundary conditions this analysis can be
reduced to two dimensions and only the the cross section of the membrane may be considered. The
structure was depicted in Fig. 13. For the convergence test the cross section of the membrane was
discretized with 3 to 1000 elements and the displacements obtained in the key versus number of
degrees of freedom are depicted in Fig. 14. It may be found that about 50 elements have to be used
to get the error of the solution below 0.03%. Several further solutions were obtained for different load
levels and different membrane profiles, with half of the central angle 6, = 30°,90°, 150°. Resulting
load—deflection curves obtained by FEM were presented in Fig. 13 by dots in nondimensional values
{3, W} where W = EVRLO and 6 = %, and compared with the results obtained by the numerical
integration technique in [7]| (continuous lines).

Interaction of the cables and the membrane in the case of the rectangular membrane reinforced
with cables along the edges (Fig. 1) was analysed next. The square with 5.0 m side length and

1gF i3
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Fig. 13. Apex displacement vs. load for cylindrical membranes of infinite length calculated by FEM and
NIT
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Fig. 17. Square membrane with edge cables of tensile rigidity E°A equal to 10'° kN
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Fig. 18. Displacements of central and cable midpoint nodes versus the edge cables rigidity

0.001 m thickness made of material having an elastic module equal to E = 270.0 Mpa and Poisson’s
ratio v = 0.4 was discretized by 128 membrane triangles and 16 edge-cable elements in one quarter
of the structure. In the calculation process the tension rigidity E %A of the cables was changed from
0 kN to 10! kN. The structure was loaded by a distributed pressure load of 50 kPa intensity. An
initial fictitious prestress on the structure had to be introduced to start the calculations. After
a couple of iterations this prestress was removed. The deformed shapes of the structure in the three
cases of cable rigidity close to zero, equal to 10% kN, and 10!° kN were calculated and presented in
Figs. 15, 16, and 17 respectively. It is worthwhile to point out that in the first case the deformation
should correspond to the shape of the structure without any cable reinforcement whereas in case of
high cable rigidity (Fig. 17) the deformation of the structure with fixed edges should be obtained.
These results were confirmed by the diagram depicted in Fig. 18 where the displacements of chosen
nodes versus the cable rigidity were presented. A correct cooperation of the membrane and the
cable elements was confirmed. Moreover the influence of the edge cables on the size of the structure
deformation is observed.

6. CONCLUSIONS

In the present paper the application of the finite element method to the analysis of large deformations
of cable reinforced membrane shells with membrane wrinkling and cable slack allowed was presented.
The most attention was paid to the algorithm for taking the cable slack into account, assuming their
lack of compressive rigidity. Hence based on [22] the simple cable analogy was applied for complex
cable reinforced structures as the tool to consider the cable slack phenomenon. The simplicity
of the proposed technique was the main advantage which leads to the solutions for even very
complex structures. Several numerical aspects of the analysis were investigated. Among other things
simple numerical tests confirming the correctness of the proposed algorithm have been solved. The
effort to review the state of the art in the theory and numerical applications of wrinkled cable-
reinforced membranes analysis was undertaken in the paper. Further research will refer to more
precise description of the contact between membrane and cables which allows the slip analysis.
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