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A monotone predictor—corrector scheme for advection
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A monotone predictor—corrector finite difference scheme solving the advection equation has been proposed.
A geometrical interpretation of the Burstein scheme forms a basis for construction of the new scheme. The
main idea consists in defining a proper limitation algorithm in the predictor step preventing formation
of new extremes of the solution profile. Various variants of the scheme have been tested for the linear
advection equation and an optimum version has been chosen for further developments. Extensions to the
nonlinear case and inhomogenous, solution independent velocity field have been made. Application of the
time splitting procedure enables the scheme to be applied for multidimensional advection problems. For
chosen test problems the scheme behaves better than schemes proposed in the literature.
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1. INTRODUCTION

Over the last few decades a search has been continuing to devise finite difference schemes properly
resolving sharp profiles of the solution of hyperbolic partial differential equations. The main problems
to copy with are numerical diffusion and numerical dispersion. The first one blurs fine details
of the solution. The second one generates spurious oscillations, considerably deforming solution
profiles. The numerical diffusion and the numerical dispersion are in some way antagonists. It is
very difficult to find a compromise between them. The traditional approach to this problem is
to introduce artificial diffusion, which damps oscillations without causing large smearing of sharp
profiles. This von Neumann and Richtmayer’s idea [7] was being brought to perfection for years
until new concepts were proposed. These concepts led to finite difference schemes that produce
essentially no oscillations and cause only minor numerical diffusion. The name “monotone schemes”
is often used in respect to them. It emphasizes a desirable property of the numerical solution
consisting in preserving monotone profiles of numerically modeled discontinuities. As it was shown
in [1], there is a principal difficulty to construct fully monotone schemes of order higher than the
first for the solution of nonlinear equations. So the name “monotone” does not fully fit to many
schemes considered as being monotone. The term “essentially nonoscillatory” introduced by Harten
and Osher [6] would better fit. However, having in mind that the name “monotone” may mean
“producing at most very small oscillations”, we will use it further on.

Many monotone schemes have been proposed. FCT [2], TVD [9], MUSCL [11], ENO [6] and
PPM [4] schemes belong to the most important. They have many modifications producing solutions
having different properties. In the review paper by Young and Przekwas [12] the Roe and Sweby
TVD and the Collela and Woodward PPM schemes were shown to produce the less deformed
profiles of the solution of the nonlinear advection equation. In this paper solutions produced by
these schemes are used as a reference for assessment of a new scheme.

The classical predictor—corrector Lax—Wendroff scheme, in the form proposed by Burstein (3], is
a starting point for construction of a new monotone scheme for the advection equation. Geometrical
interpretation of the Burstein scheme for the linear case makes the basis for a modification of the
predictor step. Various algorithms for the predictor are analyzed. An algorithm producing the best
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results is generalized to the case of velocity field depending on the solution and changing both in
space and time. Application to many dimensions is also considered.

2. LINEAR CASE

The Burstein scheme [3] for the advection equation
u + [F(u)]z =0 (1)
has a form

e predictor

n 1 1
iy = S +ul) - SNF(udy) - Ff)],  A=h/r, (2)

e corrector

ult = o = APl = Ft 2], (3)
where u]' denotes the value of the numerical solution at location z; at time ", h and 7 mean space
and time steps of the grid.

Values of the solution calculated in predictor can be considered as some approximations of the
solution at locations z;11/2 = (i +%i+1)/2 at time t"+1/2 = (¢ +¢"+1) /2. They can also be treated
as some average values of the solution for ¢ € [t", t"*!] at the computational cells boundaries.

Hence, F(u?jll/(f) can be considered as an average flux at a cell boundary.
In the case of homogenous, constant in time velocity field the flux can be expressed as F'(u) = au,
a = const. We assume provisionally that a > 0. Then we will generalize results for an arbitrary sign

of velocity. The scheme (2)—(3) can be written in the form

e predictor

w1 4 1
wyy = Sl tul) - Sl —ul),  v=a), (4)
e corrector
+1/2 +1/2
uptt = uf — u(u?+1//2 " “?*1//2 ) (5)

The predictor step (4) can be interpreted as a linear interpolation formula between values of
the solution at nodes 7 and ¢ + 1 at time ¢". An approximate value of the solution at point z =
Tip1/2 —a7/2, t =1t" is determined. It is a starting point of a characteristic line coming at the cell

boundary at time ¢"t1/2 - Fig. 1.

A t
t"+l ;
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Fig. 1. Illustration for the geometrical interpretation of the formula (4)
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Fig. 2. Geometrical interpretation of the predictor step  Fig. 3. Geometrical interpretation of the corrector step
of the Burstein scheme of the Burstein scheme

A geometric interpretation of Eq. (4) is given in Fig. 2. The solid line is a continuous representa-
tion of the solution u"(z) = u(z,t"). At the section [z?, z**!] the function u™(z) is approximated
by a straight line AB. The point C corresponds to the approximate value of the solution determined
at the predictor step u?fll/; :

Figure 3 shows a geometric interpretation of the corrector step. The points D, A, B correspond
to u y, ul', ul,;. The points C and E represent solution determined in the predictor step. We
join these points by a straight line and then we construct a line starting at point A and parallel to
the line CE. The point F lying on that line in a distance a7 from the node 7 represents solution
determined in the corrector. It can be shown that the point F lies on a parabola joining points D,
A and B. Hence, a sequence of two linear interpolations is equivalent to the interpolation by a
parabola.

Defining a symbol

Siv1/2 = Dig1y2 S uiy — Uy, (6)
we can write down the predictor step in the form

1
Uffll/; =u +5(1-V)Suys. (7)

Modification of the predictor step will consist in application of an algorithm for the determining
of Si;1/2- The algorithm will be based on construction of various approximations of the function
u(z,t") in the vicinity of the node 4. The following approximations will be considered.

S0. The simplest approximation is u?:f/; = u (Sit1/2 = 0). Then the scheme (4)—(5) becomes
equivalent to the up-wind scheme.

S1. In the Burstein scheme u(z,t") in the vicinity of the node 7 is approximated by a secant line
joining points corresponding to u* and uf, ;. Sj;y/2 is given by (6).

52. u(z,1™) can be approximated by a secant line at the section [z;_; , 2;]. Then
Siv12 =8i_12- (8)

The scheme (7)-(5) becomes equivalent to the second order up-wind scheme (the Steger—
Warming scheme).

- 83. u(z,t") can be approximated by a line tangent at x = z; to a parabola constructed on the

basis of u* | ,u ,uj,; values. In this case

(Ai_12 + Aiy1y2) - 9)

DN | =

]
Siy1/2 = 5(“?+1 —u ) =
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S4.

S5.

S6.

S7.

S8.

Scheme (7)-(5) + (9) is a combination of the Burstein and the Steger-Warming schemes. It
is a particular case of the Fromm scheme [5]. The general form of the Fromm scheme can be
obtained by taking S;,;/, as a weighted average of A;_, 2 and Agpy/o.

Approximation of u(z,t") by a line tangent to the third order interpolating curve on the section
[Ti—1, Tiyo] gives
5 1 1
Siy1/2 = 6A1’+1/2 £ §Ai+3/2 = gAi—1/2- (10)

Interpolating u(z, ™) on the section [z;_3, Zit2] by the fourth order polynomial and approxi-
mating the function by a line tangent at x = z; to the interpolation curve leads to the following
expression

2 1
Si+1/2 = §(u?+1 it ) E(“?Jrz = Uj_g). (11)

Approximation of u(z,t") for z € [z;_1, zi41] by a parabola expresses S; /2 as a function of
the Courant number v

1
Sit12 = Z[3Ai+1/2 + A2 — V(Aipr2 — Bis1p2)] (12)

Scheme (7)-(5) is in this case of the third order of approximation and it corresponds to the
cubic interpolation at the section [z;—3, i41]. On the strength of the Strang theorem [8] the
scheme is stable for v € [0, 1].

Approximation of u(z,t") for £ € [z;_1, zio] by the third order interpolation polynomial
gives

1 1

Siv1/2 = Biy1/2 — g(Ai+3/2 =~ -4} = ﬁV(Ai+3/2 — 2412 + Aiy1y2)
1
+ ﬂ”z(AHa/z = 204412+ Aj_yy9) - (13)

Scheme (7)—(5) is in this case of the fourth order of approximation and it corresponds to the
fourth order interpolation at the section [z;_g, Zi12]. On the strength of the Strang theorem
the scheme is stable for v € [0, 1].

u(z,t") in the vicinity of the node i can be approximated by the secant line for z € [z;_; , ;]
or by the secant line for « € [z;, z;}+1] depending on relation between slopes of these lines. If
we choose the one having the less slope we obtain

Sit1/2 = minimod(A;_y /2, Ajy1/9) - (14)

Function minimod is defined by

i a for |a| <],
d(a,b) = 1
minimadia,b) {b for [a] > [B]. B
If we add an additional condition
Siv12 =0 if A;_1/9041/2 <0, (16)

the scheme (7)-(5) becomes equivalent to the Van Leer MUSCL scheme [11].
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S9. We obtain another algorithm choosing
Sit1/2 = maximod(A;_y/2, Ajy1/2) - (17)
Function maximod is defined by

) a for |a| > |b],
d(a,b) =
ASamnd ;) {b for |a| < b].

Scheme (7)-(5) with such a choice of S;,; /2 has no counterparts.

S10. Similarly to the preceding approximation we can calculate Si+1/2 on the basis of two parabolas
interpolating u(z,t") for x € [z;_3, z;] and = € [z;, ;o]

Si+1/2 = maximod(D;_y/3, Diy1/2), (16)

Dit1/2 = 584172 — Diyaja — v(Digsja — Dityya) -
The scheme defined in this way corresponds to a local switching between two third order
schemes determined for z € [z;_3, z;] and = € [z;_;, Tit2). On the strength of the Strang
theorem both schemes are unstable for v € (0, 1).

Above algorithms for calculation of S;,; /2 define various schemes. Only SO and S8 schemes are

monotone. Others produce oscillations and S10 is unstable. In order to make them monotone a

| limiting of the S;,, /2 value is necessary. We will derive some limiting conditions basing on the

: demand that the value of ul*! is contained between ui ) and u} values. When this demand is
fulfilled no additional extremes can arise at t"*! that are not present at t".

Let us consider first a profile of u(z,t") shown in Fig. 4. Points A; and A1 correspond to u?

and u ,, while points P; and P;;; to u:'_"'ll/zz d u:l_:'ll/; The point C; represents the solution
obtained in the corrector step. When C; is above A;_1, a new maximum may form. In order to

avoid this the following relation should be fulfilled

" e (20)

Making use of (5) and (7) we obtain

1 1
o (48 4 50 =Sl - 0018 S (1)
and
1=
Sit1/2 2 5V YAl + Sic1ya - ey (22)
l} un A C
«r-*&‘m
’ -
\.\
B
A
X -1 Xi X i+1 ;

Fig. 4. Illustration for the limitation method of S, the case Aijp172 < Aiq2<0
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We assume that S;/, have the same sign as A,/ . In the area, where the solution is monotone,
this assumption is true. It may be violated only near extremes. In order to prevent this we include
the condition (16). In further considerations we will assume this protection to be active.

For the considered profile S;;;/; < 0, hence

=
|Siy1/2] < o YAi_1/2 + Sicaye|- (23)
Since A;_1/2 < 0 and S;_;/o < 0 this condition will be satisfied when

|
1Siv1/2] < 37 1<5i—1/2, 0i—172 = Ai_1/2] - (24)

-
Ll
X

X i1 Xi X i+]

Fig. 5. Illustration for the limitation method of S, the case A; 1172 > A1/ >0

Let us consider now the profile shown in Fig. 5. A new minimum may appear when C; is below
A;_1 . Therefore, the following relation must be true

uftt >l (25)

Making use of (5) and (7) we come to

1 1 £
U? -y U:l + 5(1 - V)Si+1/2 i U?_l - 5(1 - V)Si_1/2 Z U;—q (26)
and
T2
Siv1/2 < o 1Ai—1/2 + Si—1/2- (27)

For the considered profile S;;1/2 > 0, hence

|
|Siv1/2] < 57 YAi_1j2+ Sic1y2|- (28)

Because A;_y/o > 0 and S;_;/o > 0, this condition will be satisfied when

1 _
|1Si1/2l < sv 7 6im1y2- (29)
2

We have come to the same condition as before. Let us consider now the profile shown in Fig. 6.
In this case the following relation must be true

uttl >l (30)

)
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Fig. 6. Illustration for the limitation method of S, the case A;_1/2 < Aji1/2 <0

1
up — v [uf + —2-(1 —v)Siy1/2 — uj

1
- 5(1 o V)Si—1/2} > ug
and
o,
Si—12 2 1‘___UA1:-—1/2 + Sitif2-

(31)

For the considered profile S;;1/5 < 0. Therefore, it follows from (32)
2
[Si—1/2] £ 1_—VAi—1/2 + Sit1/2|-

(32)

Because A;_j/3 < 0 and Sj;/2 <0, this condition is satisfied when
2
1Si—1/2l < IT‘Ji—l/2-

Increasing ¢ by 1 we come to

(34)
|Sit1/2| < T V5i+1/2- (35)
The last considered profile is shown in Fig. 7. Monotone profile is preserved when
Tl AT
This condition can be transformed to

1
n n

2(1 - V)Si1/2 — Ui

and

5(1=v)Sim1/2| S
2

Si—1/2 < 1___VAi—l/2 + Sit1/2 -

For the considered profile S;_;/, > 0, hence

2
1Si—1/2] £ F__VAi-—lﬁ + Sit1/2|-

(38)
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Fig. 7. Illustration for the limitation method of S, the case A;_1/5 > A;4 2>0
(40)

Since A;_y/2 > 0 and S;11/2 > 0, we come to

2
|Si-1/2 € 70172
Let us observe that a common feature of profiles shown in Figs. 4 and 5 is that §;, /2> 0i_1/2

Increasing 7 by 1 we come again to the condition (35).
while in the case of profiles shown in Figs. 6 and 7 6;,1/5 < 0;_; /2 - Taking it into account we can
propose the following algorithm for limiting the Sj,,/; value

if Aj_1728i41/2 <0,
if Aj_1728i4172 20,
if diy172 2 6i_1/2,

0
if 64172 < 6i—1/2,

Stz = {Sa
_ | minimod (Sit1/2, 20i_1/2)
minimod <5i+1 /25 %Aiﬂ /2

Sa
The following test problems will be used for evaluation of the schemes S1-S10 used with the
(42)

1/ means the corrected value of S;; /5.

St
limiting algorithm (41)
up + auy = 0, a=1
u(z,0) =e¢(z), =z €l0,100]
u(0,t) = u(100,1)
The function ¢(z) is defined as
e square wave test
1 for z € [10,20],
gk 43
#(@) {0 for z ¢ [10,20], e
e blast wave test
(/10 = 1)5 for z € [10,20],
= 44
#(@) {O for z ¢ [10,20], (44)
(45)

e Gaussian test
o(x) = exp[—(z — 15.5)%/2.773].

In all calculations h =1, v = 0.5.
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Fig. 8. Results of the square wave test for FCT, TVD, Fig. 9. Results of the blast wave test for FCT, TVD
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Fig. 10. Results of the Gaussian test for FCT, TVD, MUSCL and PPM schemes

The exact solution for ¢ = 50 (100 time steps) for different ¢(z) is shown in Figs. 8-10. Re-
sults obtained by FCT, MUSCL, TVD and PPM schemes are also shown. In accordance with the
inferences drawn in [12] the TVD and PPM schemes produce the less deformation of the solution.
Results of the TVD scheme are used as a reference in evaluation of analyzed schemes — Figs. 11-22.

All the tests have proven that the algorithm (41) preserves monotone profiles. S9 and S10 schemes
produce numerical solution closer to the exact solution than that obtained by the use of the TVD
scheme. The S10 scheme shows the less numerical diffusion. However, it compresses too much some
profiles. This effect is pronounced for the “blast wave test” — Fig. 18. Finally, the S9 scheme was
chosen for further considerations. The acronym PCM (predictor—corrector-monotone) will be used
in respect to it.

Let us consider the case a < 0. The predictor step has a form

1
Wl =l - 5(1=1)Si1ps, v =la| At/As (46)

Repeating analysis made for a > 0, we come to the following conditions limiting Siy1/2

e _ )0 if Ayl <0,
sgeis Sa i Ajy1728i43/2 20,

Bl : 47
. = {mlnlmod (Sit1/2+ 20i41/2) if div1/2 2 diy3)2, =
L -

minimod (Sz'+1/2a Z58i1y2) If bip1je < iy
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Fig. 11. Results of the square wave test for S1, S2 and Fig. 12. Results of the square wave test for S3, S4, S5
TVD schemes and TVD schemes
u u I
1.0 1.0 e -
‘O “ p TVD
0.8 0.8 — 5 ]
0.6 0.6 — b ¢ . = —
S10
04 04 — =
: 2 R
0.2 0241 A A g
(] (@]
50 . 5560 1468 . T0:0:75 80 3040 85246040656 2705 .75 .80
X X

Fig. 13. Results of the square wave test for S6, S7 and  Fig. 14. Results of the square wave test for S9, S10 and

TVD schemes
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Fig. 15. Results of the blast wave test for S1, S2 and
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Fig. 16. Results of the blast wave test for S3, S4, S5

and TVD schemes



A monotone predictor—corrector scheme for advection 281

u u

1.0 1.0
0.8 0.8
0.6 0.6
0.4 04
0.2 0.2
0.0 0.0
60 65 70 TS 80 60 65 70 75 80
X X

Fig. 17. Results of the blast wave test for S6, S7 and Fig. 18. Results of the blast wave test for S9, S10 and
TVD schemes TVD schemes

Fig. 19. Results of the Gaussian test for S1, S2 and Fig. 20. Results of the Gaussian test for S3, S4, S5 and
TVD schemes TVD schemes
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Fig. 21. Results of the Gaussian test for S6, S7 and Fig. 22. Results of the Gaussian test for S9, S10 and
TVD schemes TVD schemes
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Let us observe, that the algorithm for the correction of S;,; /2 values is local, i.e. they are limited
independently. Hence, there is no need to use an array S;,; /2- In the notation of the predictor step
for an arbitrary velocity sign we will simply use the symbol S.

), Rk (1—m)/2,
AT = 'u'zn+1—m o u’?—m ) At = u?+1 T u?’ 0 = |A~I ) & = |A+| )

gH i ATA- <0,
18, if AEA=S0,

5 {minimod (A, 2A- if 6t >4,

2
minimod (A‘, %A"‘) if &t <6,

+1/2 1
u?+1//2 =uly + —2-m(1 -v)S.

3. NONLINEAR CASE

We will try to generalize the PCM scheme to the case of the velocity field depending on the solution
(nonlinear advection),

dF
du ’

The corrector step has now the form (3). The predictor step can be calculated on the basis of (48).
However, we must define what exactly means a in this formula, because by the virtue of (49) the
velocity field is inhomogeneous. Let us observe that a remains constant along the characteristic line
starting from the point C in Fig. 1. It would be then desirable to take an estimated value at this
point. We will consider various ways for determining a.

a(u) = (49)

Al. Because the point C lies in the vicinity of the point A for @ > 0 or B for a < 0 we can assume
a=aly; = F'(ul,), k=(1+m)/2, m = sgn[(a; + aiy1)/2]. (50)
A2. We can approximate a as an average for = € [z;, Zit1]
a=(a} +a}y)/2. (51)
A3. The form of the predictor step of the Burstein scheme (2) suggests that we can put

P F(U?ﬂ) ~ Flu}) . (52)

T
Uiy — U

In this case a has a sense of an integral average over [z;, z;11], i.e. Eq. (52) is equivalent to

uy!
a= —l—ﬁ/ . a(u) du. (53)

B
Ut — Ricfu

A4. We can determine an approximate value of a at the point C (Fig. 1) by interpolation. It is
equivalent to solving the equation

1
a + (§a2)z =0. (54)
The simplest solution can be found by the up-wind scheme
it
a = (ai -+ ai+1)/2, S= a;+1 — a;, a=a;+ 5(1 = )\a)S. (55)

A5. The solution of (54) can be found by the PCM scheme with the choice of a in (48) given by (51).
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The formula (52) can be treated as a finite difference approximation of (49). Therefore, for
u? = u?,; we can put @ = af . For the practically important case F'(u) = u®/2 the expression (52)
is equivalent to (51). The formula (52) determines the velocity of a jump in u, equal to A;iy/.
Since such a jump may be present in the generalized solutions of the advection equation, the choice
A3 can be expected to give good results for problems including propagation of jumps.

Let us observe that for determining u?jll/; and u?fll/g values we use different values of a. More-

over, in the corrector step the effective velocity is calculated from

F(un+1/2) _ F(u"+1/2)

i+1/2 i—1/2
adiis nt1/2 _ ntl/2 ; (56)
Uitrj2 ~ Yim1/2

As a result, the scheme for the nonlinear case does not correspond fully to the interpolation
procedure described for the linear case. In the aftermath of this the limiting algorithm (48) may

not preserve monotone profiles. On the other hand, if we chose the same velocity for determining

n+1/2  n+1/2 y
U172 2 Yo
difficulty to make the PCM scheme fully monotone for the nonlinear case. In order to reduce in
some extent generation of spurious oscillations we can additionally limit the value of v in the
algorithm (48). For 6t > §~ limitation of S will be stronger if the v value is larger. We can choose

the maximum value for z € [z;_1, Zi4+1] (a > 0) or for z € [z;, Zit+2] (a < 0)

and u] we would obtain a nonconservative scheme. As we can see, there is a principal

Vmax = Amax[|a;|, |ai+1], |ait(1-3m)/2l] - (57)
For 6+ < 6~ the smaller is v the stronger is limitation of S. Therefore we can put
Vmin = Amin[|a;|, |ai1], |air1—3m)2l]- (58)

Schemes based on different choice of a value have been tested for the following problem

us + (211,1'5) =0,
3 z

b= 1 for z € [10,20]; z € [0,100] (59)
: 0.5 for z ¢ [10,20]; o _

u(0,2) = u(100, ).

The exact solution of the problem includes two features difficult to treat numerically: a moving
jump and a fan of characteristic lines (centered rarefaction). In calculations h = 1. The time step
was taken half of the value resulting from the CFL condition. In Figs. 23-26 the solutions for ¢ = 50
are shown and for ¢ = 200 - in Figs. 27-30.

Comparison of plots shown in Figs. 23—26 proves, that the method of the choice of a value denoted
as A1 produces the less smearing of the rarefaction profile and the smearing of the jump comparable
to other methods. The methods A2-A4 cause a small overshot (within 1% of the jump height), while
no violation of monotone profile is observed for A1 and A5. For ¢t = 200 all the methods give almost
the same results. The position of jump is perfectly tracked. It is a consequence of the conservative
form of the corrector step.
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Fig. 23. Results of the square wave test in the nonlinear

Fig. 24. Results of the square wave test in the nonlinear
case for Al and A2 methods of determining a; t = 50

case for Al and A3 methods of determining a; t = 50
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Fig. 25. Results of the square wave test in the nonlinear

Fig. 26. Results of the square wave test in the nonlinear
case for A1 and A4 methods of determining a; t = 50

case for Al and A5 methods of determining a; ¢t = 50
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Fig. 27. Results of the square wave test in the nonlinear ~ Fig. 28. Results of the square wave test in the nonlinear
case for A1 and A2 methods of determining a; ¢ = 200 case for Al and A3 methods of determining a; t = 200
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Fig. 29. Results of the square wave test in the nonlinear ~ Fig. 30. Results of the square wave test in the nonlinear
case for A1 and A4 methods of determining a; t = 200 case for A1 and A5 methods of determining a; t = 200

Test results indicate the methods A1 and A5 as the best. Due to its simplicity the method Al
seems to be a rational choice. Therefore, the algorithm of the predictor step of the PCM scheme
can be written in the form

a = (al +a?1)/2, m = sgn(a), k=(1-m)/2, a = ajyy, v = Aal,

Vmax = Amax[|aj|, Ia'?+1| ) |a'?+(1—3m)/2|] )

Vmin = )‘mln“a?l ) |a‘?+1| ) |a?+(1—3m)/2|] )

A = Mt s At = Ufpyp —ul, d; =A%, ot = |A+|
AT <0

0
= 60)
g {sa if ATA™ >0, o

minimod (At -2 A‘) if 6t >4,

Sa o ? Vmax
minimod (A, =2—A*) if §* <67,
+1/2 1
“?4.1//2 = Ul + im(l - v)S.

Results obtained for the PCM scheme defined by (60) are compared in Figs. 31 and 32 with
results obtained by the use of the TVD and PPM schemes. The PCM scheme produces the least
deformation of the solution profile.
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Fig. 31. Results of the square wave test in the nonlinear  Fig. 32. Results of the square wave test in the nonlinear
case for the PCM(A1), TVD and PPM schemes; t =50  case for the PCM (A1), TVD and PPM schemes; ¢ = 200
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Fig. 33. The effects of the grid refinement (numbers of spatial steps are given) on the numerical solution in
the vicinity of the strong (a) and weak (b) discontinuity

The PCM scheme is a second order scheme in the areas of the smooth solution. In the vicinity
of strong discontinuities results obtained by the PCM scheme are scaled with the grid refinement.
Modeled discontinuities become thinner with the spatial step decrement, but the width of the
smeared discontinuity expressed in number of spatial steps remains constant. This effect is illustrated
in Fig. 33a, where the numerical solution of the test problem in the vicinity of the jump in the exact
solution is shown for various numbers of spatial steps. The effect of the grid refinement in the vicinity
of weak discontinuities of the exact solution is somewhat different — Fig. 33b. The solution in the
whole region of the rarefaction wave is smeared. However, with the grid refinement the numerical
solution becomes closer to the exact one. If we look at points joined by the thick solid line, we can
see that the numerical solution tends towards the right position of the weak discontinuity.

4. INHOMOGENEOUS VELOCITY FIELD INDEPENDENT ON THE SOLUTION

Considering advection in inhomogeneous velocity field independent on the solution we should con-
sider two cases. In the first case the solution u has a sense of a density function. The advection
equation in the conservative form should be used

ut + [a(z, t)u]; = 0. (61)

However, if u has a sense of information (eg. number identifying material, internal state variable)
the nonconservative form should be used

ut + a(z, t)uy = 0. (62)

It is obvious that for the both cases the scheme should have a different form. In the case of
Eq. (61) we can make use of the algorithm (60). In the corrector step we can determine the flux by

1/2 h T 1/2
F:'j/é =i (.’Bi + 5, " - 5) u:l—:-l//Z v (63)

Figure 33 shows results of the solution of the square wave test (1.43) for Eq. (61). The velocity
field includes a stationary jump at z = 50

1 for z < 50;
B e 0,100] . 64
a(@,1) {0.5 e L

The space step is h = 1 and the time step is taken half of the maximum accessible value. Results
shown in Fig. 34 correspond to ¢t = 90.
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Fig. 34. Results of the square wave test of the conservative version of the PCM scheme and TVD scheme in
the case of inhomogeneous, solution independent velocity field

The PCM scheme produces a small overshot. However, the solution is much closer to the exact
solution than in the case of the TVD scheme.
In the case of the nonconservative advection equation the scheme should be nonconservative as

well. It enables us to use the same value of velocity in calculation of u?jll/f, u?fll/; and ult!,

Therefore, the limitation algorithm preserves monotone profiles exactly. Let us observe, that u:l_:ll/;

values are different at the both sides of cell boundaries, because different velocity values are used
for their determination. Hence, the corrector step has a form

ultl =4 — (u:.l:ll/g(m ic u;’jll//;(R)) | v = Aa, (65)
where u" /2D n+1/2(R) mean left and right values at the cell boundary. In the predictor step we

i+1/2 1 Yigy)0
can use the/ algorithm/(48). The value of a should correspond to a mean value of the velocity along
the characteristic coming to the node i at ¢ = #**1. It can be determined in the following way. In
the first step we use the PCM scheme with the algorithm (60) for the solution of Eq. (54). This
way we determine an approximate value of the velocity at the starting point of the characteristic
at t = ¢". Then we can take an average of this value and a(z;, t"*1) as a.

Figure 35 shows a result of the square wave test for Eq. (62). The velocity field is given by (64).
As it could be expected, the scheme is perfectly monotone and produces very small smearing of the
profile.
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Fig. 35. Results of the square wave test of the nonconservative version of the PCM scheme in the case of
inhomogeneous, solution independent velocity field
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5. MULTIDIMENSIONAL ADVECTION

As it was shown in [10], the time splitting method applied to the advection equation is equivalent
to a sequence of onedimensional interpolations in consecutive directions. Therefore, we can use the
described PCM algorithm, being in a fact an interpolation algorithm, first in the z direction, than in
the y direction and eventually in the z direction. Solution obtained for a given direction constitutes
the initial value for calculations in the next direction.

Figure 36 presents results obtained for the following test problem in 2D

ut + (azu)z + (ayu)y =0, a; =1 —0.04y, ay = —ag,

_J1 for (z,y) € 9, B
u(z,y,0) = {0 for (a2t Q = {z € [10,40], y € [20, 30]}, (66)

z € [0,50], y € [0,50], u(z,0,t) = u(z,50,t) =u(0,y,t) = u(50,y,t) = 0.

The problem is equivalent to a rotation of a slab of unit height around an axis crossing the center
of the symmetry of the slab. Space steps in both directions are taken equal h; = hy = 1. The time
step is chosen in such a way, that one revolution needs 600 time steps. In Fig. 36 points contained
in the [0.01,0.99] range are shown. They mark the size of the smearing zone after one revolution.
As we can see the thickness of the zone is very small. It means that the scheme behaves very well
within the frame of the time splitting method.

In order to examine in deep properties of the PCM scheme, another test for 2D was performed.
It is well known that a discontinuity front oblique with respect to the grid lines is difficult to treat
by the advection algorithms. In the test problem given by (67), motion of such a discontinuity was
modeled by the use of the PCM scheme. Another objective of the test was to check behaviour of
the numerical solution, when the propagation velocity tends asymptotically to zero and the solution
tends to the steady one. A spatially uniform but changing in time velocity field was assumed. The
case 8 = +y corresponds to the situation, when the velocity vector is normal to the discontinuity
front. Otherwise, the discontinuity can be considered as an oblique one. Both cases were examined.
In calculations, the same a value for the predictor and corrector steps was taken. The Courant
number was accepted 0.5. Results of calculations are shown in Figs. 37 and 38.

Ut + agug + ayuy = 0, ag = e /%0 siny > 0, ay = i e cosy > 0,
1 for y <10+ (100 — z) sin g,

u(z,y,0) = -
0 for y > 10+ (100 — z)sinf,

z € [0,100], y € [0,100], u{z, Q1) = 1,

1 for y < 10+ 100sin B + 50(1 — e~/5%)(cos y + sin+y tan 3),

0,y,t) = . ;
u(0.3,%) {0 for y > 104 100sin B + 50(1 — e~t/50)(cos y + sin~y tan 3).

Points in Figs. 37 and 38 represent nodes in which u € [0.01,0.99] for the time ¢ = 500, when
the exact solution is practically steady. No overshoots and undershoots were detected. The steady
positions of the discontinuities, shown by solid lines, agree well with the positions that can be
concluded from the numerical solution. As in the 1D case, the width of the smeared discontinuities
in the direction normal to their fronts is equal to approximately 3 spatial intervals. Seemingly large
smearing in the x direction is only an effect of projection.
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Fig. 36. Results of the rotating slab test for the PCM scheme; points correspond to the solution in the
range [0.01,0.99]
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Fig. 37. Results of the oblique discontinuity test for Fig. 38. Results of the oblique discontinuity test for
the PCM scheme (v = f8); points correspond to the the PCM scheme (y # 3); points correspond to the
solution in the range [0.01,0.99] solution in the range [0.01,0.99]

6. CONCLUSIONS

Results of performed tests have shown that the proposed scheme can be regarded as monotone.
For the linear case the limiting algorithm preserve monotone profiles perfectly. In the nonlinear
case small deviations from the monotone profiles can be expected. The scheme is easily generalized
to the case of inhomogeneous velocity field independent on the solution. However, different forms
of the algorithm should be used for the conservative and nonconservative advection equation. The
scheme can be generalized to the 2D and 3D advection by the use of the time splitting method.
The scheme provides proper solution for the case of discontinuities oblique with respect to the grid
lines. The numerical solution correctly converges to the steady solution. Obtained results suggest
that the PCM scheme provides slightly better results than the schemes considered to the date as
giving the best results.
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