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The circular ring is linearly elastic and its cross-section is rectangular. Two deformation dependent dis-
tributed loads, that is follower loads, are applied simultaneously on the outer surface of the ring. The
first load is a uniform pressure on the whole outer surface. The second load is uniform normal traction
exerted on two surface parts situated in axially symmetric positions. Both loads are selfequilibrated inde-
pendently from each other. A nonlinear FE program with 3D elements is used for the numerical analysis
of a geometrically perfect and two imperfect rings. Displacement control is used in the equilibrium iter-
ations. Equilibrium surfaces are determined in the space of three parameters such as one characteristic
displacement coordinate, and two load factors. The stability analysis is performed in the knowledge of the
equilibrium surfaces.

Keywords: deformation dependent loads, two-parameter loads, geometric imperfection, displacement
control, equilibrium surface, limit point, bifurcation point, unstable region

1. INTRODUCTION

Deformation dependent loads can be classified as conservative or non-conservative, Bufler [2], Co-
hen [3], Kozak [7], Mang [11], Schweizerhof and Ramm [15]. In the FE analysis the influence of the
deformation dependent load can be considered with the help of the load stiffness matrix. Numerical
experiences show that the application of the load stiffness matrix on the left hand side of the lin-
earized system of equations is advantageous both for conservative loads and non-conservative ones,
since it essentially decreases the number of equilibrium iterations, Molk et al. [13], Kozék et al. [8].

There is a number of monographs devoted to the statical stability analysis of equilibriums. The
line of thought is: formulation of the problem, stability conditions, possible solution methods and
then solved problems; in addition detailed references are included in, for instance, Crisfield [4],
Huseyin [5], Kleiber [6], Kurutz [9, 10], Thompson [16], Wriggers [17, 18]. Special attention is paid
to taking the geometrical and load imperfections into consideration during the stability analysis.

3D models are analyzed in this paper. The circular ring is linearly elastic and its cross-section
is rectangular. By geometrical imperfections we mean elliptical rings with one axis coinciding with
the radius of the circle while the other differs from the radius by small value. The primary load is
a uniform pressure applied on the whole outer surface of the ring. The secondary load is a uniform
normal traction exerted on two small parts of the outer surface in axially symmetric positions. The
two loads are in equilibrium independently from each other, and naturally perpendicular to the
actual surface. Each load case is associated with a load parameter.
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The aim of this paper is to determine the postbuckling equilibrium states and to analyze their
static stability. The main features of our investigations are as follows: geometrically non-linear
deformations, deformation dependent loads and two independent load parameters.

The following mechanical tasks have to be solved: computation of work increments done by
equilibrium loads during a displacement increment, determination of the displacement increment in
the neighbourhood of a given configuration, determination of equilibrium surfaces and paths, static
stability analysis of equilibrium configurations, determination of the unstable points and regions,
analysis of the effects of the geometrical imperfections.

In Section 2 the basic formulae are summarized both for a continuum model and for a finite
element (FE) discretization in the reference configuration. The deformation dependent load can be
given in terms of the deformation dependent vectorial surface element for the problems considered.
The incremental form of the principle of virtual work is applied to determine the displacement
increments. The Newton-Raphson procedure, as one of the methods, is used to solve the incremental
form of the principle of virtual work. The stiffness matrix of the FE discretization includes the load
stiffness matrix as well.

In Section 3 an alternative procedure is proposed to solve the incremental form of the principle
of virtual work, it is based on the initiative of Marcinowski [12]. This alternative procedure and the
calculation of the increments of the strain energy and the external work done by the deformation
dependent loads serve as a basis for the stability analysis in Section 4.

Section 5 is devoted to numerical examples and the conclusions that follow from them. Ap-
plying a displacement control technique equilibrium surfaces, bifurcation points, limit points, and
instability regions are determined for geometrically perfect and imperfect rings.

Indicial notations are used for the description of an appropriate continuum model assuming
arbitrary curvilinear coordinate systems. The indices are Latin letters.

The FE quantities are type set by symbolic notation. Square matrices are denoted by bold upper
case letters with two lower indices, and column vectors by bold lower case letters with one lower
index. Quantities of high order, that is with an order greater than 2, are denoted by italic bold
upper case letters and as many lower indexes as the order. The indices of the FE quantities are
denoted by Greek letters. Multiplication is denoted by dummy indices.

2. BASIC FORMULAE
2.1. Configurations, change of the vectorial surface element and loads

Let us denote the stress and deformation free reference configuration by (B) and the present or
instantaneous configuration by (B) or (B + AB). The initial configuration for the Newton—-Raphson
iteration is denoted by (Bj7). This configuration is either equilibrated or not equilibrated.

The iteration produces intermediate configurations denoted by (B{), where s = 2,3,...,n, and
these configurations are, however, not in equilibrium except the last one (B’), therefore it can be

denoted by (B). Then applying a load increment the configuration (B) is regarded as an initial
configuration (Bj), and as a result of the iteration procedure we shall have a new equilibrium
configuration (B!) = (B + AB) at the actual load level.

It is assumed that the kinematical boundary conditions are independent of deformations.

Using the total Lagrangian formulation the following notations will be used in the reference
configuration (B): u*, Ey;, S¥ denote the displacement vector, Green-Lagrangian strain tensor, the
II Piola-Kirchhoff stress tensor, respectively; Auf, AEy , AS* are the corresponding increments,
and dAy is the surface element vector. The virtual displacement vector is duf = §(Au*).

The Green-Lagrangian strain tensor is given by

1
Ex = E('U'k;l + Uk + Umku™y), (1)
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where an index preceded by a semicolon (;) denotes the covariant derivatives.
It is supposed that the material obeys the following constitutive equation

SP1 = EyCHlr1 = CPIHE,, (2)

where C*P4 is the tensor of elastic coefficients. &
The surface element vector dAy of the present configuration (B) can be expressed by the surface
element vector dA, of the reference configuration (B),

d4; = Qk’J d4p, (3)
where
1
Qkp = "2' eklmepqr (651 G\ U'l ,q)(‘sfr'n 3 ’u'n;lr)a (4)

and ey , €P9" are permutation symbols, and 53, 0" are the unit tensors.
For the increment of the surface element vector dAy the following formulae can be written,

AdA) = AQd4,,  AQY =AQY7+AQP7, o
where

AQU? = epimeP™ (8 +u! ) (Au™), (6)
and

AQHP = %ektme”"'(AUl o) (BuT). "

Here and in the sequel a number as an upper index in parentheses denotes to the power of Au™, .

Body forces are neglected, only distributed normal loads exerted on the instantaneous outer
surface are considered. We define two independent loads acting on the two surface parts (A;) and
(Aur) of an arbitrary present configuration (B),

pr=ppor, zC(Ag) and  Ppu=pnpon, < C (Am) (8)
The forces acting on the corresponding surface elements are given by the formulae
d-F_/c = ﬁIde A A (Ztl) and d—F—k = ﬁndzk, b (ZtII) (9)

where p; and py; are independent load parameters, por and poy; are reference loads regarded as
positive if the loads are directed out of the surface.

2.2. Incremental form of the principle of virtual work

Let the characteristic values for the initial configuration Bi be: uf y B, Sfl, Qlkp , and pr, pr1 are
two independent load parameters in the equilibrium configuration (E) while p; + Apr, pu + Apn
denote the load parameters in the equilibrium configuration (B + AB). The equilibrium condition
is satisfied for the configuration (B) or (B + AB) if the following incremental form of the principle
of virtual work holds for arbitrary du*,

S(AER)(SH + ASM)dV = (p1 + Apy) / st (Qy,” + AQP) dA,
(B) 5 (Agr) =

+ (pu + Apn) / 150115Uk(Qlkp + AQ,P)dA,, (10)

(Awr)
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where
AEy=AEY, + AE®,,  AEW, CHPT = Aupmy (3" + u™)CHP1,
11
ASH = CHPAE,, . AE®, ckra — %Au”;kAum;lC’“pq, x

and AQ,” can be evaluated using Eq. (5).

Remark: In accordance with the first paragraph of Section 2.1, Eq. (10) is to be understood in
the following sense: if (B’l ) is not an equilibrium configuration then we substitute Ap; = Apy = 0

and seek the equilibrium configuration (B). If, however, (B]) = (B) is an equilibrium configuration
the whole equation is used and the equilibrium configuration (B + AB) is sought.

2.3. The Newton—Raphson iteration

Equation (10) is a nonlinear one for the unknown displacement increment Au*. If it is replaced
by a finite element discretization, then for the unknown vector of increments, which includes the
displacement parameters Atg where = 1,2,..., M and M is the degree of freedom of the system
it is also remains a nonlinear one.

The Newton-Raphson iteration is a widely used iteration procedure for the solution of nonlinear
FE problems.

For the s** step of the Newton-Raphson iteration we can write

e 3 continuum formula

/ N +6AE{", ASOH] qv
B Sy o S 1

—p /( NIRRT | pnokaq)? ad,
t1

(Aerr)

=— [ 6AEM sHav
@ 0

+ prtin) /

Aqr)

ﬁOI(Suk ngp dAp + (pu + Apn) /(A )50116uk ngp dAP )
t1I

(12)
e and the corresponding FE formula

KiopAtss — pKiasAtss — puKiiasAtss = — bga + (91 + Apr)ags + (P11 + Ap)agia - (13)

In (13) K;raﬂ is the usual tangent stiffness matrix made up of the linear and geometrical stiffness

matrices (see Eq. (31)), Ké‘laﬂ and K;“Haﬂ are two load stiffness matrices for the two different loads

see Eq. (22)), Atgg is the vector of increments in displacement parameters, and the formula
sB

—bgso + (p1 + Apr)agia + (pu + Apin)agiia

is the unbalanced load in the intermediate configuration of (Bg)(see Egs. (30) and (21)). The matrix

K}; 5 is symmetric. The matrices Ki‘laﬂ and Ki‘H op are symmetric if the loads are conservative and
are not symmetric if the loads are not conservative. Numerical experiences show that the application
of the load stiffness matrix on the left hand side of the linearized system of equations essentially

decreases the number of Newton-Raphson iterations: Kozak et al. [8], Molk et al. [13].
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Taking the remark made right after the formula (11) into consideration, Eq. (13) is equally
applicable with displacement and load controls for the determination of equilibrium paths.

For load control the formula (13) remains unchanged, provided that one of the load parameters
pr and pyy is constant.

We apply also the displacement control technique proposed by Batoz and Dhatt [1] and developed
furthers by Powell and Simon [14]. Let us assume that the initial configuration is in equilibrium, that
is, (B}) = (B), one of the different load parameters p; and py is regarded as unknown (the other is
set to zero). In this case Atgp is an appropriate displacement control parameter (the subscript B is
a fixed value of ). Then the other increments in displacement parameters Atgg (8 # B) and the
unknown load parameter increment, that is either Apg or Apgr, can be determined from (13).

The equilibrium paths obtained by the two load parameters give an equilibrium surface in the
space of the two load parameters py, pi1 and the displacement control parameter Atgp .

In our numerical examples we determine a series of equilibrium paths each being a section of
the equilibrium surface for which a load parameter is fixed. During the computation of points on
an equilibrium path it may be necessary to replace the control parameters, since the load control
parameter cannot be used at a limit point, and the displacement control parameter is not applicable
at a turning point (see Figs. 2 and 3 in Section 5).

3. AN ALTERNATIVE PROCEDURE TO SOLVE THE INCREMENTAL FORM OF THE
PRINCIPLE OF VIRTUAL WORK

The Newton—-Raphson iteration gives the vector of increments in displacement parameters Atg =
Aty1+Atgg+- - as solutions to algebraic equation systems linearized in the initial and intermediate
configurations. The alternative solution method is based on the initiation made by Marcinowski [12]
who assumed that the variables of the problem in a small neighbourhood of the equilibrium con-

figuration (B]) = (B) can be given by the truncated Taylor expansion with respect to the control
parameter 0 < 7 < A7. The parameter 7 is regarded as quasi-time. In our problem

uF(r) =uf + Auk = uf +afr + %ﬂf# + %'ﬂffq’ drras (14)
p(7) = pu+ Apr = pu +pur + %ﬁy’rz 4 ey (15)
pu(r) = pur+ Apu = pu + Pt + %ﬁ;IIT2 . L | (16)
Q1) = QuP +AQP = Q7 + QP + %chp”2 it %Q'lkp,rs ok (17)
tg(1) = tip+ Atg=tig+t157 + %EWQ - %'i'm# 4 (18)

where the dot above a variable denotes derivation with respect to a control parameter, A7 belongs
to the displacement increment Auf which determines the configuration (B 4+ AB). The control
parameter can be either a load parameter ( pr, pr1) or a displacement one.

Marcinowski [12] starts from the principle of virtual work in the equilibrium configuration

B}) = (B) and takes its successive derivatives with respect to the control parameter. In this way a
1 p Yy

series of linear equation systems are obtained for i‘lﬂ 3 Elﬂ, t18,...if one applies FE discretization.
Marcinowski uses displacement control and applies a concentrated load of constant direction.

The alternative method proposed here is based on the incremental form of the principle of
virtual work applied to the equilibrium configuration (B + AB) which is loaded by two deformation
dependent normal tractions. Before the formulation of the alternative procedure and for the sake
of preparation we give the work of the tractions during an increment in the displacements (Au* or
Atg) and the corresponding strain energy increment as well.
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3.1. Calculation of the work of deformation dependent tractions

Using the formulae (3) and (14)-(17) the power of the tractions (8) and (9) in the equilibrium
configuration (B}) = (B) can be written in the interval 0 < 7 < A7 as follows,

P(r) = P;I/ pori* (1)Q,F (1) d4, +PLII/ Pout® (1)Q,P(7) d4,
(A¢r) (Aerr)

AlSfengi ik . 1
=P;1/(A )POI (uf+ui¢2+---) <chp+Qlka+'2—Qlka2+'--> dA,
tI

N o z ¥
+ pi /(A )pou (uf * usz o ) (chp + chpT ¥ lekaz + - > d4,. (19)
11

The work increment of the traction in the interval 0 < 7 < A7 can be given by the integration
of the power P(7) with respect to 7,

AT
AW = / hna (20)
7=0
For the sake of the FE discretization let us introduce the following notation,

/( )ﬁONﬂlekpdAP = élaalNa ) N=L1I], (21)
N

/A )ﬁONﬁfQMp d4, = / 170Ndfeklmepqr(5¢l; +ul )0, d4,
tN

(A¢n)

= t1oaKiNagtis, N=LII, (22)

tN

(A¢N)

= t1aKINagt1s + traLinag bistiy, N =111, (23)
/ ponif Q" d4, = / Poniferime™™ [(8) +u' )iiy™, + 3ii] Ji"] d4,
A¢N) (A¢nN)
= t1aKNas t 15 + 3t'laLfNaﬂ7£Mﬁh 1 N =1I1IL (24)

In these formulae KIfNaﬂ , (N =L1II) are two stiffness matrices, and L%Naﬂfy , (N=T11I) are two
three-dimensional matrices.

Using the formulae (21)-(24) and (19) and performing the integration in (20) we have AW (see
the terms with positive sign in (34)).

3.2. Strain energy increment

The strain energy increment, as the negative work increment of the internal forces, is written in the
interval 0 < 7 < AT,

AU = Uy (A7) + %UL(AT)Z - %U;(Arﬁ + %'U‘l(m)“ 4+, (25)

where
UL = = E’llekl”qE’lpq dv, UL = /(B) (E’lktCk[pqupq + E"lktC“pqupq) dv, and so on.
(26)
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First let us derive the following quantities,

EjC*1 =ty (6" + u)™ )Oklpq

Buctrn = [alm;k(alm +u™) + ulm;kul"gl] 78 (27)
By O = [iiyms (07" + ™) + Sibgmiey | CHPY, (28)
B CHP1 = ['fu'lm;k(alm ™)+ AU ™y + 3alm;kul"‘§,] i (29)

and then we introduce some new notations so that we can change to the finite element discretization,

/ Wik (0 + ™) C*PIE1pg AV = f10b1a (30)
(B)

’u,1m k((sl + Uy )Cklpq((ss -+ Uy p)uls,q + ulm ku1 lC pqu dy = {:labla = i.:laKrlI‘a tlﬂ ;
(B) w4

(31)

3 /( \ Gty ™ CFPI(8S + ug’ )i AV = t10 M 1apybistiy (32)
B

3 [ impiy™CFPU i AV = f10 Plagyotistivtis - (33)

(B)
Thereafter the value of AU can be calculated from (25) by utilizing Egs. (26)-(29) and (30)—(33).

As to the results see the negative terms in (34).
3.3. The total work increment on an arbitrary displacement increment

With regard to the foregoing, the work increment done by the external forces exerted on the equi-
librium configuration (Bj) = (B) and the internal forces throughout the displacement increment
AuF is

I .
AL = AW - AU = [(ZN IpthlaalNa) = tlabla] (A7)

II o . . « . . 1
+ [ZNZI PIN (tlaalNa + t;aKfNaﬁtys) £ (tlabla # tlaKlTagtya)] 5 (Ar)?

(ar)®

| =

plN t1081Na + 2t1aK1Naﬂt_ﬁ + tlaKlNaﬁt_ﬂ 4 tlaLlNaﬁ»yt_Btl'y):I

-

(t bia + 2t1aK1a/3t_ﬂ + tlaKlaﬂt_ﬂ + tlaMlaﬂ'yt_,Bth) E(AT)3

Z P1N t'laalNa + 3% 10K NaptLs + 3£laKI£NaﬁEm)] 53 (an)*
1
-+ [Z PIN 3t10¢L1Naﬂ'yt_ﬂt1’Y +t1aK1Naﬂt_ﬂ +3tlaL1Naﬂ7t_5t17)] ﬂ(AT)‘l
1
( t b]a 333 1aK1aBt_ﬁ e tlaKlaﬂ t 18 + 3t1aK1aﬂt_B + 3t1aMlaﬂ7t_ﬂt17> -2—4(A7')4

t10M 1ap,t1881y + 2610 M 10pyt158 1y + E10 Pragyotiptiytio) 5 (AT) ‘ (34)
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3.4. Formulation of the alternative iteration procedure

In Section 2.3 the Newton-Raphson iteration has been applied for the solution of the incremental
form of the principle of virtual work. An alternative procedure is obtained by substituting truncated
series into Eq. (10),

; 1 B
/ {6 [Eycl(AT) 7+ —Eycl(AT)z + _Elkl(AT):s " ]
(B) 2 6

. 1
x G [El_,,q + Blpg(AT) + 5 E1pg(A7)* + 2E1pg(AT) + - ] } dv =

1 S
- Z { [Pm +pin(AT) + -Z-plN(AT)2 + gpLN(AT)3 +]
ey R s iy & g 3
X £ )PON6u Qu” + Qg (AT)+§Qyc (A7) +6ch (AT +--- | d4, p.
tN

Proceeding to the FE discretization we shall take the relations
) [’llk;[(AT)] = 5(Auk;[) = Juk;, and ) [ﬂk;l(AT)] = 5A'l'l,k;l =0

into account and shall employ the notations introduced by means of the Eqs. (27)-(33) and (21)-
(24). In this way we have

IT

ot [bm mealNa] + 0ta [Klagt_ﬂ 8 (plNK1Naﬁt_ﬂ +P1NalNa)J (A7)
N=I

+ ta [KEpt1s + Miagybasisy] 2 5(Ar)?

II
— 8tg [Z (plNKfNaﬂtm + PiNLinapybratiy + 208K nagbis + plNalNa):l S(An)? 4
N=I

(35)

The spacious term multiplied by (A7)3 is not written here (see formula (39)).

Since the incremental form of the principle of virtual work (35) should hold for arbitrary (A7)
and dt, the following equations are obtained,

II

ZplNalNa e bla =0, (36)
I :

Z (plNKiJNaﬂtlﬂ +I31Na;Na) — K] st15 =0, (37)

N=I

II
DL (p;NKfNaﬂﬁﬂ + PN LiNapy 18ty + 2PnKinastis + i’iNa;Na)
N=I

— K pt18 + Mygp tisty, =0, (38)
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II
[Z pin (Khyag 15 + 3LiNaﬂ7tmth)}
N=I

II
+ {Z 3pin (KfNaﬂfm ¥ LiNamfmﬁv) + 3p1nKinasbis + 'I"iNa;Na]
N=d

s [KlTaﬂ.f_lﬁ + 2Mlaﬂ’7i:‘lﬂ{"l’Y * Mlaﬂ’yélﬂil’y + Plaﬂ'yﬂtelﬂ{:yytlﬂ] = 0, and so on. (39)

Equation (36) is the equilibrium condition for the configuration (Bj) = (B). If load control is

employed the unknown t;5 can be determined from (37) then the unknown t;5 from (38) and so
on. In the case of displacement control one should appropriately follow what has been written at
the end of Section 2.3 regarding, in addition to the derivatives of noncontrolled parameters, the
derivatives pin, PN, Pin, (N = LII) of the load parameters as unknowns.

The alternative solution that has been presented is also an iterative procedure for the incremental
form of the principle of virtual work. Observe that (36) together with the form of (37) multiplied by
(A7) yield the first step of the Newton-Raphson iteration, for the latter see (13). Both algorithms
are applicable for investigating geometrically imperfect continua.

3.5. The total work increment on a given equilibrium path

Formula (34) gives the work increment done by the tractions and the internal forces of the equilib-
rium configuration (B’ ) = (B) during an arbitrary kinematically admissible displacement increment.
The same quantity can be obtained on a given equilibrium path, i.e., making use of the derivatives
PIN, PIN, PiN,--., N=LII, and tla, tla, t1a,... which are determmed from Egs. (37)—(39).
These parameters throughout Egs. (16) and (18) give the equilibrium configuration (B + AB).
After substitutions we have

i
; 1

AL = AW - AU = - ( E 151Nt1aalNa> ~(Ar)?
N=I e 2

B
1> 2pin (.f'laalNa & ﬁaKIjNaﬂflﬂ) +ﬁlN£laalNa:| %(AT)3
[N=T
o i 3p1N ('ﬁ';aama + 261K Nagt1s + t1aKINagtis + tlaLfNaﬂvfméh) i(AT)Li
3
— 1> 3N (E_l_aalNa + flaKIiNaﬂflﬂ) + Pint1o@1Na Elz(Afr)‘1 =
[N=1
or
AL = AW — AU = AL® + AL® + ALW 4 ... (40)
where
AL® = wk {[P;I(AT)] [t10811a (AT)] + [prr(AT)] [t108111a(AT)] }, (41)
AL® = —- {[Pu (AT)] [(fa21a)1(AT)?] + [pur(AT)] [(fadia);i(AT)?]}

{[%ﬁu(Afﬁ] [(f108110)(AT)] + [%ﬁLII(AT)Z] [(flaallla)(ATS] }, (42)

W =
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and

ALW = —% {[ﬁlI(AT)] [;( a@1a)] (AT) ] [Pr(AT)] [;(taalla) (A7) ]}

{ [35ua7] ami(an?] + [n(ar?) (o ary]}

e

{[é'py(mw] [(tr021ra) (AT)] + [%-,-,-m(AT)s] [(elaama)(m)]}, (43)

Writing the equations in continuum form we get

AL® = —-;— {[ziu(AT)]/ Por i (AT)Qy," d4, + [i’m(AT)]/ Pon 4y (AT)Q,,” dA,,},
(A1) 7

R (Asr)
(44)

1 ¢
Ao = L {[pu(mn /(A”)pm [#anay?] (an) a4,

+[I3;H(AT)]/ pon[ (AT)Qk] (AT)dA }

(Aern)

1 1. =t B
o [—py(m)?] [ mmikane,’ i,
3 2 (Asr) i iy

0: 14 ssieil
+ [EPLH(ATV] / Pour i (AT)Q,F dAp} , (45)
(Aerr) -

A = L {L,-,y(mn oy [#+(anQ7] (@77 ds,

(Asr)

+ [P (AT)] Po = W*(An)Qr| (Ar)?d4,
= 1

(Atnr

_.EH%@(ATV] /(Au)pm[ HanQp?] (ar)da,

4 [%jjln(A’r)z] /(A ):5011 [ﬂk(AT)Qkp].l(AT) dAp}

1 osois .
- = { [EP;I(AT)3] / Por uf (AT)Q,,F dA,
(Au) 3 e

N

y P
(Aern) i

4. AN ALTERNATIVE STABILITY ANALYSIS METHOD

In this study an equilibrium configuration is regarded as stable if the work done by the total force
system by which we mean tractions and the internal forces during any arbitrary kinematically
admissible small displacement increment is negative.
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This statement can be better understood if it is assumed that there is some (but very small)
kinetic energy in the equilibrium state of continuum and then the kinetic energy is decreased on arbi-
trary small kinematically admissible displacements in accordance with the principle of the mechan-
ical work and energy. That is, the movement of the continuum is restricted to a small neighborhood
of the equilibrium configuration.

Otherwise if the work of the total force system during arbitrary kinematically admissible small
displacement increments is positive or zero then the equilibrium state is unstable.

According to the stability definition given above, the work increment AL = AW — AU is
applicable to characterize the static stability of the equilibrium configuration (B}) = (B) in both
pre- and postbuckling states. The stability criteria can be summarized as follows:

The equilibrium of the configuration (B}) = (B) is

stable AL® <0 for any AuF
transitional (critical) p if ¢{ AL® =0 for some Au* }. (47)
unstable AL® >0 for some Au*

The transitional (critical) equilibrium configuration is characterized by

a limit point . AL®) £ 0 for any AuF
a bifurcation point AL®) =0 for a given Au* and AL® # 0 for any AukF |-

(48)
When a computed equilibrium path is considered on a displacement increment Ak, the stability

definitions are modified as follows:

The equilibrium of the configuration (B}) = (B) is

stable AL® <0
transitional (critical) § if ¢ AL®) =0 }. (49)
unstable AL >0

In this case, the transitional (critical) equilibrium configuration is characterized by

a limit point : AL®) £0
{ a bifurcation point } ¥ { AL® =g [~ 30)

It is obvious that the bifurcation point must be situated on the equilibrium path.

The set of formulae (41)—(43) and (37)-(39) together with the arbitrary parameters pir, pir,
P11, pur, Pur, P 1 can be used for calculating AL(Z), AL®) and AL® for the stability analysis
of any equilibrium configuration (B}) = (B).

In concrete numerical computations one should use a set of the derivatives of the load parameters
with respect to the control parameter pi1, pir, Pu , P11, P1II » ;Dm At a limit case this set can be
formed by one of the derivatives.

Especially this is the case if the whole equilibrium surface is required in order to analyze equilib-
rium configurations in a region and not only in a few points. It is worthy of mention that the method
requires some intuition from the user when he selects an appropriate secondary load in addition
to the primary one. It is recommended to select a secondary load pyy in addition to the primary
pr which itself produces displacements similar to the postbuckling displacements. In Section 5 we
present examples for postcritical stability analysis of circular rings.
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5. EQUILIBRIUM CONFIGURATIONS OF A CIRCULAR RING AND THEIR STABILITY

5.1. Problem definition

Consider a circular ring of rectangular cross-section loaded by deformation dependent surface loads
given by Egs. (8) and (9) (see Fig. 1). Knowing that the first buckling mode is symmetric it is
enough to investigate a quarter of the ring for which symmetric boundary conditions are imposed
on the edges that lie on the axes of symmetry of the deformation. It is worthy of mention that, in
addition to the primary load pr, the secondary load py is selected in a way that the displacements
due to this load are similar to the postcritical displacements due to the primary load. The two load
parameters pr, pir, and the displacement parameter v4 are shown in Fig. 1, the area of (Ayy) is
one tenth of (Ag).

Y B (Ag)

b (4u) 10in
.0in

Oin

.0 x 107bf / in?
0

Por = -1.0 1bf / in?
Pou= - 1.0 1bf/ in?

2 3 PZ[: P1 170]
Pu=Puron

Al

RO

— b

SIS e
w

o

1B

B ug X

Fig. 1. Elastic circular ring

For the primary load parameter py (pi1 = 0) Kozék et al. [8] determined the critical load pa-
rameter pe, = 7422.8, at the bifurcation on the fundamental path by applying a 3D FE code with
10 hexahedral elements using p-extension (p = 5). The algorithm is a path following method which
rests on the Newton-Raphson iteration. The load stiffness matrix is non-symmetric. In this study
there are also examples for geometrically imperfect rings modeled by elliptic rings. The horizontal
major and vertical minor axes for the ellipses considered are 2a = 2R, = 20 in, 2b = 19.9 in or
2b = 19.99 in. Reducing the problem to a linear eigenvalue problem p., = 7424.9 was found for the
critical load parameter. The result of beam model was: p.. = 7500. The authors later performed
computations with symmetrized load stiffness matrix as it was recommended by Mang [11], and
Per = 7408 was obtained using our 3D FE code.

The same FE mesh is used in this paper as in [8] applying the Newton-Raphson iteration.
Equilibrium configurations are considered in pre- and postbuckling states. Our primary aim is to
determine the equilibrium surface pi1 = f1(p1, v4), from which partial derivatives of py; with respect
to the displacement control parameter v4 can be obtained as surfaces

. Opn A Ay T
i P fa(p1, va),  Pu= L fa(pr, va).

These three surfaces serve as a basis for the stability analysis, i.e., to find the limit points, to
determine the unstable region and the bifurcation points as well. In addition to the geometrically
perfect circular ring, two elliptical rings have also been calculated as examples for the geometrically
imperfect rings.
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5.2. Circular ring

As a results of preliminary computations two equilibrium paths are shown in Figs. 2 and 3. The first
is computed with a constant primary load parameter p; and one variable secondary load parameter
pi1, the second is computed by interchanging the two parameters. Both paths have been obtained
with the mixed control method.

[P,
6004 " 13301p, Complementary
T 75201 h
500+ ; p =40
1 Displacement 75104
400 ronleh Load control
' 7800 oo
1 pi=
o 1 7490+
Load control
200 7480 .
T “ Displacement control
100 ¢ . 74704
| Y } } } } } } } } oy 7460 } ‘ " ! } VAiI}
-025 0 .0.25 0.5 0.754:) 125005175, 25225 0 0.2 0.4 0.6 0.8 1 1.2
Fig. 2. Equilibrium path, p1 = const Fig. 3. Equilibrium path, pi; = const

Further computations have been performed on the regions
-3.0<v4<30in and 7300 < p; < 7800

using constant increments Avyq = 0.1 and Ap; = 25 and applying displacement control at the
constant values of the load parameter p;. In this way numerous equilibrium paths are determined
which form the equilibrium surface pi1 = fi(pr, va) and it holds that p; = py = P = 0 at every
point of the surface.

It is easy to show that the surfaces of AL®) = ALP)(pr, v4), AL®) = AL®)(p;, vy4), and
AL® = AL®(py, va) are not required directly, what we need for the stability is only the sign of
these quantities. Since v4 is the control parameter and py is constant we assume that A7 = Awvy
in the finite element solution. It also follows from the nature of the problem, see Fig. 1 for details,
that we can use the approximations A7 4 = AuF where Au! ~ Avy > 0 and Au? = Aud ~ 0 for
any values of p; and v4, and the sign of the second integral in Eq. (44) is negative

(Aerr) At

Therefore the sign of AL®) is determined by the sign of the first derivative pi; = f2 (p1, v4). However,
if pir = 0, the sign of AL®) is required; it follows from (45) that the latter sign is determined by
the second derivative pir = f3(pr, va).

The surfaces pi1 = fi(p1, va), pu = fa(p1, va), Pu = f3(p1, va), and the corresponding inter-
sections with the horizontal zero plane are respectively shown in Figs. 4a, 5b and 6a. A number
of equilibrium paths can be produced by further intersections of p;; = fi(p1, v4) with the planes
determined by different but fixed values of py; (see Figs. 4b, 5a).

The curves for which

SISO 00 PG
pr=0=g(p,v4), Pu=om=0=gs(p,vs) and PII:_pz—=O=93(pI’”A)

are also shown in Fig. 6b.
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Fig. 4. Circular ring; a) the equilibrium surface, b) equilibrium paths
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Fig. 5. Circular ring; a) equilibrium paths, b) the surface pr;

Taking the above remarks concerning (44) into considerations we can conclude that at those
places where ga(pr, va) = 0 it holds that AL(? > 0 and where p;; = fa(pr, v4) < 0 there also
AL® > 0, ie., the equilibrium is unstable at the latter places. The unstable regions for which
p1 = const is the equilibrium path, are situated between the two branches of the parabolic type

curve pyy (see Fig. 6b).

According to (50) and (45) the bifurcation point is situated at the common point of the funda-
mental equilibrium path pi1 = g1(p1, va) = 0 and the curves go(pr, v4) = 0 and g3(pr, va) = 0
that is where AL() = 0 but the fourth order term is non zero AL(*) # 0. It holds for every point
and also at the common point that Py # 0 (see Fig. 6a), consequently it really follows from (46)

and (51) that there AL(*) # 0.

Figure 6b shows the bifurcation path and the critical point for which p; = p., = 7422.8 and

pr1 = 0 are the load parameters.
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Fig. 6. Circular ring; a) the surface psr, b) the bifurcation point

5.3. Elliptical rings

Two elliptical rings, which differ only slightly from the circular ring, have been analyzed. For the
elliptical ringl 2¢ = 19.99in and 2b = 20 in are the horizontal and vertical axes, respectively.
However, for the other 2a = 20in and 2b = 19.9 in.

Results for the elliptical ringl can be seen in Figs. 7a, 8b, 9a, which represent the surfaces
fi(p1, va), fo(p1, va), f3(pr, va), respectively. Equilibrium paths obtained by intersecting the equi-
librium surface pi; = f1(p1, v4) with p;p = const planes can be seen in Fig. 7b. and 8a. The curves
pi = fi(pr,va) = 26.9, g2(pr,va) = 0, g3(pr, va) = 0 are in Fig. 9b. Here the unstable region
is situated between the branches of the curve py;. It is worthy of mention that the bifurcation
point presented is the common point of the equilibrium path pyy = fi(pr, va) = 26.9 and curves
g2(p1, va) = 0, g3(p1,va) = 0. At the bifurcation point p; = 7427.2 and py; = 26.9 are the load
parameters. Figure 9b also shows the fundamental and the bifurcation paths too.
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Fig. 7. Elliptical ring; a) the equilibrium surface, b) equilibrium paths
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Fig. 10. Stability boundaries for all the three examples

Here we do not show the appropriate figures obtained for the elliptical ring2 since those figures
are similar in shape and form to Figs. 7-9 concerning with the elliptical ringl.

However, we give the values of the parameter py at the limit points (as a function of pr) are
shown in Fig. 10 for all the three examples. The regions between the corresponding two branches
of the curves shown are unstable. We note that the curves are obtained from the condition pi = 0.

6. CONCLUSIONS

The paper has solved three general problems concerning the investigations given in the title. It has
been assumed that the elastic body under consideration is subjected to two deformation dependent
tractions, the deformations are nonlinear, and the problem is treated statically.

As regards the first problem an alternative procedure has been employed instead of the Newton~-
Raphson iteration to solve the incremental form of the principle of virtual work. Within the frame
work of the alternative procedure the displacement field (together with those variables derived from
the displacement field) and the two load parameters have all been expanded into truncated Taylor
series with respect to a control parameter in a small neighborhood of the equilibrium configuration.
The control parameter can be either a displacement parameter or a load one.

After FEM discretization we have obtained a system of linear equations for the derivatives of
the displacements and load parameters with respect to the control parameter in the equilibrium
configuration.

We have regarded the determination of the Taylor expansion with respect to the control parame-
ter of the work increment done by the total force system (the systems of internal external forces) in
the equilibrium configuration as our second problem. The coefficients of the Taylor series are given
on one hand for an arbitrary displacement increment, on the other hand for arbitrary equilibrium
paths determined by the incremental form of the principle of virtual work. In the later case the
coefficients can be given in terms of the derivatives of the displacements and load parameters with
respect to the control parameter.

It has been our third problem to apply an alternative method for the static stability analysis of
the equilibrium configuration. The stability criterion is based on the second order term of the Tay-
lor expansion: the equilibrium configuration under consideration is stable, unstable or transitional
(critical) if the second order term is positive, negative or zero, respectively. If the second order term
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is zero characterization of the equilibrium configuration requires the investigation of the terms order
three, four or higher.

In the course of computations we obtain the equilibrium surfaces, the equilibrium paths, the
derivatives with respect to the control parameter at each point of the equilibrium surface, and
coefficients in the increment of the work done by the total system of forces in a given region of the
control parameters and load parameters. With the knowledge of the coefficients a complete stability
analysis can be performed which gives the stable regions, the limit points, the bifurcation points
and the unstable regions.

The sample problems in Section 5 represent the application of the method worked out in the
previous sections for static stability analysis. They involve a problem of a circular ring subjected
to two different loads. The effect of some geometrical imperfections has also been taken account.
We obtained that the equilibrium surfaces valid for small geometrical imperfections are similar in
shape and form to those valid for a perfect circular ring.
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