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The aim of the paper is to present the application of the evolutionary algorithms to selected optimization
and identification problems of mechanical systems. The coupling of evolutionary algorithms with the
finite element method and the boundary element method creates a new artificial intelligence technique
that is very suitable in computer aided optimal design and defect detection. Several numerical examples
for optimization and identification are presented.
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1. INTRODUCTION

Many problems of mechanics are formulated as minimization (or maximization) of certain function-
als with respect to state fields or design variables.

In the case of the first problem, the functionals are expressed by the total potential energy (for
static problems) or by the Hamilton’s principal functional (for dynamical problems). Minimization of
the total potential energy with respect to state fields leads to equations of equilibrium of mechanical
systems. A stationary value of the Hamilton’s principal functional describes the real motion of the
mechanical system.

From the point of view of optimal design of structures, minimization of the objective function-
als, which describe the optimization criteria, with respect to design variables leads to the best
structure. The process of looking for the best structure often gives not unique solutions and appli-
cations of methods of artificial intelligence enable to find the global optimal solutions. Evolutionary
algorithms [1, 24] belong to methods which are very promising in computer aided optimal design.

The similar problem like the optimal design is also the identification of certain geometrical or
material features (e.g. internal defects) in existing structures having some measurements of state
fields or the control of the boundary conditions to secure suitable requirements. Such problems
are formulated as minimization of certain functionals. They can be solved by using also artificial
intelligence techniques like evolutionary algorithms.

One of the specific features of considered problems is the fact that objective functionals very
often do not depend on design variables in the explicit way. In order to find the relationship between
changes of design variables and changes of the objective functional one should solve a boundary
value or a boundary initial value problem. It can be done by using the finite element method (FEM)
or the boundary element method (BEM)
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Numerical techniques as FEM and BEM are routinely used by mechanical and civil engineers in
computer aided design (CAD) of mechanical components and structures [2, 7, 20].

FEM and BEM although conceptually quite different can be considered as methods that belong
to a common class of residual methods. In the last decade FEM and BEM have been often used in
computer aided optimal design (CAOD) where the design problem is considered as an optimization
task.

The aim of the paper is to develop applications of evolutionary computation in the form of
coupling of evolutionary algorithms with the finite element method and the boundary element
method to CAOD and identification. This work is a review of own original works elaborated by
authors.

2. FORMULATION OF THE EVOLUTIONARY OPTIMIZATION

An elastic body, which occupies a domain §2 bounded by a boundary I, is considered. Boundary
conditions in the form of the displacement and traction fields are prescribed. In the case of dynamical
problems initial conditions are also prescribed. One should find an optimal shape of the boundary
I’ by minimizing an objective functional

min J,(x) (1)
with imposed constraints
O . 8 O Y JolX) 2 0 B Ll s s s i3 (2)

where x is a vector of shape design parameters.

The problem can be solved by using conventional optimization procedures, based on sensitivity
information. The boundary element method was applied in several shape optimization problems in
which minimization procedures used sensitivity analysis [5, 6, 12]. Unfortunately, approaches based
on sensitivity information have some drawbacks: an objective function must be continuous, shape
variation of the boundary should be regular, a hessian of the objective function should be positive
definite, there is a large probability of convergence to a local optimum, computation starts from a
single point narrowing the search domain and a choice of the starting point may exert an influence
on the convergence.

Because of these difficulties there is a demand for checking other methods, free from the restric-
tions mentioned above. The genetic algorithms belong to these methods. Genetic algorithms [1, 24]
are stochastic algorithms whose search methods model natural phenomena: the genetic inheritance
and the Darvinian strife for survival. Classical genetic algorithms are based only on the fitness
value information and coded chromosomes. They work on populations of solutions and use binary
operators of crossover and mutation and the probability of operators is constant.

Evolutionary algorithms are considered here as modified and generalized classical genetic algo-
rithms in which populations of chromosomes are not coded binary and floating point representation
is used. They use modified crossover (simple, arithmetical and heuristic) and mutation (uniform,
boundary and non-uniform) operations. The selection is performed in the form of the ranking selec-
tion or the tournament selection and the probability of operators can be variable [24].

A chromosome, which represents the design vector or matrix, can be expressed in the form

XAy, 20 oo Bk anT i) or E=izal 1SN J<sbs K, (3)
where there are imposed restrictions on genes z; and z;; in the form
Tip, S B S TRy LikL S Tik S BikR:- (4)

Genes z; and z;; represent geometry or material properties of the structure. Values of genes z;
and z;; belong to the space of real or natural numbers.

The crossover operation swaps some chromosomes of the selected parents in order to create
offspring. Simple, arithmetical and heuristic crossover operators are applied.
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Simple crossover

This operator needs two parents and produces two children. The simple crossover may produce
a child outside the design space. To avoid this, a parameter o € [0,1] is applied. For randomly
generated crossing parameter 4 it works as follows (chromosomes ; , x5 are parents in the vector
form),

Xy =L 09,0005 Biy o EN) and X2 = (Y1, Y2y -, Yis ---YN), (5)
le=($17---,-’Ez’,yi+1,---ayN); ’x2=(1¢17---,$i,yi+1,---7yN)- (6)
Arithmetical crossover
This operator produces two children that are a linear combination of two parents x; and x3,
'x1 = ax1 + (1 — a)xz, 'x1 = axa + (1 - a)x; . (7)

Heuristic crossover

This operator produces a single offspring from two parents,
; .
x3 =r1(x2 — X1) + X2, (8)

where 7 is a random value from the range [0,1] and J(x3) < J(x;).
Mutation operators such as the uniform mutation, the boundary mutation,the non-uniform mu-
tation and the special gradient mutation are used,

Ry iy By TUUERE, VY ERY, ey =y g L TN 9)

Uniform mutation

Children are allowed to move freely within the feasible domain and the gene 'z; takes any arbitrary
value from the range [z;1,, Zig].

Boundary mutation

The chromosome can take only boundary values of the design space, 'z; = z;, or 'z; = z;z . The
boundary mutation works very well when the solution lies either on or near the boundary of the
feasible search space.

Non-uniform mutation

This mutation operator depends on a generation number ¢ and is used to tune of the system

s {Z'i + A(t,zir—=;) if a random digit is 0, i

z; — A(t,z;p—z;) if a random digit is 1,
where the function A takes value from the range [0, y].

Gradient mutation [26]

This single-argument operator changes any chromosome on the ground of the fitness function gra-
dient,

'g; = 3 + ,Bh(DJo/D.'L'i), (11)

where B is a coefficient determining a step increment in the search direction h which depends on
the fitness function gradient DJ,/Dz; .
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The objective function given by (1) plays the role of the fitness function. Evolutionary optimiza-
tion is performed by using an evolutionary algorithm which minimizes the fitness function (1) with
respect to design parameters. The constraints (2) are taken into account by the penalty function
method.

The flow chart of the proposed approach of the evolutionary optimization using the finite element
method and the boundary element method is presented in Fig. 1.

Preparing the model
Analysis of the structure

: A new shape of the structure| FEN
Evolutionary >
Algorithm < %
Fitness value BEM

Optimal
structure?

Evolutionary optimization

___________________________________________ F]

Fig. 1. Block diagram of the evolutionary optimization

Depending on the problem the various FEM and BEM approaches will be applied in evolutionary
optimization.

Each of the computer methods is suited to particular problems, and for a given problem one is
generally more efficient while the other is less efficient.

Basically the finite element methods [2, 20] require the subdivision of the region into domain
elements, the response characteristics of each of which are described in a simplified way. The bound-
ary element methods (2, 7, 20] on the other hand only require the subdivision of the boundary of
the region because the solution of the problem to be solved is taken to be a combination of exact
solutions inside the region. The latter method works extremely well for problems with a high ratio of
volume to surface area but not so well for those problems with a high ratio of volume to surface area
but not so well for those with a low ratio. The opposite is the case for the finite element method.
Independently of this cause the finite element method is more effective in nonlinear problems and
for framed structures than the boundary element method.

3. APPLICATIONS OF EVOLUTIONARY OPTIMIZATION
3.1. Optimization of truss structures [16]

The criterion of optimization is minimization of the mass of a truss taking into account the following
constraints:

e stresses in each truss member are lower than the allowable stress,
e displacements in each truss joint are lower than the admissible value,

e normal forces are lower than the buckling load.

The applied evolutionary algorithm uses operators of the mutation (uniform, non-uniform and
boundary), the crossover (simple, arithmetical and heuristic) and the cloning and the ranking se-
lection are implemented.



Evolutionary computation in optimization and identification 7

Design variables are split into three groups containing:
¢ information about existing truss members,
e information about areas of cross sections of truss members,
e coordinate of free truss joints.

Each group is represented by different kinds of chromosomes. The evolutionary algorithm is used
to optimization of:

e number of truss members,

e areas of cross sections of truss members,
e coordinates of free truss joints,

e combinations of above items.

In order to evaluate of constraints the finite element method is used. Displacements of joints are
calculated by solving the system of algebraic equations

Kq=F (12)

where K is a global stiffness matrix, q is a column matrix which contains unknown displacements
of joints and F is a column matrix which contains acting forces.

Numerical example 1

The truss (Fig. 2a) is optimized for the criterion of minimum mass. The forces are applied in selected
joints. Parameters of evolutionary algorithms are: number of generations — 5000; population —
20000. Optimal solution has been found in 2500 generation (Fig. 2b). The mass of the truss before
and after optimization is shown in Table 1.

a) b)

g e s s s s T S S SO VI R T s G o g i e R

Fig. 2. The truss: a) before and b) after optimization

Table 1. Mass before and after optimization

Before After
Mass |kg] | 2539.395 | 2000.352

Numerical ezample 2

The trussed structure (Fig. 3a) undergoes evolutionary optimization for the criterion of minimum
mass. Parameters of evolutionary algorithms are: number of generations — 2000; population —
5000. Optimal solution has been found in 1500 generation (Fig. 3b). The mass of the truss before
and after optimization is shown in Table 2.
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Fig. 3. The trussed structure: a) before and b) after optimization

Table 2. Mass before and after optimization

Before After
Mass [kg] | 5947.43944 | 3406.069

3.2. Topology optimization

An application of classical genetic algorithms to shape optimization of 2-D elastic structures was
proposed in [19]. This concept was extended to the generalized shape optimization (topology opti-
mization + shape optimization) using evolutionary algorithms and BEM [13, 21, 22]. The generalized
shape optimization based on the evolutionary algorithm and FEM is considered in [27].

A new approach for topology optimization based on the evolutionary algorithm is proposed [17].
The number of voids and their shape and position are entirely controlled by the evolutionary algo-
rithm.

Two different fitness functions are considered,

L / a0 (13)

).

where ¢4 is the Huber-Mises equivalent stress and op is an admissible value of stresses.
Three types of different structures of chromosomes for 2-D problems can be considered,

X = (zl b] y].) ry ] T2 I yz’ r2’ g ,m'nmax ’ ynmax’ rﬂmax)’ (15)
X = (n”xl I y]. ) rl ) $2) y2 ;| r2 L )mnmax? y’nma.x ’ rnmax)’ (16)
X = (wla W1y ooy Wnpmax s 1y Y1, L1, T2, Y2512, -+ -3 Tnpay » Ynmax o rnmax)a (17)

where: nmax is maximum number of voids, genes z; and y; are co-ordinates of the centre of a void,
the gene r; is a vector of shape parameters. For a circular void r; contains only one element which is
a radius, for an elliptical void r; represents two radii, for a more shape-complicated void r; is a set
of radii associated with control points (NURBS).

In the case of the chromosome (15) the number of voids is governed by the condition: if r; < Tmin
then the i-th void does not ezist. For the chromosome (16) the number of voids is controlled by
the gene n. In the case of the chromosome (17) the number of voids is governed by controlling
parameters w; = {true; false}.

In the evolutionary optimization of topology the following operators have been applied: (i) uni-
form, non-uniform, boundary and gradient mutations, (i) simple, arithmetical and heuristic
crossovers and (iii) the tournament selection.
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Numerical ezample 3

2-D elastic structure has been undergone topology optimization (Fig. 4).

Circular voids have been introduced into the domain 2 of the structure. The maximum number
of voids was nmax = 4 and the size of population was 10000. The geometry of the structure for
the fitness functions (13) is presented in Fig. 5. Stress constrains were imposed. Figure 6 shows the
geometry of the structure for the fitness function (14) and a constraint for the volume was applied.
The structures were modelled by the boundary element method.

Fig. 4. The structure before optimization

a) b) a) b)
Fig. 5. The best topology structure for the Fig. 6. The best topology structure for the
criterion (13) in generation: a) 1, b) 100 criterion (14) in generation: a) 1, b) 100

3.3. Shape optimization of elastoplastic structures

The application of an evolutionary algorithm and the finite element method in shape optimization
of elastoplastic solids is presented [14, 23]. The optimization criterion is minimization of areas of the
plastic regions in the body. The fitness function is formulated in the form of the domain integral,

J=/Q [?]n dQ. (18)

Minimization of this functional reduces values of stresses and areas of plastic regions. Constraints
in the form of upper bound of volume are imposed.

In order to minimize the number of design parameters, the boundary of the solid is described
by means of the NURBS (Non-Uniform B-Splines) curves. The FEM mesh is generated by the
Delaunay method using the TRIANGLE program.

One assumes that the solids are made from elastoplastic material with hardening. The fitness
function is evaluated for each chromosome in terms of the incremental finite element method [20].
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The constitutive equation is given as follows,
do = Dr(o) de, (19)

where D7 (o) is the tangent constitutive matrix.
The tangent stiffness matrix is formulated by

Kr = /Q BTDr(0)BdQ (20)

where B is the geometrical matrix.
The resulting system of algebraic equations of the incremental finite element method may be
presented as

K7 dq = dF (21)

in which dq is an unknown increment displacement matrix and dF is an increment force matrix.
The constraints in the form of the upper bound of the volume and geometrical restrictions of are
taken into account using the penalty function method.

Numerical example 4

The plate with NURBS modelled of the external boundary shape and NURBS modelled of the
shape of the hole is optimized (Fig. 7a). The optimization criterion is minimization of areas of the
plastic regions in the body. The parameters of evolutionary algorithm are: number of chromosomes
— 300, number of generations — 450. The plastic regions are shown using the grey colour. The
optimal structure is shown in Fig. 7b.

a)

S
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Fig. 7. The elasto-lastic plate: a) before and b) after optimization

3.4. Shape optimization of cracked structures
In the shape optimization of cracked structures three kinds of the criteria can be proposed [3, 8]:
e minimization of the maximum crack opening (MCO),

MCO = max(u) = max(ut —u7), (22)

where: u = ,/u;u; and ut, u~ are the displacement values of the coincident nodes laying on the
opposite sides of the crack,
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e minimization of the reduced J-integral in the form,

2
Jeaa = (B +T3)'2, (23)

where: J; and Jo are Rice J-integrals for 1 and 2 tips of the crack,

e minimization of the reduced stress intensity factor in the form
& .
Kieq = ZwiKi (24)
=1

where: K; — stress intensity factors, w; — weight factors ()] w; = 1), n = 4 for one internal crack
(2-D problems).

The design vector x is treated as a chromosome. The population consists of randomly generated
set of feasible chromosomes x = (z1, 2, ..., Zr, ..., Tg), where z, is a gene which represents
coordinate of a control point of the parametrical curve (NURBS or B-spline) modelling the boundary.

The direct problem is solved by using the dual boundary element method (DBEM). Two vector
boundary integral equations of DBEM are formulated [7]:

o for displacements,
cu + / P*ydl' = / U*pdr, (25)
g )y
e and for tractions,
lp +n / S*udl' =n / D*pdrl, (26)
2 r r

where: P*, U*, S* and D* are fundamental solutions of elastostatics, n — a unit outward normal
vector.

Numerical example 5

The boundary of a plate contained two cracks (Fig. 8a) is optimized. The criterion of minimum K eq
is applied. Parameters of evolutionary algorithms are: number of generations — 1500; number of
chromosomes — 100. Constraints are imposed on on the boundary equivalent Huber—Mises stresses.
Optimal solution has been found in 1280 generation (Fig. 8b, Table 3).

tEgt

Fig. 8. Plate with two cracks: a) before and b) after optimization
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Table 3. Results of shape optimization for the plate with two cracks

Numerical ezample 6

Criteria Before After
K1, Kyl 5.2456, 1.5965 | 4.6088, 1.2586
K2, K2 4.3746, 3.1095 | 3.4366, 2.5185
K;3, Ki3 6.0637, 0.4374 | 5.4322, 0.6571
K4, Kp4 4.4595, 0.1934 | 4.1093, 0.5211
Kisa 4.2679 3.9072

J1;.J2 15.6422, 15.0033 | 11.8879, 9.4548
J3, J4 19.2496, 10.3772 | 15.5943, 8.936
MCO1, MCO2 | 1.3821, 0.8829 | 1.1099, 0.8001
Oegmax 75.6664 51.2198

A plate contains three cracks (Fig. 9a) and the criterion of minimum MCO,.q is applied. Parameters
of evolutionary algorithms are: number of generations — 2000; number of chromosomes — 100
chromosomes. Optimal solution has been found in 1075 generation. Results are presented in Fig. 9b

and Table 4.
b)
Fig. 9. Plate with three cracks: a) before and b) after optimization
Table 4. Results of shape optimization for the plate with three cracks

Criteria Before After
Krl, Kyl 4.1079, 0.4822 3.6271, 0.1102
K2, Kp2 4.0945, 0.7444 3.6935, 0.3436
K3, K3 5.1114, 0.6359 4.0919, 0.6872
K4, Ki4 4.4173, 0.7150 3.3056, 0.6119
K5, Kb 2.3819, 0.4945 19773, 0.3727
K6, K16 3.2535, 0.6637 2.7610, 0.5638
i 8.9099, 9.0202 6.8583, 7.1664
J3, J4 13.818 , 10.429 8.9668, 5.8864
J9, J6 3.0822, 5.7426 2.1086, 4.1361
MCO1, MCO2, MCO3 1871, 2.185 , 1.298 1.654 , 1.703 , 1.085
MCOyeq 1.8389 1.53386
Oegmax 27.6659 27.6009
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3.5. Shape optimization of structures under thermomechanical loading

In the shape optimization of thermoelastic structures the criterion of minimum global compliance
of structure is proposed [10, 11, 18],

P /F (%p-u) dr. (27)

In order to evaluate the fitness functions (27) the direct boundary-value problem of linear, ho-
mogeneous, isotropic, steady-state thermoelasticity theory is solved. The boundary only integral
equation for thermoelastic problem is obtained [7],

cu+/P*udI‘=/U*de‘+/(PT—Qq) dr, (28)
r r r

in which needed boundary temperature and its normal derivative are calculated by solving the
boundary integral equation for the heat conduction problem,

T + / Q'Tdl = / T*qdT, (29)
r iy

where: Q* and T* are fundamental solutions for the Laplace equation, P and Q are known co-
ordinate functions.

Numerical ezample 7

The plane structure (Fig. 10a) is optimized for the criterion of minimum global compliance. Only the
parts of the boundary where temperatures 77 and T» are assumed undergo the shape modification
with preservation of constant volume. The Bézier curves are used to model the optimized boundary.
The traction field 7 is applied. Parameters of evolutionary algorithms are: number of chromosomes —
100; number of generations — 1000. The optimal shape of the structure with conditions: 77 = 0°C,
T = 200°C, p = 50 kN/m is presented in Fig. 10b.

b)

Fig. 10. The plane structure under thermomechanical loading: a) before and b) after shape optimization

3.6. Evolutionary shape optimization of structures under dynamical loading

The problem of shape optimization is formulated as minimization of the volume of the body,

minJ=/dQ, (30)
Q
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with constraints imposed on boundary equivalent stresses and boundary displacements,

Oeq(y,t) — 00 <0, Vy el and Vte[0,T],

31
u(y,t) — uo <0, Vy eI and Vte[0,T], (31
where: u = 4/u - u and u, is an admissible value of displacements.
The displacement field u(y,t) is computed by solving a boundary-initial value problem of elas-
todynamics by the dual reciprocity boundary element method (DRBEM). The vector boundary
integral equation of DRBEM used in the paper has the form [7]

cu+/P*udF—/U*pdl"=p<—c\Ilk+/U*EkdI‘—/P*‘I’kdr> a*, (32)
r g g i

where: p is a mass density, U* and P* are fundamental solutions of elastostatics, ¥*¥ and ©F are
pseudo-displacement and -traction fields, respectively, generated by f¥, where u(z) = o f*(2),
z € ().

Numerical examples 8 and 9

Shape optimization problem of dynamical loaded structures (Fig. 11a) is optimized for the criterion
of minimum volume with imposed stress and displacement constraints. The gradient mutation oper-
ator, based on the steepest descent mutation, was controlled by a neural network. The shape of the
external boundary was specified by NURBS curves and coordinates of control points played the role
of genes. The dot lines denote boundaries that undergo shape optimization (Fig. 11a). Dynamical
loads acting on the structures are presented in Fig. 11b. The final optimal shapes of the structures
are shown in Fig. 11c.

4. FORMULATION OF THE EVOLUTIONARY IDENTIFICATION

The aim of this part of the paper is to show an application of the evolutionary algorithms to inverse
problems of applied mechanics.

It is assumed that an elastic body, which occupies a domain  bounded by a boundary T,
contains internal defects in the form of voids or cracks. One should find a position and shape of
defects having additional information about boundary state fields such as displacements, stresses
or natural frequencies. Defects are specified by a set of shape parameters z = (z;),1=1,2,...,N.
The problem can be solved by minimizing an objective function J with respect to & = (z;):

e for static problems,
1 - 2
J =z /F la(y) —a(y)]” dT, (33)

e for dynamical problems:

1

7= 5 [[la.t) - aty, )" drat, 3

where q are measured values of state fields such as e.g. displacements, stresses or natural frequencies,
q are computed values of the same state fields.
The fitness function (33) was applied in crack identification [3, 4, 9].
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Fig. 11. Shape optimization of two structures: (a) structures with boundaries undergoing shape
optimization, (b) dynamical load acting upon structures, (c) optimal shape of structures
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5. APPLICATIONS OF EVOLUTIONARY IDENTIFICATION
5.1. Detection of voids based on measured natural frequencies

The identification problem is formulated as a minimization of the sum of differences between calcu-
lated natural frequencies w; (for a given position of the void) and measured natural frequencies @j ,

M
J=Y (@ - w). (35)

J=1

The chromosomes contain genes which are specified by geometrical parameters of the void. The
direct problem for the eigenvalue problem is solved by using the dual reciprocity boundary element
method (DRBEM). The vector boundary integral equation of DRBEM has the form [7]

cu+/P*udl"—/U*de‘=w2p{—c\Ilk+/U*2kdI‘—/P*\IlkdI‘} of (36)
r r P r

where U* and P* are fundamental solutions of elastostatics, ¥* and ©* are pseudo-displacement
and -traction fields, respectively, generated by f*, where u(z) = of f*(z), z € Q.

Numerical example 10

The problem of identification of a triangular void in an elastic rectangular plate under plane strain
was considered for given M = 3 natural frequencies @;, j = 1,2,3. Solution for initial and 18-th
generation is given in Fig. 12.

]

generation 1 generation 18

Fig. 12. Identification of a triangular void; population of voids in a) 1st generation, (b) 18th generations

5.2. Detection of defects based on measured dynamical boundary displacements

The problem of a void identification in elastic structures being under dynamical loads is consid-
ered [25].

The fitness function has the form (34). The displacement field u = q(y, t) is computed by solving
a boundary-initial value problem of elastodynamics by DRBEM.
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Numerical example 11

The plate with two circular voids was loaded dynamically (Fig. 13a). Heaving measured displace-
ments at sensor points one should determine positions and circular radii. The problem was solved
for deterministic experimental data of displacements (no noise case) and for stochastic variation
with normal distribution (noise case) (Fig. 13b)

a) B g i & S
: pO)=H(t)p,
. . o
...... »
‘ *  @-sensor point
.
N L ] B uWo
b)
e e o
NO NOISE o
© @) O
generation 1 generation 5 generation 40
O © O
NOISE o
© o ©
generation | generation 40 generation 100

Fig. 13. Identification of two voids: a) rectangular plate with voids, b) solutions for no noise case and noise
cases (with standard deviation D(i1;) = E(1;)/30 where E(i1;) = expected value)

Numerical ezample 12

The problem of identification of two defects was considered for dynamic harmonic excitation. The
evolutionary algorithm decided about the kind of defects (elliptical void or crack). Solution of the
problem was achieved in 50 generations (Fig. 14).

5.3. Inverse problems in thermoelasticity

The problem of finding an optimal distribution of temperature on the one part of the boundary T',
is solved for minimum of displacements on another part of the boundary T'p [11, 18],

Uo

where u is total displacements at the boundary I', , u, is an admissible displacement.
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Fig. 14. Identification of two different defects: a) plate with defects, b) solution in different generations
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Fig. 15. Solution for thermoelastic solid, a) a plate with boundary conditions, b) optimal distribution of
temperature
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In order to evaluate the fitness function (37) the direct boundary-value problem of linear, ho-
mogeneous, isotropic, steady-state thermoelasticity theory is solved. The boundary only integral
equations for thermoelastic problem have the form (28) and (29).

In this case the distribution of temperature is represented by genes, which are described by
control points of Bézier curves.

Numerical example 13

The problem of finding the optimal boundary condition for temperature Ty for minimum displace-
ments of the loaded boundary was considered. The optimal distribution of temperature for two
traction fields p° are presented in Fig. 15.

6. CONCLUDING REMARKS

Several numerical examples of evolutionary optimization and identification have been presented.
Coupling of the finite element method and the boundary element method with the evolutionary
methods appear to be very convenient and useful artificial intelligence technique in such problems.
The original feature of the paper is the formulation and solution of the evolutionary optimization of
structures being under mechanical, thermomechanical and dynamical loading by the finite element
and boundary element methods.

One disadvantage of the evolutionary methods is the time consuming calculation because in order
to achieve a satisfactory solution one should produce many generations.

In order to omit this drawback, a hybrid approach can be proposed [26]. In this approach a special
gradient mutation operator is introduced. The gradient mutation operator uses information based
on sensitivity of the fitness function. There are several possibilities and strategies of using such
mutation. In the paper one proposes a strategy which is controlled by neural nets. Numerical tests for
detecting voids show that this approach is very effective and promising. Another approach to speed
the evolutionary computation is the application of the distributed evolutionary algorithms [15].
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