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The paper presents the application of Artificial Neural Networks (ANNs) for finite element (FE) models
updating. The investigated structures are beams and frames, their models are updated by ANNs with
input vectors composed of dynamic characteristics of structures measured on laboratory models. The
ANNs (multi layer feed-forward networks and Bayesian neural networks) are trained on numerical data
disturbed by an artificial noise. The responses of the structures are measured on laboratory models.
The updating procedure is also applied in identification of defects or additional masses attached to the
structure.
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1. INTRODUCTION

1.1. Problem description

The progress that takes place nowadays in both the development of new computational tools and
construction of new, powerful computer hardware makes it possible to build very complicated
dynamic models. The time required to simulate the response of a structure to static or dynamic
excitations is being reduced. Unfortunately, even those very complicated models, with the number
of degrees of freedom (DOF) exceeding hundreds of thousands, are in some cases not able to handle
the present-day requirements. In some particular cases it is necessary to employ models which
are able to simulate or reproduce the behaviour of real structures with very high accuracy. In
order to minimize the differences between the results of experimental measurements and numerical
simulations some changes can be introduced to the numerical model. The introduction of those
changes is called updating [4, 7, 8, 10, 12].
Updating is a complex task, in [4] it is described as “the improvement of an inaccurate model

by using imprecise and incomplete measurements”. The inaccuracy of a computational model may
result from various sources including the assumptions and limitations of the employed modelling
method and the assumption of the materials homogeneity. The imprecision and incompleteness
of measurements results from the disturbances of the measured signal, measurement noise and
impossibility to measure all degrees of freedom of the structure in the full frequency range (see [4]).
In some specific cases the aim of model updating is to obtain a model able to reproduce the

results of measurements with a specified accuracy (or even without any error), this kind of updating
is achieved by the introduction of some changes directly into the stiffness and mass matrices. The
so-called direct methods require very precise experimental data in order to avoid the reproduction of
measurement noise or errors. The values of updated parameters are calculated according to known
relations of the value of the model error and the values of the parameters updated. However,
derivation of those formulas is very time-consuming and in some cases direct methods require more
calculations than other methods. The main disadvantage of direct methods is their inability to
interpret physically the introduced parameter changes, so the updated models can not be applied
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to defect identification. Model errors are corrected by changing all elements of stiffness and mass
matrices, and in the majority of cases sparse stiffness and mass matrices are replaced by dense
ones. To avoid this problem some direct methods change only the initially non-zero elements, e.g.
by computation of relative changes of the elements.
The model updating approach applied herein is based on careful selection of control parameters

of a model (Young modulus, mass density, joint rigidity, support stiffness, etc.) and iterative “im-
provement” of the parameters. The parameters to be updated should be selected according to the
following rules:

• from among all the considered model parameters they are estimated with the highest error,

• the measured structure responses are sensitive to these parameters changes.

The parameters changes introduced have continuous physical interpretation and the updated model
can be applied to simulate the behaviour of the structure in different circumstances.
Since updating is based on the measurement data, the experiment is a crucial point of the

whole updating procedure. Unfortunately, in the majority of cases it is impossible to measure the
response of the structure to external excitation in all the points necessary from the point of view
of applied updating technique, especially the measurements of rotational degrees of freedom cause
many difficulties [3]. Moreover, a significant number of degrees of freedom may be inaccessible. The
amount of the measurement data may be insufficient to perform the updating of the whole model,
so the computational model must be reduced, or – not often – the measurement model is expanded.
Both approaches enable updating of the computational model but they introduce additional errors.
However, in some cases the amount of measurement data is so small that the updating of reduced
model is still impossible because the deterministic methods require an adequate amount of input
data.
The accuracy of the updated model is determined by the penalty function depending on the

eigenfrequencies and eigenvectors of both computational and experimental models. A search for
the minimum of penalty function is carried out iteratively adopting a non-linear penalty function
(most often sum square error function), which is in each stage approximated by the linear function.
The main problems that arise during the iterative updating are connected with the necessity of
comparison of the results of numerical simulations and experimental measurements.
The correlation of eigenfrequencies is assessed herein by the Root Mean Square Error (RMSEn),

Maximal Relative Error (MREn) and/or Average Relative Error (AREn), all calculated for the first
n eigenfrequencies:

RMSEn =

√√√√ 1

n

n∑

i=1

(fm
i − f c

i )
2 , (1)

MREn = max
i=1,...,n

∣∣∣∣
fm
i − f c

i

fm
i

× 100%

∣∣∣∣ , (2)

AREn =
1

n

n∑

i=1

∣∣∣∣
fm
i − f c

i

fm
i

× 100%

∣∣∣∣ , (3)

where fm
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obtained from the FE model, n is the number of considered eigenfrequencies.
The paper presents updating of computational models on the basis of a limited number of

measurement data. As a tool for the model updating, different types of Artificial Neural Networks
(ANN) are applied, see [7, 8]. ANNs in [1, 5] are the so called soft computational methods as
they were initially formulated due to inspiration from the behaviour of the human brain. Their
architecture and principle of operation have been considerably changed lately, but the ANNs still
have to be trained in order to make a right decision on the basis of incomplete and even faulty
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data. In recent years, the ANNs have been increasingly used in structural mechanics and civil
engineering [14, 15, 17–19].

1.2. Standard artificial neural networks

The type of standard ANN adopted in this study is called Multi Layer Perceptron (MLP) [5]. Its
architecture adopted herein can be described as I−H −O, where I is the number of inputs, H the
number of neurons in the hidden layer, O their number in the output layer. Each neuron performs
a linear transformation (by means of coefficients called weights and biases, all gathered here in
vector w) followed by a non-linear (e.g. sigmoidal) transformation before signal transmission to the
subsequent layer. Therefore, the dimension of vector w can be specified by the number of network
parameters I ×H +H ×O +H +O.
The calibration of the MLP to operation is called “training” or “learning” and is based here on P

vector pairs called patterns composed of a vector of selected model parameters γ and corresponding
vector of FE model response r disturbed by an artificial noise mimicking measurements errors. The
computation of the optimal vector wopt can be formulated as follows:

wopt = argminw {Ω(w)} , (4)

where

Ω(w) =
1

2P

P∑

j=1

√
(γj − yj)T (γj − yj) (5)

and yj = MLP(rj,w) is the approximation of vector γj given by MLP. In order to formulate
well-posed problem of network weights optimization the number of patterns P at disposal should
exceed the number of network parameters collected in vector w.
The optimal vector wopt can be computed by means of mathematical programming procedures,

in the paper the Levenberg-Marquardt algorithm (see [5]) is applied.
The architecture of MLP (namely, the number of inputs I, hidden neurons H and output neu-

rons O) is partially determined by the problem to be solved, since the number of inputs and outputs
must equal the number of the parameters in the input and output vectors, respectively. The number
of hidden neurons is obtained as a result of a cross-correlation procedure, where for fixed inputs I
and outputs O the number of hidden neurons varies from a reasonably small value (in the paper
Hmin = 2) to a reasonably high value (in the paper Hmax = 30). For each value of H the network
is trained, the network error Ω (e.g. standard mean square error of the identification) is computed
and the optimal value of H is selected as the smallest H for which its increase gives stabilization
or even increase of the network error.
The accuracy of trained MLP (the one with optimal parameters) is verified using a second

set of patterns (“testing” patterns), which should not be involved in the learning process. If the
errors defined as the difference between targets tj and yj,MLP(xj,w∗) (say mean square) are at an
acceptable level, the network can be used routinely in the operational phase for real-life problems
of structural diagnosis.

1.3. Bayesian neural networks

Besides traditional MLP also a very promising, new type of neural networks, namely Bayesian
Neural Networks (BNN) [1, 11], are employed. BNNs are probabilistic networks based on Bayes’
theorem:

p(w|t, α, β) = p(t|w, β)p(w|α)
p(t|α, β) , (6)
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where the denominator in Eq. 6, called evidence (or marginal likelihood), is defined as the following
integral:

E = p(t|α, β) =
∫

RW

p(t|w, β)p(w|α)dw. (7)

The maximum of the logarithm of evidence with respect to vector w is evaluated

max
w | lnE = max

w | ln p(t|α, β) (8)

and a new criterion calledMaximum Marginal Likelihood (MML) is formulated, see references in [16]
and Appendix in [6]. This criterion can be applied for design of network architecture instead of the
cross-validation method [14, 16].

In BNNs the overfitting phenomenon is controlled by a regularization term
α
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In the so-called Semi -Bayesian Neural Networks (SBNNs) hyperparameters α and β can be com-
puted during network learning in the iterative way, while in True-Bayesian Neural Networks
(TBNNs) they have to be marginalized (the integrals over weight vector components wi have
to be computed). In the paper both types of BNNs are used.
In the BNN Netlab package [11] commonly used the recommended procedure of SBNNs training

is Scaled Conjugate Gradient (SCG) optimization.

1.4. Neural network updating procedure

The paper presents the updating of some computational models of engineering structures. The
updating algorithm consists of the following steps:

1. Direct analysis of FE model is related to generating a set of patterns

P ′ =
{
(γ, r)(p) | p = 1, . . . , P

}
, (10)

where γ – vector of control parameters, r – vector of FE model response (e.g. eigenfrequencies)
as mapping γ → r for all the patterns p.

2. Disturbance of vectors r by an artificial random noise in order to mimic measurement errors.

3. Inverse analysis is related to the training and testing of a neural network using a set of
patterns (10 but with inverse input and output vectors

P =
{
(x = r, t = γ)(p) | p = 1, . . . , P

}
. (11)

The set P is split into training and testing sets L and T , where P = L ∪ T , L ∩ T = ∅, which
are used for designing of a neural network.

4. Calibration of control parameters is performed by the trained neural network exploring re-
sponses rexp measured on an empirical model

γident = yNN(rexp). (12)
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5. Verification of calibrated parameters by substitution of γ ident into the FE model to compute
its responses rFEM and compare them with the measured responses rexp

rFEM (γident)− rexp = εupd. (13)

The procedure was initially tested on numerical data only (see [9, 18]). In this paper the updating
method involving experimental data is presented.
All MLP simulations presented in the paper were performed using Matlab package with Neural

Network Toolbox [2], SBNN computations were performed using Netlab Toolbox [11] and TBNN
were performed using MCMCstuff toolbox [13].

2. BEAM ON TWO SLINGS

The first investigated structure was a beam (see Fig. 1a) made of an aluminium alloy and suspended
on two elastic slings. The known material properties of the aluminium alloy were volume mass
density ρV = 2743 kg/m3 (calculated as the ratio of the mass of the beam and its volume), Poison’s
ratio ν = 0.33. Young’s modulus was estimated by the updating method.

a) b)

c)

Fig. 1. The investigated beam: a) laboratory model, b) measurement set-up, c) FE model.

FE model, consisting of 24 beam elements, had 50 DOFs (see Fig. 1c). The influence of shearing
forces was not negligible so the Timoshenko model of the beam was applied. The acquisition set-up
applied is shown in Fig. 1b.

2.1. Updating of the initial model

The considered FE model (see Fig. 1c) had two free parameters: Young’s modulus E and the shape
correction factor ks of Timoshenko beam. As the input information for the updating procedure the
eigenfrequencies were used, the networks updating the dynamic model had five inputs (the first five
eigenfrequencies x = {f1, f2, f3, f4, f5}).
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The vibrations of the laboratory model were excited by an impact. The acquired signals were
the reference signal measured by the force sensor built into the impact hammer and the response of
the structure measured by an accelerometer (only one in this example, later on six accelerometers
were used). Both the impulse excitation and the accelerometer were at nodes of the FE model.
The output vector was adopted as follows: y = {E, ks} (Young’s modulus and the shear cor-

rection factor), the obtained values of Young’s modulus E = 70.77 GPa and the shear correction
factor ks = 0.5642 were applied to the dynamic model in order to obtain the updated model. The
differences between eigenfrequencies obtained from the updated model and from the laboratory
measurements were less than 1%.

2.2. Updating of the beam with an additional mass

A mass of 273.2 g was attached to the beam. In the FE model the additional mass was modelled
using a new finite element in the place corresponding to the mass location.
In order to obtain precise measurements of eigenfrequencies for different locations of the mass,

five more accelerometers (altogether six) were attached to the beam. The input vector consisted of
the first five eigenfrequencies: x = {f1, f2, f3, f4, f5}. The output vector y = {ρeL, kms } consisted of
the values of linear mass density of the element describing the additional mass ρeL and the element
shear correction factor kms . The results obtained from 5-7-2 MLP are listed in Table 1, the errors
of updated model are: RMSE5 = 4.5Hz, MRE5 = 0.75% and ARE5 = 0.40%.

Table 1. The errors of eigenfrequencies prediction (beam with and additional mass and six accelerometers).

Eigenfrequencies f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz] f5 [Hz]

Measured 168.13 436.22 796.28 1283.9 1891.7

Computed 166.88 434.85 795.39 1293.55 1889.73

Errors [%] 0.74 0.31 0.11 -0.75 0.10

The accuracy of the updated model (with ρeL and ks obtained from MLP) was tested using the
data obtained from the measurements of the beam with the mass attached in a different place (the
11th node of FE model), the errors obtained from the model were: ∆f1 = 1.42%, ∆f2 = 1.20%,
∆f3 = 0.85%, ∆f4 = −0.47%, ∆f5 = −0.49%, and RMSE5 = 6.35Hz, MRE5 = 1.42% and
ARE5 = 0.89%.
The MLPs of architecture 5-h-1 were also trained to locate the additional mass. The learning and

testing patterns were obtained from the numerical simulations performed for an additional mass
located in turn in all nodes of the FE model between the elastic link and the symmetry axis of the
beam. The trained MLPs were verified by the data obtained from the laboratory measurements of
the beam with the mass attached in 6th or 11th node (see Fig. 1c). The best results were obtained
from 5-13-1 MLP which was able to correctly locate the mass in the 6th node, the mass located in
the 11th was located with the error not exceeding the length of one element of the FE model.

2.3. Updating of impaired beam

The defects were introduced in stages on the length corresponding with the length of three final
elements:

i) half of the thickness of both flanges removed on the length of one final element, two elements
undamaged,

ii) half of the thickness of both flanges removed on the length of two final elements, one element
undamaged,
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iii) half of the thickness of both flanges removed on the length of all three elements,

iv) both flanges completely removed on the length of one element (see Fig. 2), two elements with
half of the thickness of both flanges removed,

v) both flanges completely removed on the length of two elements, one element with half of the
thickness of both flanges removed,

vi) both flanges completely removed on the length of all three elements.

Fig. 2. The defect, both flanges completely removed.

In case i) half of the thickness of both flanges was removed between nodes 19 and 20 (see Fig. 1).
The parameters that were updated were the beam volume mass density ρ∗V (including the masses
of six accelerometers and the influence of connecting cables) and the shear correction factor of the
impaired cross-section kαs . The depth of the defect and its width were measured and considered to be
known, the values of Young’s modulus E and shear correction factor ks of the original cross-section
were taken from the previous updating cases.
The input vector consisted of five eigenfrequencies (x = {f1, f2, f3, f4, f5}) disturbed by an

artificial noise, the output vector consisted of the volume mass density and the shear correction
factor of the impaired cross-section (y = {ρ∗V , kαs }). The results of identification were verified using
the data obtained from the measurements of the beam with defects in cases ii) and iii) (development
of the defect of the same kind), for the results see Table 2.

Table 2. The errors of eigenfrequencies prediction (beam with defect).

Defect ∆f1 ∆f2 ∆f3 ∆f4 ∆f5 RMSE5 MRE5 ARE5

case [%] [%] [%] [%] [%] [Hz] [%] [%]

i) 0.7 0.0 −0.6 0.0 0.0 2.24 0.7 0.26

ii) 0.5 −0.3 −0.3 0.7 1.4 13.04 1.4 0.64

iii) 0.4 −0.3 0.5 1.6 15.71 15.71 1.6 0.83

iv) 2.4 −0.9 0.1 1.6 1.3 14.31 2.4 1.24

v) 2.4 −0.1 1.2 1.6 −0.4 11.00 2.4 1.15

vi) −1.1 −1.2 0.6 0.6 −1.1 9.74 1.2 0.92

In case vi) (both flanges were removed on the length corresponding with the length of three finite
elements of the dynamic model, see Fig. 2) the shear correction factor kζs of the cross-section with
completely removed flanges was identified. Cases iv) and v), when both types of damage occurred,
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were used to verify the updated model. The relative errors of eigenfrequencies prediction using the
updated FE model are given in Table 2.
The errors of the prediction of eigenfrequencies of the beam with different defects are smallest

in the cases, from which the data were used during the MLP training (cases i) and vi)). In other
cases the errors were higher, the maximal MRE error was obtained in cases iv) and v) (with both
types of damage occurring) and equalled 2.4%. In the updating on the basis of experimental data
this error is rather small and the model should be considered as properly updated in the range of
the first five eigenfrequencies.

3. TWO-STOREY FRAME

The investigated structure was two-storey frames (see Fig. 3) made from aluminium alloy (volume
mass density ρ = 2743 kg/m3, Young’s modulus E = 70.77 GPa, Poison’s ratio ν = 0.3). The height
of both frames was 40 cm, the width was 46.9 cm, the beams and columns were of a rectangular
cross-section 2.6 cm by 0.6 cm. The columns were bolted to steel plates mounted in the ground.
Due to different heights of the plates the rigidity of both footings was different and the effective
length of the columns was between 30 cm (the length of the columns above the steel connection
plates) and 40 cm (overall length of the columns).

a) b) c)

Fig. 3. Portal frame: a) laboratory model, b) FRAME3, with springs k1 in both footings , c) FRAME4,
with flexible joints k1, k2, k3 and the height of the model H .

The first model, called FRAME3, had two parameters for updating, namely the horizontal
stiffnesses of both columns footings k1 and k2. The updating of both stiffnesses was performed by
the 4-h-2 neural network, where the input and output vectors were defined as: x = {f1, f2, f3, f4},
y = {k1, k2}. The relative errors of eigenfrequencies obtained from the updated model are as follows:
∆f1 = 5.45%, ∆f2 = 4.28%, ∆f3 = 1.04% and ∆f4 = 1.63%.
The errors of eigenfrequencies prediction by the updated model were as follows: RMSE4 =

2.43 Hz, MRE4 = 5.45% and ARE4 = 3.10%. The accuracy of prediction of higher eigenfrequencies
and eigenmodes were rather poor. After trying a number of different FE models the cause of the
difficulties was found as: the footings of both columns in the laboratory model were made rather
imprecisely. The laboratory model was built again (with all the geometrical and material parameters
the same as for the previous model) and a new FE model of the portal frame (see Fig. 3c) was
constructed.
All the eigenfrequencies obtained from FE simulations were disturbed by an artificial random

noise with mean µ = 0.0 and standard deviation σ = 0.1 Hz (0.1 Hz corresponds with the measure-
ments accuracy possible to obtain using the equipment at our disposal) and then trimmed again
to 0.1 Hz.
A number of simulations involving MLP updating of FRAME4 model with four parameters were

performed. The input vector was composed of model eigenfrequencies: x = {f1, f2, . . . , fn} where
n = 1, 2, . . . , 7 and it had N elements, the output vector in all cases consisted of parameters being
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updated: y = {k1, k2, k3,H} (see Fig. 3c). The architecture of MLP applied was N -h-4, where
h = 2, 3, . . . , 30. Altogether 7×29 different combinations of input vector definition and the number
of hidden neurones were tested. In each case MLP was trained on numerical patterns to update the
FRAME4 model parameters and after training the parameters were identified using the measured
eigenfrequencies as MLP inputs. In each case ARE7 errors of the first seven eigenfrequencies were
calculated (even forN < 7, when less than seven eigenfrequencies were involved during the updating
procedure). The mean values of ARE7 over different h and for constant n were computed, and are
shown in Fig. 4.

a) b)

Fig. 4. Eigenfrequencies prediction error: a) ARE7, b) MRE7 versus the number of eigenfrequencies
in the MLP input vector.

It is clearly visible that in order to minimize the error of prediction of the first seven eigenfrequen-
cies the updating should be performed with only the first three eigenfrequencies involved. When the
number of eigenfrequencies involved is higher, the model adjusts better to higher eigenfrequencies
(mainly the fourth and the seventh) but the overall updating accuracy decreases.
Table 3 and Table 4 present the results of various types ANN updating parameters of FE

model FRAME4. The networks MLP can be called standard NNs, vs Bayesian type NNs SBNN
(Semi-Bayesian NN) and TBNN (True-BNN). All the investigated networks had their input vector
composed of the first three eigenfrequencies: x = {f1, f2, f3}. The output vector was composed
either of all the FE model free parameters (one network updated all the parameters simultaneously)
or of only one parameter (four networks were required to update the FE model). In the first case
the output vector definition was as follows: y = {k1, k2, k3,H}, the network applied were MLPs,
SBNN trained using Scaled Conjugate Gradients (SCG) algorithm.

Table 3. The updated FE model FRAME4 parameters and eigenfrequencies prediction accuracy.

k1 k2 k3 H RMSE7 MRE7 ARE7

[Nm/rad] [cm] [Hz] [%] [%]

MLP 1004.3 1003.7 2497.1 4.3 8.36 4.94 1.70

SBNN, SCG 1919.1 2964.3 2606.1 2.9 7.94 4.93 1.75

single-output MLP 1582.4 3405.8 2668.3 2.6 7.80 6.04 1.99

TBNN 1923.6 2790.3 2846.5 2.9 8.15 4.98 1.93
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Table 4. The eigenfrequencies obtained from updated two-storey frame FE models.

Measured f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz] f5 [Hz] f6 [Hz] f7 [Hz] RMSE
3 MRE3 ARE3

value 32.25 95.50 110.30 126.30 265.30 294.80 422.00 [Hz] % %

MLP 32.24 95.49 110.09 121.14 269.89 297.47 442.85 0.12 0.19 0.08

0.03% 0.01% 0.19% 4.09% −1.73% −0.91% −4.94%
SBNN 32.27 95.54 110.22 120.07 269.41 297.67 441.42 0.06 0.07 0.06

SCG −0.06% −0.04% 0.07% 4.93% −1.55% −0.97% −4.60%
single 31.93 95.55 110.26 118.67 269.03 297.78 440.56 0.19 0.99 0.36

output MLP 0.99% −0.05% 0.04% 6.04% −1.41% −1.01% −4.40%
TBNN 32.33 95.78 110.72 120.01 269.65 298.59 441.80 0.30 0.38 0.31

−0.25% −0.29% −0.38% 4.98% −1.64% −1.29% −4.69%

In the latter case four output vectors were created: y1 = {k3}, y2 = {H}, y3 = {k1}, y4 = {k2}.
Four networks updated the FE model parameters in turn, in the following sequence: k3, H, k2
and k1 (this sequence was determined by the dissipation of the parameters obtained by single
four-output networks). In each step of this “cascade” approach a new set of patterns was created
using the FE model with some parameters already updated in the previous steps. This approach
involved TBNN (the TBNN software enforces the application of single output networks) and MLP
(for comparison with the results obtained from TBNN).
The results presented in Table 3 and Table 4 show the differences between the measured and

computed (by means of updated FE model FRAME4) eigenfrequencies. As stated earlier, the
updating was performed taking into account only the first three eigenfrequencies, which is easy to
notice in the final results: the relative errors calculated for f1, f2 and f3 are below 1%, RMSE3,
MRE3 and ARE3 are close to zero (see Table 4). It is possible to minimize RMSEn, MREn and
AREn also for n = 4, 5 using the expanded input vector (e.g. x = {f1, f2, f3, f4}), but this causes
a significant increase of RMSE7, MRE7 and ARE7 (see Fig. 4).
It is visible in Table 3 that the values of updating parameters and errors of approximation

are comparable for the networks SBNN-SCG and TBNN. In cases of standard NNs application
(networks MLP and MLP with single outputs) the values of the updating parameters are different
from those corresponding to SBNN and TBNN.

4. UPDATING INVOLVING SELECTED ELEMENTS OF EIGENFORMS

In all the examples discussed above neural networks input vector consists of eigenfrequencies only.
To make the procedure more general also selected elements of eigenforms should be incorporated
into the input vector. Figure 5 presents preliminary results from such an approach in the identifi-
cation of rotational stiffnesses in two-storey frame model FRAME4 (see Fig. 3c).
The input vector is defined as

x =

{
f1,

v11
v21

, f2,
v12
v22

}
, (14)

where vij is i-th element of j-th eigenform. As one can notice only two first eigenfrequencies and
two elements of two first eigenforms are taken into account. The output vector

y = {k1, k2, k3} (15)

has been shrunk, in comparison to the previous example, by removing H which was assumed to
equal 10 cm. The removal of parameter H from the input vector is connected with ambiguity of
the results caused by the simultaneous identification of both H and k1.
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Since the eigenvectors have not been measured yet the calculations were performed using nu-
merical data only (with random noise ±(5− 10)%).
Figure 5 shows a comparison of results obtained using the input vector involving elements of

eigenvectors (Fig. 5a through c) or only seven first eigenfrequencies (5d through f). The nearer the
points in Fig. 5 are to the line x = y the better, as one can notice the results obtained from the
approach involving eigenvectors is significantly better.

5. CONCLUSIONS

The paper presents the application of artificial neural networks, both standard MLP and proba-
bilistic BNN, in the updating of FE models of engineering structures. Examples of updating of FE
models of beam, portal frame and two storey frame anre presented. In each case the results are
verified by experimental measurements.
Owing to constant physical interpretation of parameters being updated the obtained FE models

can be applied in a variety of problems, including identification of material properties of structure
members, location and identification of the size of defects and experiment planning, since the
proposed procedure can point at the optimal location of the accelerometer and external excitation
point.
The updating procedure involving neural networks is able to deal with inaccurate data and

solve the identification problem even on the basis of a very limited amount of input information,
one of the examples shows the updating of four FE model parameters on the basis of only three
eigenfreuencies.
Further studies should concentrate on two fields:

• the application of eigenforms in the updating procedure: the presented results show that this
can increase the accuracy of the presented method,

• careful selection of FE model parameters being updated, including the sensitivity analysis.
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