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In this study, we develop an idea of knowledge elicitation realized over a collection of databases. The essence
of such elicitation deals with a determination of common structure in databases. Depending upon a way
in which databases are accessible abd can collaborate, we distinguish between a vertical and horizontal
collaboration. In the first case, the databases deal with objects defined in the same attribute (feature)
space. The horizontal collaboration takes place when dealing with the same objects but being defined in
different attribute spaces and therefore forming separate databases.

We develop a new clustering architecture supporting the mechanisms of collaboration. It is based on
a standard FCM (Fuzzy C-Means) method. When it comes to the horizontal collaboration, the clustering
algorithms interact by exchanging information about local partition matrices. In this sense, the required
communication links are established at the level of information granules (more specifically, fuzzy sets
forming the partition matrices) rather than patterns directly available in the databases. We discuss how
this form of collaboration helps meet requirements of data confidentiality. In case of the horizontal collab-
oration, the method operates at the level of the prototypes formed for each individual database. Numeric
examples are used to illustrate the method.

Keywords: fuzzy clustering, collaboration, data confidentiality and security, data interaction, cluster
(partition) interaction, vertical (data-based) and horizontal (feature-based) collaboration

1. INTRODUCTORY COMMENTS

Undoubtedly, a distributed nature of data is inherent to most information systems. Various
databases are constructed, used and maintained independent from each other. The challenge is
to make sense of such distributed data at a global level. This task of data mining calls for a or-
chestrated effort and implies a highly collaborative nature of search for dependencies in data such
that such findings are common to all databases (which is of genuine interest). To shed light on the
spectrum of the processing problems and the ensuing collaborative mechanisms, we consider two
interesting and general processing scenarios:

e Search for a common structure in databases Within a given organizational structure (company,
network of sales offices, etc.), there are several local databases of customers (e.g., each super-
market generates its own database or a sales office maintains a local database of its customers).
Generally, we can assume that all databases have the same attributes (features) while each
database consists of different objects(patterns). To derive some common relationships that are
common to all these databases, we allow the databases to collaborate at the level of the patterns.
Quite commonly, we may not be allowed to have access to all databases but eventually but be
provided by some general aggregates as illustrated in Fig. 1. Bearing this in mind, we can talk
about vertical (data based) collaboration of knowledge elicitation.
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Fig. 1. Vertical collaboration between databases at a local level
e Security issues and discovery of data structures across different datasets. Consider that infor-

mation about the same group of clients is collected in different databases while an individual
company (bank, store, etc.) builds its own database. Because of confidentiality and security
requirements, the companies cannot share information about clients in a direct manner. How-
ever all of them are interested in deriving some associations that help them learn about clients
(namely their profiles and needs). As they are concerned with the same population of clients, we
may anticipate that the basic structure of the population of such patterns, in spite of possible
minor differences, should hold across all databases. The approach taken in this case would be to
build clusters in each database and exchange information at the level of the clusters treated as
information granules. In this way the security issues are not compromised while a sound mecha-
nism of collaboration/ interaction between the databases could be established. Graphically, we
can envision the situation of such collaboration as shown in Fig. 2. Evidently, in this case we are
concerned with a horizontal (that is feature-based) collaboration in knowledge elicitation.

Structural level {Z/
(clusters) - COLLABORATION

Data level
(databases) DB-1 DB-2 DB-P

Fig. 2. Collaboration between databases at the level of “local” structures (clusters) discovered there; note
that no direct collaboration at the data level is allowed
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As knowledge elicitation is inherently user-oriented, we are interested in collaborative clustering
as the results of clustering are information granules. In the sequel, this implies a certain type of
collaboration as indicated before, namely a vertical collaborative clustering that involves databases
involving various objects and horizontal clustering where we are faced with the same objects but
characterized by various attributes.

As far as the algorithmic issues are concerned, the underlying idea of collaboration dwells on
a well-known Fuzzy C-Means (FCM), cf. [2]. The reader may refer to pertinent details as to the
generic method that is used as a canvass of the collaborative schemes developed in the study. In
general, we can think of clustering [1, 3, 5, 6, 9, 10] as a vehicle of building information granules.
It is also worth stressing that fuzzy clustering arose as a fundamental technique in construction of
fuzzy models; refer e.g., to [4, 7, 8, 10-12].

The material is organized as follows. First, we proceed with the horizontal collaborative clustering
by introducing all necessary notations, formulating the problem itself and discussing its algorithmic
aspects. In the sequel, we use a number of numeric examples to illustrate the method. Second, we
concentrate on the vertical clustering following the same scheme as in the first approach.

2. THE ALGORITHM OF HORIZONTAL COLLABORATIVE CLUSTERING

In this section, we introduce all necessary notation, formulate the underlying optimization problem
implied by the objective function-based clustering and derive the solution in a form of an iterative
scheme.

2.1. Notation

In what follows, we consider P subsets of data located in different spaces (viz. the patterns there
are described by different features). As each subset concerns the same patterns (that is each pattern
results as a concatenation of the corresponding subpatterns), the number of elements in each subset
is the same and equal to N. We are interested in partitioning the data into ¢ fuzzy clusters. The
result of clustering completed for each subset of data comes in the form of a partition matrix and
a collection of prototypes. We use a bracket notation to identify the specific subset. That is we use
the notation U[#i] and v[ii] to denote the partition matrix and the i-th prototype produced by the
clustering realized for the 4i-subset of data. Similarly, the dimensionality of the patterns in each
subset could be different; to underline this we use a pertinent index, say n[ii]. The distance function
between the i-th prototype and k-th pattern in the same subset is denoted by d2[ii], i = 1,2,... ¢,
k=12.... N

The objective function guiding the formation of the clusters that is completed for each subset
assumes a well-known form as being encountered in the standard FCM algorithm

N ie
0N " udfa] i),

k=1 i=1

i =1,2,...,P. The collaboration between the subsets is established through a matrix of connec-
tions (or interaction coefficients or interactions, for brief), see Fig. 3.

Each entry of the collaborative matrix states describes an intensity of the interaction. In general,
alii, kk] assumes nonnegative values. The higher the value of the interaction coefficient, the stronger
the collaboration between the corresponding subsets. To accommodate the collaboration effect in
the optimization process, the objective function is expanded into the form

N. ¢ P N ¢
Qi = > Y whlidldi il + Y ofii, 1> D {uiklii] — uaelii]}? d% [id], (1)
k=1 i=1 ;j:}. k=1 i=1
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Fig. 3. Collaboration in the clustering scheme represented by the matrix of interactions between the subsets

1 =1,2,...,P. The role of the second term in the above expression is to make the clustering based
on the 7i-th subset “aware” of other partitions. It becomes obvious that if the structures in datasets
are similar then the differences between the partition matrices tend to be lower.

As usual, we require that the partition matrix satisfies ‘standard” requirements of membership
grades summing to 1 for each patterns and the membership grades contained in the unit interval.
All in all, the collaborative clustering converts into the following family of P optimization problems
with membership constraints,

Min Q[i] subject to Uli] € U,
where U is a family of all fuzzy partition matrices, namely

c N
> uglii] =1 forallk and 0< ) uglii] <N forz'}.
=1 =1

U= {uzk[u] € [0, 1]

The minimization is carried out with respect to the fuzzy partition and the prototypes. This problem
and its solution are discussed in detail in the ensuing section.

2.2. Optimization details of the collaborative clustering

The above optimization task splits into two problems, namely a determination of the partition
matrix U[i] and the prototypes vi[ii], va[ii], ..., v¢[ii]. These problems are solved separately for
each of the collaborating subsets of patterns.

To determine the partition matrix, we exploit a technique of Lagrange multipliers so that the
constraint occurring in the problem becomes merged as a part of unconstraint optimization. This
leads to the new objective function V'[ii],

(6} P c L
Vi) = 3 uh il dhfiil + 3 o, i) S {ualii] - winli]) 2y li] A (Z walii] - 1) ,
=1 =1 =1 =1

JjF# (2)

for each k = 1,2,...,N. where )\ denotes a Lagrange multiplier. The necessary conditions leading
to the local minimum of V[ii] read as follows,

Vi) _, V[l _

Quglii] . i (3)
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s=1,2,...,¢c,t=1,2,...,N. Solving these with respect to the unknown partition matrix we get

pst[i1] 1 —_pjelii]
. e & : 2 Ty (4)

gt

1tst[ii] =

with the two coefficients expressed in the form

P
selid] = ) afii, ] us[fj], (5)
b
P
Pl = alii, jj]. (6)
=1
i
In the calculations of the prototypes we confine ourselves to the Euclidean distance between the
patterns and the prototypes. The necessary condition for the minimum of the objective function is
of the form V[;;Q = 0. The details are obvious yet the calculations are somewhat tedious. Finally,

the resulting prototypes are equal to

Agi[i#] + Citlid]

vatli] = Bilii] + Dy[id] (M)
s=1,2,...,¢,t=1,2,...,n[ii], ii=1,2,... P.
The coefficients in the above expression are as follows
N
Aglid] = ) udyli] o], (8)
k=1
N
Bylii] =) ullil, 9)
k=1
P N
Culis] = Y ofii, 1] Y (usk[it] — usk[if]) *zral ], (10)
sminin:
P N
Dylii) = ) afii, jj] Y (usk[ii] — usklfi])? (11)
Jji=1 ks
i

(note that xx[ii] denotes a k-th pattern coming from the 4-th subset of patterns).

2.3. The overall clustering scheme
The general clustering scheme consists of two phases:

e generation of clusters without collaboration. This phase involves the use of the FCM algorithm
for each subset of data. Obviously, the number of clusters needs to be the same for all datasets.
During this phase we seek independently a structure in each subset of data

e collaboration of the clusters. Here we start with the already computed partition matrices, set
up the collaboration level (through the values of the interaction coefficients arranged in afii, j5])
and proceed with a simultaneous optimization of the partition matrices
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Moving on to the formal algorithm, the computational details are organized in the following way:

Given: subsets of patterns X;, X5, ...,Xp,

Select:  distance function, number of clusters ¢, termination criterion, and collaboration matrix
alii, jj].

Initiate randomly all partition matrices U[1], U[2], ..., U[P]

Phase I For each data

repeat

compute prototypes {v;[ii]}, i = 1,2,...,¢, and partition matrices U[ii] for all subsets of
patterns

until a termination criterion has been satisfied.

Phase II repeat

For the given matrix of collaborative links a[ii,jj] compute prototypes and partition
matrices U[ii] using (4) and(7)
until a termination criterion has been satisfied.

The termination criterion relies on the changes to the partition matrices obtained in successive
iterations of the clustering method, for instance a Tchebyschev distance could serve as a sound
measure of changes in the partition matrices. Subsequently, when this distance is lower than an
assumed threshold value (¢ > 0), the optimization is terminated.

3. QUANTIFICATION OF THE COLLABORATIVE PHENOMENON OF THE CLUSTERING

There are two levels of assessing a collaboration effect occurring between the clusters, namely the
level of data and the level of information granules (that is fuzzy sets included in the partition
matrix). In this latter quantification, we use the results of clustering without any collaboration as
a point of reference.

The level of data involves a comparison carried out at the level of the numeric representatives of
the clustering, that is the prototypes (centroids). The impact of the collaboration is then expressed
in the changes of the prototypes occurring as a result of the collaboration.

At the level of information granules (partitions and fuzzy sets), the effect of collaboration is
expressed in two ways as shown schematically in Fig. 4 where the collaboration involves two datasets
(viz. P = 2) indicated by 1 and 2. Similarly, by 1-ref and 2-ref we denote the results (partition
matrices) resulting from the clustering carried out without any collaboration. First, we express how

Ay

Fig. 4. Two ways of quantification of collaboration at the level of information granules; see a detailed
description in text
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close the two partition matrices are as a result of the collaboration. The pertinent measure reads
as an average distance between the partition matrices U; = [u[1]] and Uz = [u[2]], that is

Nz
o Nl* -5 1] — w2 (12)

k=r=1

Evidently, the stronger the collaboration (higher values of ), the lower the values of 6. In this
sense, this index helps us translate the collaboration parameters () into the effective changes in the
membership grades (that are the apparent final result of such interaction). The plot of § regarded
as a function of «a is useful in revealing how the collaboration takes place. It tells how much the
data subset is susceptible to the collaborative impact coming from the other subsets of patterns. For
instance, no changes in the values of § for increasing values of as is an indicator of strong differences
existing between the structures in the two datasets.

The second criterion takes into consideration the results of clustering obtained without any
collaboration and treats this as a reference point. Using such partition matrices, we quantify how
far the collaboration affects the results of clustering. For instance for the first data set we have

N-"e
Ar= =3 1] ~ vanf1-ref]] (13)

k=11=1

For the second data subset we obtain

N ¢
A2 = Nl* : Z Z Iu,-k[2] = u,-k[2-ref]| 5 (14)

k=1 ¢=1

While the above index exhibit a global character, one can investigate the changes at the level of
the individual cluster and patterns. This local behavior of the collaboration is helpful in identifying
elements whose membership grades are affected quite significantly as a result of collaboration and
those whose structure is compatible across all datasets.

4. EXPERIMENTS

In the series of numeric experiments, we use a Boston housing data available on the WWW, see
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/housing/ . It consists of 506 pat-
terns describing real estate in the Boston area. There are 14 features describing the patterns. These
include crime rate, nitric acid concentration, median value of the house, just to name a few. We
distinguish between two subsets of features where the first one can be treated as descriptors of social
aspects of the data

A = {per capita crime rate by town, nitric oxides concentration (parts per 10 million),
proportion of owner-occupied units built prior to 1940, weighted distances to five Boston
employment centers, pupil-teacher ratio by town, % lower status of the population, median
value of owner-occupied homes in $1000’s}

and

B = {proportion of residential land zoned for lots over 25,000 sqft, proportion of non-retail
business acres per town, Charles River dummy variable (equal to 1 if tract bounds river;
0 otherwise), average number of rooms per dwelling, index of accessibility to radial highways,
full-value property-tax rate per $10,000, 1000(Bk — 0.63)? where Bk is the proportion of
blacks by town}
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Fig. 5. Scenarios of collaborative clustering used in the experiments

In the following experiments we set up the number of the clusters to be equal to 5, ¢ = 5. Several
scenarios of collaboration are discussed; see Fig. 5 for its schematic notation. As only two subsets
of data are involved, we drop indexes in the collaboration matrix; the meaning of collaboration
becomes obvious from the context.

In all experiments we start with clustering that takes place without any collaboration (it was
found that the number of iterations equal to 60 was enough to assure no changes to the parti-
tion matrices that is the optimization process could be deemed complete). At the next phase the
collaboration takes place.

a. There is a collaborative link originating from B and affecting A. The values of this link ()
are set successively to 0.05, 0.1, 0.5 and 1. The values of the objective function are shown in
Fig. 6; as expected the objective function assumes higher values for the increasing levels of
collaboration (this is not surprising by noting that the collaboration component contributes
additively as a part of this objective function). Noticeable are the drops in the values of the
objective function occurring at the beginning of the optimization.

The resulting prototypes change once the collaboration assumes different intensity as shown

below:

a =05

vy = [12.840698 0.675343 92.033089 1.984616 19.896008 21.301111 13.195952 ]
vy =[ 0.291484 0.437043 32.688419 6.474721 16.880703 6.680616 27.994970 |
vz = [ 0.880803 0.528872 68.019592 3.802059 18.728121 12.382829 21.436878 |
vy =[ 0.639216 0.500246 60.230255 4.270203 17.784111 8.671939 26.960485 |
vs = [ 8.554115 0.661536 89.209915 2.277547 19.955612 17.302109 17.229208 |
. = 1.0)

vy = [13.185606 0.673498 91.076195 2.016629 19.926291 20.879652 13.254309 ]
vy = [ 0.264656 0.435453 33.055351 6.535963 16.788097 6.537128 28.447708 |
vy =[ 0.759657 0.527652 67.316498 3.848079 18.747555 12.533010 21.190838 ]
vq =[ 0.561581 0.500323 59.888401 4.340404 17.798523  8.690695 26.753359 ]
vs = [ 9.424790 0.663229 88.969498 2.242356 19.995226 17.504406 17.110945 |

For comparative reasons, the prototypes of the subset A without any collaboration are listed as

follows:
vy = [11.491062 0.688633 94.221016 1.930663 19.940283 21.444845 13.103884 ]
v =[ 0.394793 0.439771 31.897591 6.384313 17.012272 6.963907 27.159363 |
vz = 0.860573 0.489002 52.550468 4.605259 18.520782 9.673503 24.041653 |
vy = [ 1.307117 0.536930 75.181625 3.334807 17.237040 9.618564 27.298693 |
vs = [ 3.288866 0.601333 86.465401 2.696251 19.858582 15.527621 18.926182 |
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Fig. 6. The values of the objective function in successive iteration steps of the algorithm and selected
values of the collaborative link

One can note that higher values of o lead to more evident translations of the prototypes in
comparison to their original location when no collaboration took place. The collaboration ef-
fect can be quantified in the language of membership functions (partition matrices). Following
the notation introduced in Section 3, the values of the indexes § and A; are illustrated in
Fig. 7.

A
0.20
015 4
0.10
0.05
o
0.00 T T T T T T
0 1 2 3 4 B

Fig. 7. Values of § and A for selected values of a
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As anticipated, the values of § become lower as the collaboration level increases while Ay gets
higher as we depart from the “local” partition matrix (viz. the one computed without any
collaboration) being under collaborative pressure to accept some other sources of information
about the overall data structure.

This experiment deals with the collaboration originating from the second group. The collabo-
ration effect is quantified in Fig. 8. In comparison to the other collaborative scheme, there is
a quite comparable level of changes in the membership grades. The only significant jump is
reported when a collaboration effect comes into a play.

A
0.20 1
0.15
0.10 j
0.05
)
0.00
T I 1 T 1 1
0 1 2 3 4 5 O

Fig. 8. Values of § and A for some selected values of o

In this case, we allow for the collaborative links to be reciprocal that is A and B interact; see
Fig. 9. The results are shown in the form of § as well as A; and Aj.The values of § go down
monotonically as values of a go higher. An interesting effect occurs in terms of the collaboration:
A tends to be more stiff as to the collaborative interaction; the values of A; in spite of the
increasing interaction (higher values of ). B is more flexible in terms of the collaboration more
readily accepting collaborative signals that manifest in the increasing values of A, .

In the following experiments, we split the features into two groups: the first one (A) includes all

the features but the price of real estate that forms the second group (B). The collaborative link is
activated by the first group (namely this group affects the clustering realized within B).

The prototypes in the median value of house change depending on the values of the collaborative

feedback. Noticeably, with the increase of the collaboration (denoted by a) the prototypes tend to
occupy more narrow range in comparison to the situation where no interaction was present, see
Fig. 10.

There is also another way of investigating the way of visualizing the effects of collaboration by

looking at the changes in the membership grades caused by the collaboration. The changes in the
membership grades occurring for two levels of collaboration are shown in Fig. 11.

Now we keep changing the number of clusters while retaining the same level of collaboration

(a = 0.5) to analyze how this affects the changes of § and A.
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Fig. 11. Changes in the membership grades for the first cluster for (a) @ = 0.2 and (b) @ = 0.5
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As expected, the values of § go down with the increasing number of the clusters, Fig. 12. The
reason for this trend is obvious: we get more clusters, the individual membership grades go down
and the differences become lower. As to the second index, it less monotonic as with the changes of
the number of clusters each dataset has its own “plausible” number of clusters and this could vary
between them.

0.30

0.25

0.20

0.15

0.10

Fig. 12. § and A as functions of the number of the clusters (c)

5. VERTICAL COLLABORATIVE CLUSTERING

As discussed, the vertical collaborative clustering is concerned with a collection of databases involv-
ing different patterns defined in the same feature space so that the patterns do not repeat across the
databases. As the feature space is common across the databases we can use prototypes as a means
of facilitating collaboration between them. The detailed algorithm discussed in the next section
concentrates on this communication vehicle.

5.1. The algorithm

We start with an introduction of the objective function that takes into account the vectors of
prototypes specific for each database. With the same notation as before, the objective function is
given as

¢ NJi] P Nl[ii] ¢
Qi) = 3 Y wlliildd + > Bli, 3] Y > wdi[id] vili] — vilis]] (15)
t=lgus] 33=1 k=1 t=1

JF#i

where ([, 77] (> 0) describes a level of collaboration between the datasets and || || denotes a distance
function between the prototypes. The optimization of (15) is carried out for the partition matrix U[4]
and the prototypes of the clusters v[ii]. This implies two separate optimization problems where the
first one involving the partition matrix is subject to constraints. Not including all computational
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details, the final expression governing computations of the partition matrix reads in the form

1
Ust = Z D2 ’ (16)
2
j=1 DJ
t=1,2,...,N[i],s=1,2,...,c, where Dy, is computed as follows,
P
D} =diy+ ) Blis, s I vsli] — v 7]l (17)
=1
T

Proceeding with the optimization of the prototypes, we express a necessary condition for the
minimum of Q to be in the form

0Q : 4
ava‘[kk]_o, kk=1,2,...,P. (18)

This implies a system of linear equations with respect to vy that is
Fy[it] — Age[i]

Csi[it] — B[]’

s=1,2,...,¢,t=1,2,...,n, with the notation

Ust [":i] = (19)

N[ii]
Aglii] = Y uy[ii] ],
k=1
N[ii]
By [ii] = Z ugk['iiL
N{i]
Calii] = Z Blii, ji] Z ulylid],
e
N[ii]
Fst[ii] Z ,B[ZZ,]]] Z Ugy “] vStb]]’
i

The overall computing scheme can be presented in the following fashion:
Given: subsets of patterns X;, Xz, ...,Xp in the same feature space,

Select:  distance function, number of clusters ¢, termination criterion, and collaboration matrix
Blii, j4].

Initiate randomly all partition matrices U[1], U[2], ..., U[P]

Phase I For each data

repeat

compute prototypes {v;[ii]}, i = 1,2,...,c, and partition matrices U[ii] for all subsets of
patterns

until a termination criterion has been satisfied.

Phase II repeat
For the given matrix of collaborative links fJ[ii,jj] compute prototypes and partition
matrices U[#] using (19) and (16)
until a termination criterion has been satisfied.
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6. EXPERIMENTS

To illustrate how the method of this collaborative clustering works, we consider three collections of
two-dimensional synthetic data collected in Table 1 where we identify the numbers of data points.
The elements different from one data set to another are indicated in boldface. We partition the
data into 3 clusters. The number of iterations the clustering algorithm has been run is equal to 15
(practically, at this number, there are no changes in the objective function).

Table 1. Three datasets used in the experiment of vertical clustering

No. of data | Data Set #1 | Data Set #2 | Data Set #3
1 1 1.6 1.1 1.6 1 1.6
2 1.3 21 1.3 2.1 1.3 21
3 291915 24208 Lh 2.2 & 2i5
4 2.3 2.7 2.3 2.7 2.3 2.7
5 3.5 6.7 3.8 8.7 3.8 8.7
6 3.9 6.1 3.9 6.1 3.9 6.1
75 3.3 5.8 5.3 5.8 5.3 5.8
8 2.9 6.2 2.9 6.2 2.9 6.2
9 7.1 9.2 7:1 9.2 5.1 3.2

10 8.3 9.1 8.3 9.1 8.3 3.1
11 7.8 8.5 7.8 5.5 7.8 3.5
12 7.4 7.9 7.4 7.9 24 3.9

For comparative reasons, we start with a scenario in which there is no collaboration. The resulting
partition matrices and prototypes are listed below:

Partition matrix; first data set

0.962885
0.987977
0.973869
0.948994
0.010942
0.013902
0.010637
0.015808
0.007394
0.006575
0.000675
0.009464

Partition matrix; second data set

0.029110  0.008005 0.025856 0.964681  0.009462 0.039863 0.032573
0.009657 0.002366 0.008925 0.988080  0.002995 0.017405 0.012870
0.021538 0.004593 0.014625 0.981004 0.004371 0.003631 0.002755
0.042514 0.008491 0.029609 0.961978  0.008414 0.009680 0.006951
0.977999 0.011059 0.708906 0.075178 0.215916 0.818173 0.091730
0.973516 0.012582 0.982872 0.008537  0.008591 0.975737 0.011179
0.983763 0.005600 0.780051 0.067610 0.152339 0.754797 0.161347
0.975499 0.008693 0.875552 0.078263 0.046185 0.913704 0.030640
0.024593 0.968013 0.054116 0.012098 0.933786 0.207793 0.492985
0.017805 0.975620 0.044340 0.012775 0.942884 0.013797 0.974664
0.002018 0.997307 0.284482 0.093742 0.621776 0.001866 0.996727
0.031015 0.959521 0.011821 0.002588  0.985591 0.183367 0.071699

Partition matrix; third data set

0.927565
0.969724
0.993615
0.983369
0.090097
0.013085
0.083856
0.055656
0.299222
0.011539
0.001407
0.744934

The prototypes of the three datasets as tabulated below, show Signiﬁcant differences between
them. In particular, the second and third prototype vary a lot across the datasets:

Dataset #1 — prototypes

Dataset #2 — prototypes

Dataset #3 — prototypes

[1.718665 2.222599]
[3.399974 6.196972]
[7.655201 8.676819]

[1.746825 2.253552]
[4.024643 6.495806 ]
[7.545924 8.293676]

[1.908616 2.492797]
[3.865419 6.565224]
[7.655816 3.344443)
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Now, let us set up a collaboration level equal to 1; more specifically, B[, jj] = 1.0 for all @ # jj.
The collaboration established in this way results in similar prototypes as quantified in the following

table:

Dataset #1 — prototypes

Dataset #2 — prototypes

Dataset #3 — prototypes

[1.865954 2.338975]
[3.720608 6.258747]
[7.444662 7.334947]

[1.869684 2.344301]
[3.834615 6.340519]
[7.412808 7.155983]

[1.944257 2.400455 |
[3.858967 6.242465 |
[7.358653 6.138383 ]

Noticeably, the prototypes start exhibiting a strong resemblance across the data that is a visible
indicator of the ongoing collaboration. The effect of collaboration driving the prototypes closer for
each dataset translates into changes in membership grades of the individual data points. Computa-
tionally, the change is taken as the sum of absolute differences taken over all clusters that is

c
Z |uix — uik(no_collaboration)|

i=1

with u;x(no_collaboration) denoting the membership grade of the k-th pattern in the i-th cluster
in case no collaboration is present. This effect of collaboration is shown in Table 2. Immediately, we
recognize that some patterns are quite strongly affected by the collaboration. Those are the patterns
that are different between datasets. With the increasing values of [-s, the collaboration becomes
more vigorous. Subsequently, the values of the changes in the membership grades are shown in
Table 2. It can be seen that some of the patterns are heavily affected by the collaboration meaning
that at these points the structure are quite distinct and there any reconciliation between them
requires a substantial level of effort. These particular patterns are indicated in boldface.
In the sequel, a total change in the membership (A) determined as

N p
W Z Z |uik — uik(no_ collaboration)|

k=ldxl

and now regarded as a function of § is summarized in Fig. 13. Again, there is a strong monotonic
relationship between the level of this collaboration and the manifesting changes in the partition
matrix; the detailed relationships vary between datasets (groups of data).

Table 2. Changes in the membership grades of the individual data points in three datasets for f=1.0

Pattern Change in membership

no. (first dataset) (second dataset) (third dataset)
1 0.032886 0.035287 0.032886
2 0.022677 0.022392 0.022677
3 0.027390 0.014654 0.027390
4 0.043216 0.020496 0.043216
5 0.011151 0.024933 0.011151
6 0.029918 0.012801 0.029918
7 0.064940 0.186115 0.064940
8 0.100724 0.056257 0.100724
9 0.398732 0.366174 0.398732

10 0.323950 0.287519 0.323950

11 0.274974 0.302670 0.274974

12 0.144609 0.186651 0.144609
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Fig. 13. A as a function of § for datasets used in the experiment

7. CONCLUSIONS

We have introduced an idea of collaborative processing, in general and collaborative clustering, in
particular. It has been shown that a communication and collaboration between separate datasets
can be effectively realized at the more abstract level of membership grades (partition matrices)
and prototypes. Two types of collaboration (vertical and horizontal) were studied in detail. We
provided a complete clustering algorithm by dwelling the method on the standard FCM method.
The quantification of the collaboration effect can be realized either at the level of the prototypes
or the partition matrices. An interesting expansion of the method discussed here involves a partial
(limited) collaboration where not all patterns are available to form a collaborative link. This simply

calls for an extra Boolean vector b = [by, by, ..., by] modifying the objective function in the form
N ¢ P N ¢
Qlii) = 3° 3 wlfiildifia] + 3 alii, 7] 33 funlis] - winlis])? el
k=1i=1 =1 k=1 i=1
Jj#

where by, assumes 1 when the k-th pattern is available for collaboration (otherwise by is set to 0).
In general, we can envision collaboration that takes place both at the vertical (data) as well as
horizontal (feature) level, see Fig. 14. In terms of the objective function, this approach merges the
two methods introduced before.
As a matter of fact, we can put down the following expression to emphasize the collaboration
mechanism being in place,

Ulii] = F(Uj], vlig)),

where U and v are used to here denote the information feedback of the other part of the system
(both vertical and horizontal).

The approach presented here could be easily generalized to support more specific ideas such as
rule-based systems. In this case, we are concerned with the reconciliation of rules in each subset
of data. Obviously, the optimization details need to be refined, as the specificity of the problem
requires further in-depth investigations of a number of issues related to rules such as their specificity,
consistency and completeness.
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Fig. 14. Vertical and horizontal mode of collaboration between databases
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