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The paper develops the idea of [8], i.e. the application of Artificial Neural Networks (ANNs) in probabilistic
reliability analysis of structures achieved by means of Monte Carlo (MC) simulation. In this method
a feed – forward neural network is used for generating samples in the MC simulation. The patterns
for network training and testing are computed by a Finite Element Method (FEM) program. A high
numerical efficiency of this Hybrid Monte Carlo Method (HMC) is illustrated by two examples of the
reliability analysis that refer to a steel girder [4] and a cylindrical steel shell [2].
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1. INTRODUCTION

The fully probabilistic reliability analysis of structures belongs to a group of very complicated
problems for which obtaining an analytical solution is very difficult and frequently impossible. This
explains why probabilistic analysis of structures needs numerous simulation methods, e.g. the Monte
Carlo method [6]. In reliability analysis of structures by means of MC simulation the samples are
usually computed by the FEM programs. A great number of samples is needed in the MC simulation,
so the application of FEM program is numerically inefficient for large scale problems, because of
high computational time. The most efficient, in terms of computation, is the so called hybrid Monte
Carlo method, the idea of which was suggested by Papadrakakis et al. in [8]. This method applies
simple, back – propagation neural networks (BPNNs) for generating trials in MC simulation. The
BPNN is trained and tested on patterns generated by FEM program. A crucial question in the
presented hybrid approach is a number of patterns needed for the network training and testing.
This depends on the complexity of a structure analyzed and the number of random basic variables
representing physical quantities of this structure. Two examples of HMC method application in
reliability analysis is presented in this paper. The discussed reliability analyses concern a steel
girder [4] and a cylindrical steel shell [2]. Other examples, corresponding to reliability of steel
frames with random imperfections were analyzed in [1].

2. RELIABILITY ANALYSIS BY MEANS OF MC SIMULATION METHOD

It is assumed that reliability analysis refers to stationary type structural problems and the time
factor is ignored. The adpted measure of structure reliability is the probability of reliability q, which
is related to the probability of failure pf , according to the following formula:

q = 1− pf ≡ 1− Prob {G(X) ≤ 0} . (1)
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The probability of failure pf is defined as a function of basic random variables:

pf = Prob {G(X) ≤ 0} = Prob
{
R
(
XR
)
− S

(
XS
)
≤ 0
}
=

∫

G(X)≤0

f (X)dX, (2)

where: G(X) = G (R, S) = R−S – the performance function; X =
[
XR,XS

]
– the vector of basic

random variables, R = R
(
XR
)
– the random resistance, S = S

(
XS
)
– the actions (loads) applied

to a structure, f (X) – the probability density function (PDF) of failure.
The MC simulation is applied in order to quantify the integral in (2). The approximate value of

pf is estimated by the binary MC indicator I(Xi) according to the formula:

pf =
1

NMC

NMC∑

i=1

I (Xi), I (Xi) = (1 for G (Xi) ≤ 0 or 0 for G (Xi) > 0) , (3)

where Xi =
[
XR

i ,X
S
i

]
– the vector of random variables of the performance function, G (Xi) =

R
(
XR

i

)
− S

(
XS

i

)
– the value of performance function for the i-th sample, NMC – number of MC

trials.
Formula (3) corresponds to the simplest MC method, called Crude or Classical MC (CMC)

approach. The simulation result is reliable only with the use of a great number of MC samples. In
case of reliability analysis of RC2 reliability class structure, according to [13], MC simulation needs
greater than 108 samples (NCM ≥ 108). That is why the neural networks are explored to a fast
calculation of MC samples resistance.

3. COMPUTATION OF TRAINING PATTERNS

In the presented HMC method, the load capacity (resistance) of the structure corresponding to i-th
randomly selected sample Xi is computed by means of ANN mapping:

XN×1 = {x1, ..., xn} ANN−−−→ y = λult, (4)

where xi – random variable corresponding to geometric values or material characteristics of the
analyzed structure, λult – ultimate load parameter.
Training and testing patterns of ANN are computed by means of FEM (COSMOS/M) pro-

gram. In this case, the single load parameter is considered, P = λultP
∗, where P∗ – the reference

load vector. The ultimate load parameter λult corresponds to the global buckling of the analyzed
structure.

4. EXAMPLES OF THE RELIABILTY ANALYSIS BY MEANS OF HMC METHOD

4.1. Analysis of a steel girder

4.1.1. Data for a steel girder

The analyzed girder and its I-cross-section dimensions are shown in Fig. 1. The girder has only sup-
port stiffeners and the 4th class cross-section conditions are fulfilled according to the classification of
the Eurocode 3 [14]. The girder is assumed to be made of steel with the yield point fy = 235 MPa
and the stiffness modulus E = 205 GPa. The girder is subjected to the action of uniform load
S = P and the resistance of the structure corresponds to the ultimate load R = λultP

∗, where
P ∗ = 200 kN/m is the reference load.
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a) b)

Fig. 1. a) The scheme of Steel girder, b) the model of web plate imperfections.

The initial imperfections of the web plate are considered. This imperfections are modeled as
three smooth surfaces of the form taken from [5]:

wk(y1, z1) = Ak cos (πy1/By) cos (πz1/Lz) , (5)

where Ak – the amplitudes of imperfections; By = Lz = 97.6 cm – the ranges of imperfections.
It was assumed that the imperfections can randomly appear in three equidistant areas By ×Lz.

The amplitudes Ak are random variables of the normal probability density function with param-
eters: µAk = 0 mm and σAk = Ault/2 = 0.35 cm, where Ault = 0.7 cm is the admissible value
according to the Polish standard PN-B-6200 [12].

4.1.2. Generation of training and testing patterns

Training and testing patterns were computed by the FEM program COSMOS/M [10]. A nonlinear
module of the program was explored assuming an elastic-plastic material with Huber-von Mises
yield surface and isotropic linear strain hardening with Ep = 0.0001E.
The training patterns were computed for the input data placed regularly in the 3D-cube of

coordinates Ak ∈ [−3σAk, 3σAk]. Assuming 5 points at the Ak axes the number of training patterns
equals L = 35 = 125 cf. Pabisek et al. [6]. The set of T = 100 testing patterns was randomly selected
as 100 points in the 3D-cube of variables Ak, assuming normal PDF, with the same parameters as
for the training patterns.
In Fig. 2 the equilibrium path λ(v0) ∈ [1.180, 1.393] computed for the input data A1 =

−0.525 cm, A2 = 1.05 cm, A3 = 1.05 cm is shown.

a) b)

Fig. 2. a) The equilibrium path, b) the displacements of girder at load factor λG = 1.180.

The ultimate state of the girder corresponds to the load parameter λG = λG
min = 1.180. This

state is related to the overall instability of the girder caused by the buckling of the upper flange and
the web plate. In case of the perfect girder, i.e. for A1 = A2 = A3 = 0 the ultimate load parameter is
λG
perf = 1.248 and for the initial imperfections A1 = −1.05 cm, A2 = 0.525 cm, A3 = −1.05 cm the
ultimate load corresponds to λG = λG

max = 1.393. The average CPU time to compute one pattern
was about 300 sec.
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4.1.3. Design of neural network

The back-propagation neural network was designed by means of Neural Network Toolbox [10] which
was implemented in the frame of MATLAB packages. The following input vector and output scalar
were used:

XR = {A1, A2, A3} , y = λult (6)

to formulate the set of training and testing patterns:

L = {(XR, t)p\p = 1, ..., L}, (7)1

T = {(XR, t)p\p = 1, ...,T}, (7)2

where t – the target output computed by FEM; L = 125 – the number of training patterns related
to regular points in 3D input cube; T = 100 – the number of testing patterns corresponding to
randomly selected points in 3D cube.
The BPNN network of structure 3-H-1 with sigmoidal hidden neurons and linear output was de-

signed using the cross-validation procedure [9] supported on the sets (7). The Levenberg-Marquardt
learning method was used. The number of hidden neurons Hopt = 8 was determined. The accuracy
of the designed network can be evaluated by the relative errors

avr epV =
1

V

V∑

p=1

ep, max epV = max
p

ep, (8)

where ep = (1 − yp/tp)·100% – the relative error for the p-th pattern; V = L, T – errors for the
training and testing.
Another estimation is given by statistical parameters, i.e. the standard error StεV and the

correlation parameter rV, cf. Waszczyszyn and Ziemiański [9].

StεV = RMSE =
1√
V

√√√√
V∑

p=1

(
(tp − yp)

2
)
, (9)

where V = L, T – the number of patterns for the network training and testing, respectively, tp, yp
– the output values for known and neurally computed output for the p-th patern.
In case of the trained network BPNN: 3-8-1 the errors are: avr epL ≈ avr epT = 0.77%, max epL

≈ max epT = 3.90%, StεL ≈ StεT = 0.0136, rL = 0.959, rT = 0.790. In Fig. 3 the relations of the
FEM target values tp and neurally predicted outputs yp are shown.

4.1.4. Reliability analysis of considered girder

The designed network BPNN: 3-8-1 was used for the simulation of MC trials. First of all, it was
checked that for computing 108 MC trials the network consumed 416 s of CPU time. This time is
comparable with 300 s needed for the computation of one pattern by the FEM system COSMOS/M.
Next, the network was used for the computation of discrete points at the reliability curves q(P ),

where q is the estimated value of the probability of reliability, according to formula (1) and P = S
is the load applied to the girder.
In the definition of the reliability curve there are two cases corresponding to the assumption of

the action variable: 1) Case 1: load P is the random value and the normal PDF has parameters
P j = µPj, σPj = 0.1P j , 2) Case 2: Pj is the deterministic real value. In Fig. 4 there are two curves
corresponding to both cases. It is worth mentioning that in Case 1 the reliability curve q

(
P j

)
is

smooth, without discontinuity type parts which occur in Case 2 of the curve q (Pj).
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a) b)

Fig. 3. Correlation of patterns computed by FEM and BPNN.

Fig. 4. Reliability curves for random loads P j and deterministic loads Pj .

4.1.5. Analysis of CPU times

Table 1 lists CPU times corresponding to computation of the reliability curve q
(
P i

)
for two nu-

merical versions of CMC simulations: 1) the hybrid version FEM/BPNN, 2) FEM is hypothetically
used for the computer simulation of the same number of MC trials as in the hybrid version.

Table 1. The comparison of CPU times for two numerical versions of CMC (Classical Monte Carlo method).

Simulation of CMC trials by BPNN: 3-8-1 Simulations of CMC trials by FEM system COSMOS/M

Operations CPU time [s] Operations CPU time [s]

Preparation of 225 patterns by
FEM, 225·300 = 67500 Computation of one pattern 300

Training and testing of BPNN,
= about 20 hrs 72000

Hypothetical computations of
108 trials 300·108

Simulation of 108 CMC trials 416
Total CPU time 3.0·1010

Total CPU time 1.4·105

Application of the hybrid FEM/BPNN method needs 1.4 · 105 s ≈ 39 hrs = 1.62 days. The
hypothetical time of computing 108 CMC trials by the FEM system COSMOS/M equals about
3.0 · 1010 s ≈ 3.47 · 105 days. This gives the computation 200 000 times longer than for the CPU
time needed for the hybrid method.
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4.1.6. Conclusions

• The reliability curves for a steel girder of I cross-section can be very efficiently computed by
means of the hybrid Monte Carlo approach in which 225 patterns are computed by the FEM
system COSMOS/M. Then these patterns are used to design the neural network BPNN:3-8-1.
The trained network was used for simulation of 108 trials of the Classical Monte Carlo method.

• The analysis of CPU times gives a hypothetical evaluation of numerical efficiency of the consid-
ered Hybrid Monte Carlo approach. This method applied for three random amplitudes of the
girder web plate needs about 2.0 ·105 times lower CPU time than that time needed for the trial
simulations by the COSMOS/M system.

4.2. Analysis of steel cylindrical shells

The analysis refers to three, laterally loaded cylindrical shells which were tested in laboratory. The
numerical FEM model of shell was formulated on the basis of laboratory tests results. Detailed
description of this laboratory tests and modeling process is in [3].

4.2.1. Laboratory tests on cylindrical shells

A scheme of the tested shell is shown in Fig. 5. In the scheme the important control parameter is
shown corresponding to the stiffness of equivalent perfect rigid-plastic rods modeling the horizontal
shift ability of the screws blocking the vertical displacements of the supporting beams.

Fig. 5. Scheme of cylindrical shell.

Three shells were tested by means of the stand shown in Fig. 6.

Fig. 6. Test stand.
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The tested shells were made of a cold rolled sheet of 5 mm thickness. The shells were subjected to
stress relief annealing to remove residual stresses formed in the steel sheet in the process of rolling
and bending. Material parameters for elasto-plastic bilinear shell material model were identified in
tension tests made on annealed steel sheet stripes. Mechanical parameter mean values were adopted
as: E = 205 GPa, Re = 274 MPa, ν = 0.3. The rectangular projection of the shell midsurfaces
had dimensions L×B = 472 × 470 mm and curvature radius R = 1380 mm. The shell was placed
between steel supporting beams of thickness tBP = 40 mm, screwed to the lower crosshead plate
of the test stand.
The deformation process was carried out by a slow motion of the pressing shaft fastened to

the upper crosshead of the testing machine (see Fig. 6). The deformation process was continued
until the load carrying capacity was reached. The form of incrementing plastic deformations reg-
istered in the tests corresponded with the three linear plastic hinges with the dominating central
hinge.

4.2.2. Updating of a FEM model and computation of patterns

A numerical FE model of the shell was prepared in COSMOS/M program. In numerical modeling
of the shell the geometrical and material data obtained in particular tests were used.
The shell, truss (rod) and beam finite elements were applied in the modeling process. The shell

material was modeled as elasto-plastic one with the Huber – Mises – Hencky plasticity condition
and isotropic hardening. A finite element mesh for the whole model is shown in Fig. 7. Types of
finite elements used in the numerical model and material properties of this elements are placed in
Table 2.

Fig. 7. FEM model.
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Table 2. Finite elements in adjusted numerical model.

Part of model Type of FE Material model Re [MPa] E [GPa] ET [MPa] ν

P SHELL4T bilinear 274 205 20.5 0.3

BP SHELL4T bilinear 235 205 20.5 0.3

PT BEAM3D linear 235 205 – 0.3

SC TRUSS3D linear 640 205 – –

EO TRUSS3D linear 235 5000 0.05 –

In the Table 2: bilinear = elasto-plastic HMH material with isotropic strain hardening, linear = perfectly
elastic material, Re – yield stress, E – elastic modulus, ET – hardening modulus, ν – Poisson’s coefficient.

The numerical analysis was carried out with the use of nonlinear module of COSMOS/M pro-
gram. Figs. 8 and 9 present the exemplary results of FE simulation. A comparison of displacement
equilibrium paths obtained from the laboratory test and its equilibrium paths FE simulation are
shown in Fig. 8. A coincidence of the comparison resulting solutions is very good. Fig. 9 shows
equivalent stress distribution on the upper surface of the shell for the maximum pressure force
value.

Fig. 8. Shell displacement equilibrium paths.

Fig. 9. Equivalent stresses in the upper shell surface.
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The adjusted numerical model was used in the sensitivity analysis which was performed in
order to select a group of parameters significantly affecting the random resistance of the shells
under analysis. The following three control parameters were selected in the FE model: A – the
approximated deflection of the cylindrical shell midsurface, Re – the yield stress, AT – the cross-
section of the equivalent rods preventing lateral displacement of supports (elements specified as EO
in Fig. 7).
Those selected parameters were included to the shell reliability analysis as the basic random

variables related to the random resistance of the considered shell. Two cases of a vector of random
variables XR were considered: 1) XR = {A∗, Re, AT }, where A∗ – the rise of the segment of the
cylinder approximating the real geometry of the shell, 2) XR = {A1, A3, Re, AT }, where A1, A3

– amplitudes of trigonometric functions approximating a real surface of the shell. It was assumed
that the yield stress Re and deflection parameters A∗, A1, A3 have the normal PDF whereas the
cross-section AT has the lognormal PDF. The parameters of probability distributions of admitted
random variables are collected in Table 3.

Table 3. Distribution parameters of random variables.

Random variable Re [MPa] AT [mm2] A∗ [mm] A1 [mm] A3 [mm]

Type of PDF N LN N N N

Parameters of PDF
µ 307.1 4.095 22.20 22.69 0.760

σ 30.71 0.292 2.22 2.269 0.152

In the Table 3: N – normal distribution, LN – lognormal distribution.

For each of both mentioned cases three sets of training patterns were calculated with the use of
the prepared FE model. Those pattern sets have different number Lij of elements: L11 = 33 = 27,
L12 = 53 = 125, L13 = 73 = 343 for the case 1) and L21 = 34 = 81, L22 = 44 = 256, L23 = 54 = 625
for the case 2), where i – the case number of a vector of random variables, j – the number of
training pattern set. The elements of the sets cover evenly the space of random variables which was
limited by extreme values µ± 3σ of each random variable respectively. The sets of testing patterns
were randomly selected from this limited space of random variables. The Tk = 100 testing patterns
were calculated for each of the cases considered.

4.2.3. Design, training and testing of BPNNs

The Back-Propagation Neural Networks (BPNNs) were assumed with one hidden layer of the
structure N -H-1. Sigmoid binary activation functions were used in the hidden layer and identity
function in the output neuron. Two types of BPNNs were prepared corresponding to two cases of
vectors of basic random variables XR, described above in point 4.2.2. Those BPNNs perform the
mapping as follows:

XR = {A∗, Re, AT } BPNN−−−−→ y = λult for Case 1, (10)1

XR = {A1, A3, Re, AT } BPNN−−−−→ y = λult for Case 2. (10)2

Three families of networks were trained for each of the both considered cases, each of which
was trained using a different set of training patterns with the number Lij of elements. The method
of generating those pattern sets are presented in point 4.2.2. Six best networks, one from each of
network family, with the least error values of neural approximation was selected. The Table 4 lists
the selected BPNNs with their training and testing errors which were calculated as standard errors
StεV and average relative errors avr epV, V = L, T – errors for the training and testing.
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Table 4. Training and testing errors of selected BPNNs.

Type BPNNij Lij N -H-1
St ε∗102 avr ep [%]

L T L T

BPNN 11 27 3-3-1 3.08 2.44 0.33 0.18

1 BPNN 12 125 3-11-1 0.50 0.67 0.05 0.06

BPNN 13 343 3-14-1 0.37 0.62 0.04 0.06

BPNN 21 81 4-5-1 2.89 1.58 0.27 0.16

2 BPNN 22 256 4-13-1 0.60 0.90 0.06 0.09

BPNN 23 625 4-12-1 0.69 0.66 0.06 0.06

In the Table 4: i – the number of network type, j – number of network family.

4.2.4. Reliability analysis of a steel cylindrical shell

The selected trained BPNNs were used for efficient calculation of random trials in Crude Monte
Carlo (CMC) simulations, which were carried out to compute the reliability curves. Two cases of
CMC simulation were performed. The cases differed in the formulation of the load: Case I – the
load P is a determined value and a reliability curve q(P ), computed for a sequence of fixed loads
Pi, and assuming load step ∆P , Case II – load P is a random variable with the average P and
coefficient of variation V = 0.1. In this case a reliability curve q

(
P
)
is computed for a sequence of

determined mean values of random load P i with load step ∆P i.
Twelve structural reliability curves were computed which referred to each particular Case of

CMC simulation, cases of basic random variables XR vectors and family of BPNNs. In order to
have statistically representative sets, 108 trials were generated in each simulation.
In Fig. 10 all the curves obtained in the reliability analysis are presented. Each of them is related

to Case ijk of reliability analysis, where indexes i,j,k refer to case of CMC simulation (i = I, II), case
of the random variables vector (j = 1, 2) and family of BPNNs (k = 1, 2, 3), respectively. In Case I
and Case II of CMC simulation, six computed curves overlap, this means that the results of CMC
simulations with the use of: BPNNs: BPNN: 3-14-1 trained by means of L = 343 patterns, BPNN:
3-3-1, trained by means of L = 27 patterns, BPNN: 4-12-1 trained by L = 625 patterns and BPNN:

Fig. 10. Structural reliability curves: six curves related to Case I, and six curves related to Case II.
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4-5-1 trained by 81 patterns, respectively, are almost the same. That is why in Fig. 10 it seems, that
there are only two reliability curves, related to the simulations in Case I and Case II, respectively.
It was shown in this figure that reliability analyses according to the considered two load cases give
results close to each other. For instance, for desirable probability of reliability q

(
P
)
= q(P ) = 0.9

the corresponding mean value of load is P ≈ 10.73 kN and the fixed load value is P ≈ 11.09 kN.

4.2.5. Analysis of CPU times

CPU times analysis refer to CMC simulations with the use of 108 trials. CMC simulation with
the use of BPNN: 3-3-1 was ended after 0.7 · 104 s and was the fastest of the simulations with
other BPNNs. The simulation with BPNN: 4-13-1 was the slowest and was evaluated for 1.5 · 104 s.
When the time of BPNNs formulation and generating of training and testing patterns are taken to
account the HMC reliability analysis with BPNN: 4-13-1 needs 1.1 · 105 s.
In case of computing by the FE program COSOS/M the time of generating one pattern was

about 280 s. Thus, assuming hypothetically that 108 trials are generated by COSMOS/M, then
the CPU execution time would be ca. 2.8 · 1010 s, that is ca. 2.5 · 105 times higher than the neural
simulation time. The comparison of the CPU time needed to reliability analysis with the use of
HMCM method with the hypothetical time needed to analysis by means of the MC simulation with
FE computation of trials, is presented in the Table 5.

Table 5. CPU times analysis.

Simulation of CMC trials by BPNN: 4-13-1 Simulations of CMC trials by FEM system COSMOS/M

Operations CPU time [s] Operations CPU time [s]

Preparation of 725 patterns by
FEM, 725·280 =20300 20300 Computation of one pattern 280

Training and testing of BPNN,
= about 20 hrs 72000

Hypothetical computations of
108 trials 280·108

Simulation of 108 CMC trials 15000
Total CPU time 2.8·1010

Total CPU time 1.1·105

4.2.6. Conclusions

The presented reliability analysis of the steel shell confirms very high efficiency of hybrid MC
method.
The comparison of reliability curves obtained in HMC simulations shows the possibility of limi-

tation of patterns number, needed for neural networks training.

5. FINAL CONCLUSIONS

Application of ANN for generating trials in MC simulations significantly decreases the computation
time in comparison with the hypothetical computation time while generating trials only by means
of FEM.
The total computation time of the hybrid MC method strongly depends on the number of

the patterns generated by FEM for the training and testing of ANN. That is why, conducting the
sensitivity analysis of construction for selecting the basic variables set XR with the smallest number
of elements, is very important.
HMC method gives a possibility to make the reliability analysis of many real structures tested.
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