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The paper tries to show the role that can be played by genetic optimization strategies in solving huge
global optimization problems in computational mechanics and other branches of high technology. Genetic
algorithms are especially recommended as the first phase in two-phase stochastic optimization. The self-
adaptability of genetic search is shown on the basis of the mathematical model introduced by M. Vose.
Main goals of adaptation are used as leading criteria in the simple taxonomy of genetic strategies.
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1. INTRODUCTION

Global optimization problems are one of most difficult numerical problems that find their origin
in computational mechanics. The main difficulties come from such reasons as nonlinearity, the
existence of many solutions, enormous computational and memory complexity and general bad
conditioning. Genetic algorithms (GAs) and evolutionary strategies (EAs) constitute the group of
method strongly developed in the last twenty years that can be helpful by solving ill posed global
optimization problems. GAs and EAs are of a very delicate nature as the methods performing
stochastic search with the variable sampling measure.

We try to show, that GAs and EAs are self-adaptive, ergodic searching processes by using the
Markov theory of Simple Genetic Algorithm (SGA) introduced by Vose [24, 42, 43]. We also show
why GA can not been a good local optimization method. The simple taxonomy of adaptive strategies
in genetic search will be also introduced. It takes into account the goal of adaptation and the course
and “depth” of modifications of basic genetic mechanisms.

The another possible way to overcome difficulties met in global optimization is to apply two-
phase stochastic global optimization strategies. Roughly saying, they consist in performing the
refined global stochastic search in the first phase, and the set of local convex optimizations (using
maximum slope methods) in the second phase. The necessary result of the first phase is the set of
starting points for local methods. Some information about the shape and volume of local attractors is
also desired. We will discuss the group of adaptive GAs as the methods that can be good candidates
for the first phase.

The paper can help to understand the real nature of GAs and EAs and their possible role in
solving complex global optimization problems that appear in computational mechanics (e.g. optimal
shape design problems). It may be also helpful by selecting the proper GA or EA adaptive policy
to the particular problem.

2. SINGLE- AND TWO-PHASE STOCHASTIC GLOBAL OPTIMIZATION STRATEGIES

Let us denote by D C R the set of all admissible design parameters and by Obj : D — R
the objective function, that may express the inverse of identification error or the maximum internal
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energy or the global cost of the whole structure. We intend to maximize the objective, more correctly
we intend to solve one of the following problems:

Find all pairs (z, Obj(z)) € D x R (or pairs (z, Obj(z)) for z from the small neighborhood of z)
for which:

> 0bj(y)Vy € D, or,
is the value of Obj at the local optimizer that satisfy some prescribed conditions (e.g.

e Obj(z
(z) is
2 Objthreshold)’ or,

)

o Obj(z)
0bj(z)

e (z, 0bj(z)) belongs to the level set of Obj, or to the local attractor.

The global optimization problems that appears in the mechanics of continua exhibit the huge
computational and memory complexity mainly because of:

e multimodality and the total lack of information about the behavior of Obj.
e usual low regularity of Obj (Obj is sometimes discontinuous),
e non-deterministic (fuzzy) character of Obj (e.g. in case if we try to scalarize the objective vector),

e The high cardinality of the set of all discrete representations of elements in D (e.g. meshes using
for encoding the design parameters).

The method that we need for solving global optimization problems should comprehend the pos-
sibility of revising all local optimizers together with the sufficient local accuracy. Let us define the
following two strategies:

Definition 1. Single-phase stochastic algorithms consist in performing in the loop the following
two steps:

a) make the sample set S which is the finite subset of D,

b) evaluate the set S.

Example 1. Pure Random Search (PRS)

ad a) perform sampling of elements of the set S according to the uniform probability distribution
on D,

ad b) sort elements in S according to the value of Obj.

Definition 2. Two-phase stochastic strategies consist in performing in the loop the following three
steps:

a) make the sample set S which is the finite subset of D,
b) reduce the sample set and make S, C S,

c) perform local convex optimizations starting from points that belong to the selection S,s C S, .

Example 2. Multistart

ad a) perform sampling of elements of the set S according to the uniform probability distribution
on D,

ad b), ) Sy =8, =S,
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Example 3. Clustering

ad a) perform sampling of elements of the set S according to the uniform probability distribution
on D,

adb) Sy = Ule C;, where C; C S is the set of points that belong to the attractor of the i-th local
optimizer of Obj,

ad c) S”=Uf__1{xi}; ey - Objilz) 2 Obily), ¥ € Cipidim bi-wnibh

Stochastic searching strategies have some significant advantages with respect to enumerative,
deterministic methods. In particular they involve non-determinism and a weak regularity of Obj,
moreover the random sample better covers the admissible set D C R" as regular meshes in R".

3. ADAPTABILITY AS THE PREFERRED PATH TOWARDS THE HIGH EFFICIENT
SEARCH

We intend to show the adaptation strategies in stochastic search as the external modification of
a measure or the measure vector towards the measures highly concentrated in the central parts
of basins of attraction. This evolving measure sequence is utilize for sampling making this process
more effective. Another words the probability that a point in the sample is located close to the
optimizer asymptotically growth, even if some modifications may decrease average objective for
several iteration steps.

The self-adaptive stochastic algorithms can collect and store the information about the problem to
be solved during iteration. This information mobilized the built-in mechanism of sampling measure
modification which affects on the computational efficiency.

We try to explain the mechanism of genetic self-adaptability by using the Markov chain theory
of Simple Genetic Algorithm introduced by Vose [24, 42, 43].

4. SIMPLE GENETIC ALGORITHM (SGA) AS THE MARKOV DYNAMIC SYSTEM

4.1. The background of SGA stochastic model

At the start of our consideration let us recall the main steps of Simple Genetic Algorithm (see e.g.
Goldberg [18]):

A. Establish the uncoding and decoding mappings
code : @ = D, decode: D — Q (1)

where D is the admissible set to a global optimization problem. The genetic space 2 is defined
as the product group

Q=Z2X...XZ2 (2)
N, e’
r times

where Z, is the additive group of integers modulo 2. The group operators @ and ® denote
component-wise addition and multiplication respectively. It is also convenient to treat §2 =
[0,....,r=1}r = 2! as the space of binary codes of the length . We assume, that code is
injective and decode surjective and they satisfied the coherency condition: decode o code = I, .

B. Establish fitness f to be maximize. Assuming Obj>0 we may put

f: Q2R f = Obj ocode. (3)
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C. Generate initial population as a multiset Py of elements from Q, #P, = n.

D. Perform “genetic operations” that transform one population Py to the next epoch population
Pryr:

e proportional selection,

e mixing operation e.g. multipoint mutation and single-point crossover,
until a stop criterion is satisfied.

Usually the stop criteria are as follows: the average fitness does not change (there is no progress
in evolution) or an individual with a satisfactory fitness is found.

In order to pass to the Markov Chain model of SGA we unambiguously identify each population P
of n elements from 2 with a frequency vector = [zo,...,z,-1],2; >0, Y zj = 1, where z; denotes
the frequency of the individual of genotype j € © in P. Frequency vectors for all populations of
n individuals constitute a discrete subset X, in the unit 7 — 1 dimensional simplex A™"! C R". SGA
can be understood as a stationary Markov chain of states from X, (see [24, 43]). Let us denote by
7k the probability distribution of the occurrence of n-sized population in the k-th evolution epoch.
The Markov law of evolution consists in the linear dependence between the consecutive probability
distributions

mtl=Qrt  £=0,1,2,... (4)

where @ denotes the #X,, x #X,, transition probability matrix. Q does not depend on the evolu-
tionary epoch k.
We define now the genetic operator

G=(FoM): A"} A1, (5)
The component F is called the proportional selection operator

F(z) = {f o) (diag o, o cfa=fild)si - 6 € R (6)

For any vector z representing some population in k-th evolution epoch F(z) can be interpreted
as a vector which component Fj(z) is the probability, that the individual i is selected to next genetic
operations.

The second component M in Eq. (5) called recombination operator comprehends both the mu-
tation and crossover. M is a composition of quadratic forms,

M(z) = ((Uom)TMaozv, Ls (ar_lz)TMar_lzv) : (7)
where o : A™! — A™"! is a permutation operator such, that & (o, « oymily) Holaige v,
"EjEB(r—l))'

The 7 x r mixing matrix M depends only upon the mutation rate p and crossover rate X
(1, x € (0,1)). p is the probability of single bit inversion in each individual genotype j € Q while
X determines probability of crossover occurrence. We refer to [24] for details of mixing matrix
computation with respect to x4 and x.

The essential of the Markov theory of SGA is the following:

Theorem 1. (Nix and Vose [24]) Let z denote the population vector in the k-th evolutionary epoch.
The expected population vector in the (k + 1)-th evolution epoch is G(z). Moreover, the transition
matrix of the Markov chain can be expressed by

r—1 T Y
sz=n!H%‘, z,y € Xn. (8)
1=0 b
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Let us denote by M (D) the space of probabilistic measures on the admissible set D. We may
introduce the mapping

©:A""! - M(D) (9)
such that for the arbitrary A C D measurable set

Vae A ! O(z)(4) =) =z (10)
I

where I4 C § is the maximum set of all genotypes such that code(:) € A for i € I4.

Observation 1. (see Schaefer, Jablonski [30]) For z € X,, the measure ©(z) is the discrete counting
measure on D, and ©(z)(A) for any Lesbegue measurable set A C D may be calculated by counting
the individual which genotypes ¢ € I4 and normalizing the result by the population size n.

Observation 2. (see Vose [44]) If z € X, is the population vector in the k-th genetic epoch, then the
next population is obtained by the n-time sampling according to the measure ©(G(z)). Notice, that
for any fixed point z € A"~! of the operator G we have ©(G(z)) = ©(z), so z can be understand as
the limit sampling measure on D.

4.2. SGA as a dynamic system

The dynamic semi-system (see Pelczar [29]) may be characterized as the triple (S, B, ¢), where S is
a topological space, (B, +) the topological, alternating semigroup and ¢ : & x B — < the mapping
such that:

1. VZ €S ¢(e,e) = I(e) where e stands for the neutral element in B,
2.Vp,t€B, Vz €S ¢(¢(z,p),t) = ¢(z,p + 1),

3. ¢ is continuous with respect to both variables.

If n < +oo (finite population) 7% is a occurrence probability distribution of occurrence of each

population from X, in k-th genetic epoch. So 7k is a probabilistic measure on A”~! C R" such that
7k is concentrated on X, . Taking into account Eq. (4) we have

kP = QPrk | Q*P = Q*QP = QPQ*, VK, p integers,

then B = {QP},p=0,1,2,..., generates an alternating semigroup of transformations of probabilistic
measures on X, . All {7r,’§}, k=1,2,3,..., can be identified with vectors form the unit simplex in the
R#Xn space. We introduce & as the space of discrete measures on A™™! C R" concentrated on X,
with the topology induced from R#Xn». Each iterate QP, p = 0,2,3,..., generates the continuous
mapping R#X» — R#Xn 50 B is a semigroup of continuous transformations on . Let us define
#(z,QP) = QPz,z € X, p=0,1,2,.... It is proven, that ¢ is continuous with respect to the first
variable. The regularity with respect to the second variable is trivial, because B is a discrete set
and the continuity in discrete topology on B can be justified. Finally we have:

Observation 3. (see Schaefer, Telega, Kolodziej [32]) Finite population SGA can be understood as
a dynamic semi-system in a set of probabilistic measures on A"~} C R" concentrated on X, .

In the case of finite population the passage from the population z € X, to y € X, is performed
with the probability @, . If the number of individuals is infinite (n = +00) a population z € A"~}
is replaced in the next epoch by G(z) with the probability 1, according to the theorem of great
numbers and the Theorem 1.
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Now & = A""! C R" with an arbitrary topology induced from ®" and B = {GP}, p= 0/1:8). ..
(G° is the identity on A1), B is the alternating semigroup of transformations on A™!. G is
continuous on A"~! as the composition of continuous mappings (5) and (6), so B is the semigroup
of continuous transformations on A"™~!. B may be also equipped with the discrete topology as
a discrete set of transformations. If we put now ¢(z,GP) = GP(z), z € A" !, n=0132... then
we can obtain:

Observation 4. (see Grygiel [19]) Infinite population SGA constitutes a dynamic semi-system in
AT W,

4.3. Asymptotic

Vose and Nix have proved the important results concerning limit points of genetic algorithm in case
of finite and infinite populations (see Nix and Vose [24]):

Theorem 2. If the mutation is non-zero pu > 0 then the Markov chain which models SGA is ergodic
(see e.g. Feller [12]), so for any initial distribution 70 there exists a weak limit T

lim «*

i By = lim Q%0 =r,.

k—+00

Theorem 3. When the size of population increases (n = +00) then by the theorem of Prohorov
(see also Feller [12]) there exists a subsequence {mn} in {m,} which converges weakly to some limit
point T*,

w *
Tne —> 7"
Theorem 4. IfG is focused and K is the set of fixed points of G (Vz € A™71, lim,,_, 1o, GP(z) € K)
then 7*(K) = 1.

The stability of fixed points of the operator G has been also studied in [42].

4.3. Approximation
Approximation results can be presented as answers to the following questions:

e How close can SGA approach to K after a finite number of evolution epochs and if population is
finite?

The answer is partially given by the lemma (see Telega [30], Telega, Schaefer, Cabib [9]):

Lemma 1. Let K, = {ac € A""!; 3y € K such that d(z,y) < E}, d is the distance in R", then
Ve >0, Vn>0 3integer N, 3 integer W(N) such that

Vn>N, Vk>W(N) =fK.)>1-n.

If G is focused, than a sufficiently large population can be concentrated arbitrary close to the set
of fixed points K with an arbitrary high probability 1 —n, after a sufficient number of evolution
epochs.

® How close we can approzimate the limit sampling measure on the admissible set D?

The answer is given by the following lemma (see Schaefer, Jabtoriski [30]) being the consequence
of the Lemma 1 and Observations 1 and 2:
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Lemma 2. Ve >0, Vn >0 3integer N, 3 integer W(N) such that
Vn> N, Vk>W(N), VACD
Lesbegue measurable set P O@(mk)(A) - @(z)(A)’ < s) >1-19

where zF | k = 0,1,2,... stand for the n-sized population vectors in the k-th evolution epoch.

In other words, there is arbitrary large probability 1 — n that the counting measure determined
by the current population z* is sufficiently close to the limit sampling measure if the population
size and the number of evolutionary epochs are sufficiently large.

e Does a ﬁhz’te population SGA follow the trajectory of infinite one in the initial genetic epochs?

The answer is given by the theorem (Vose and Nix [24]):

Theorem 5.
VI'>0, Ve>0, Vy<1 3IN>0; Vke[0,7] n>N=|zF-G*="| <e

with the probability at least y. Vectors z*, k = 0,1,2, ... stand for the n-sized population in the
k-th evolution epoch.

If we assume the finite time interval T, then the finite population SGA will follow infinite
population one arbitrary close, with the arbitrary large probability during the epochs k € [0, T,
if the population is sufficiently large.

5. WHY GA CANNOT BEEN THE WELL POSED LOCAL OPTIMIZATION ROUTINE?

The above theory, especially the Theorem 2 shows, that if SGA is well posed and ergodic, than there
is no unique limit population for the infinite number of genetic epoch. Even if the global optimizer
occurs in the particular genetic epoch P , there is no way to distinct such situation in order to stop
the algorithm.

If SGA is ergodic and its parameters are well tuned to the problem, than it is able to penetrate the
whole admissible domain D and the preferred (more probable) populations are ones that concentrate
close to the optimizers (according to the limit probability distribution ©(z), z € K). The similar
features may be conjectured for the wide class of genetic algorithms.

We may summarize the above discussion in form of the genetic search paradoz:

If the genetic algorithm is convergent (in sense of Theorem 2) than it is not convergent (in the
sense of local convergence of individuals). From the opposite side, if GA is locally convergent,
that it is ill posed as the global optimization routine, because it does not check the whole
admissible domain.

6. MAIN DIRECTIONS OF GA’S SELF-ADAPTABILITY

The Genetic Algorithm is the stochastic search that allow to utilize more general coding (e.g.
real valued one) and more general genetic operations than SGA (see Michalewicz [23]). We will
extend the meaning of €2 to the general (not necessary binary) space of genotypes. The well known
block diagram of GA is presented at the Fig. 1. The self-adaptability of GA’s may be explained
by the convergence 78 — 7, and the convergence of counting measures © (G(:c")) to the limit
sampling measure ©(z), z € K. It causes, that if we go ahead with genetic epochs, than the more

probable sampling will prefer points that are close to the local optimizers. After T' epochs GA’s
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The initial, uniform sample
(population) Py, the multiset of
encoded admissible solutions
(individuals)

Evaluation of individuals in P,. We
compute the probability distribution on
1 P, with the density y proportional to the
individual fitness 1.

Stop Criterion @

Selection. We select individuals form P,
and pass them to P’ according to the
density y

Mixing (genetic operations on P’). It creates the
new population P from the population P’.

Fig. 1. The basic idea of genetic search

may be understood as the stochastic search, which sample Sy = Ule Py . Assuming the uniform
probability distribution for creating Py = Sp we obtain quite different distribution of sampling in
St for T > 0. It depends on the current fitness and the initial genetic parameter setting. If we
assume, that .the fixed points of G are populations sufficiently concentrated near optimizers, than
the sampling in St is much more effective than in PRS after this same number of epochs.

Notice, that the adaptation of the measure is performed without any external control, by the
constant values of genetic parameters. Moreover the convergence 7F — 7, do not force the monotone
growth and convergence of the average and maximum fitness in evolving population.

The above theoretical discussion of GA’s advantages show us two contradictory goals of self-
adaptation for this class of algorithms:

e enlarge the increment of the average fitness in population,

e reinforce the ergodicity in order to effective check the whole admissible domain D.

7. THE SIMPLE TAXONOMY OF ADAPTIVE GA STRATEGIES

The general motivation for designing the adaptive GA strategies is to decrease significantly the
computational complexity of genetic search. The adaptive GA strategies may be classified with
respect to the structure of evolving set of individuals. We may distinct the class of low-structured
(single or twin population) strategies, and the group of high-structured strategies operating as the
colony of concurrent, collaborating populations.

The another possibility is to take into account the main goal of adaptation. This taxonomy
partially follow main directions of self-adaptation mentioned previously. The adaptation strategy
may strength only the maximum or average fitness improvement. The another possibility is to
accelerate the population discrepancy or population mobility in order to pass saddles in optimization
landscape and visit the whole admissible region. High-structured strategies are usually designed for
total search which is performed everywhere in the admissible set D with a high local accuracy.
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Let us denote by A-E€ sets of GA adaptive strategies which belong do classes mentioned above
(see Table 1). Although sets A and B are rather disjoint, there exist many adaptation techniques
which may fall in to set C or D according to their parameters.

We present in the sequel several important approaches modifying classical GA model, and try to
classify them using the taxonomy introduced above. We have intensively used the information and
hints contained in monographs: Goldberg [18], Bick, Fogel, Michalewicz [6] and Arabas [3].

Table 1. Various kinds of GA adaptive strategies

Ta).(on'omy Sets of GA adaptive strategies
criterion
Population | Single- or twin-population strategies High-structured set of individuals
structure A B
Strength the Reinforce the population Perform the total
The goal maximum or average | mobility or population concurrent search
of adaptation | fitness improvement discrepancy
c D &

7.1. Single- or twin-population strategies
7.1.1. Dynamic parameter control of genetic operators

This strategy affects on a single population, so it belongs to the set .A. Each individual in a particular
genetic epoch may be understood as the pair (i,s) where z € 2 stands for its genotype and s is the
set of parameters that control genetic operators which can transform i to ¢ in the next epoch. In
the classical GA model s is constant. In case of dynamic parameter control the parameter setting
obtain different values according to deterministic schedule prescribed by the user.

The main parameters to be controlled are the mutation parameters. They may depend on the
number of generation k (see Fogarty [13]). References to another control methods may be found in
Biick [4]. This strategy generally falls in to the intersection of classes ANC.

7.1.2. Adaptive parameter control of genetic operators

This model of adaptation may be explained using the above representation (7, s) of the individual
in the current genetic epoch as in previous case. New values of parameters s may be obtained
by a feedback mechanism that monitors evolution and explicitly rewards or punishes operators
according to their impact on the objective function rate.

Examples of such mechanism may be found in Davis [10] which adapt the operator probabilities
according to their observed success in objective improvement. The similar mechanism were used by
Stariczak [40]. The genetic operator which transform the particular individual is selected from the
larger set of operators according to their efficiency in previous epochs. The efficiency parameters
are updated after validation, at the end of each epoch.

The strategies described above are members of ANC. The next two examples of ESSS-SVA and
ESSS-FDM algorithms (see Obuchowicz and Patan [26, 27|, respectively) fall into class AN D and
leads to mobilize the population which concentrates near the local optimizers for the long time. The
common assumption necessary for the successful applying of both techniques is the symmetry of
the central part of attractor to be occupied.

ESSS-SVA (Evolutionary Search with Soft Selection — Simple Variance Adoption) accelerates
the saddle crossing by adaptation of the modification radius. First the trap test is performed which
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determine whether the population quality changes substantially for a given number of epochs. If the
evolutionary trap is detected, then the mutation variance is enlarged, which disperse the population
and allow to find and cross the saddle. If the evolutionary trap is not detected in the next steps,
then the initial variance returns.

ESSS-FDM (Evolutionary Search with Soft Selection — Forced Direction of Mutation) consists
in mutating the selected individuals by adding to each component a randomly distributed variable
with a given variance and the non-zero expectation called “drift of expectation”. The drift vector
may be computed in the epoch k as C¥(E(P*) — E(P*-!)) where C* is the positive normalizing
number.

7.1.3. Self-adaptive parameter control of genetic operators

We will used the above representation (i, s) of individual in the evolving population. This mechanism
is typically implemented by first recombining and mutating (according to the prescribed probability
density function) the set s, yielding the set s’, and next using the updated parameters s’ to recombine
and mutate the genotype 7 yielding 4'. It is applied mostly for the unary operators like mutation.

Notice, that the transformation s — s’ is performed locally for each individual, so it plays
another role that the adaptation of the proportional selection operator in SGA, which depends on
the information stored in population.

Several examples of self-adaptive mutation operators may be found in Bick [5]. Although the
strategy may satisfy various goals of GA adaptation, most examples belong to the class ANC.

7.1.4. Metaevolution

Metaevolution is the process of obtaining the optimal genetic algorithm that is, the best type of
genetic operator, and their parameter setting for a given problem. The basic idea is to consider the
search for the best GA as an optimization problem and use another GA to solve it. Another words,
in metaevolutionary approach a metalevel GA operates on a population on basic GA’s which in
turn solve the problem under consideration.

This seems to be the generalization of the above dynamic-adaptive and self-adaptive parameter
strategies. Operators as well as their parameters on a basic level may be selected and recombined
globally.

More detailed characterization of this strategy and the review of metaevolutionary algorithms
known from the literature are presented in [14]. Interesting example of genetic operators breeding
which is performed in each k > 1 epoch of the basic level is given in [39]. The both mataevolutionary
algorithms are of the class ANC.

7.1.5. Local methods as a part of stochastic genetic search

Local convex optimization methods can be twofold incorporated in to the genetic computation
scheme (see Fig. 1). Let us denote by L : D — D the mapping which returns the outcome of local
method L(z) started at the point z.

The first possibility is to use the local method by the individual evaluation, so we put
Obj(L(code(i))) instead of f(i) for each individual of the genotype ¢ € Q. This approach leads
to flatten individual evaluation in area of local attractors (the so called Baldwin effect). It was
described by Anderson [1], Whitley, Gordon, Mathias [45]. This effect allow to locate individuals
close to the border of the attractor with this same probability as in the center, by presence of the
high selective pressure. In consequence, the jump in to the neighboring better attractor is much
more probable, so this strategy may be classified to the group AN D.
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The second possibility may consist in particular in defining the new unary genetic operator called
“gradient mutation”. It replaces the individual of genotype i € Q by the individual of genotype
decode(L(code(i))). We refer to Littman and Ackley [21] for the first result of this strategy. The
interesting version of “gradient mutation” was implemented by Burczynski and Orantek [8] to the
shape optimization op plastically deformable structures. The gradient operator was applied only to
the one best individual in the population in each genetic epoch.

Also the crossover operator may be performed by using local optimization. Smith [37] introduce
the special type of crossover in form of the single step of Nelder-Mead simplex method.

The second group of strategies which significantly strength local search fall in to group A NC
and its often called Lamarckian evolution.

7.1.6. Impatience operators

This strategy base also on the local fitness modification. It intends to disperse the population sym-
metrically with respect to the top of the local attractor if the trap-test is detected. It is performed
by multiplying the fitness function of the particular individual by the coefficient which is propor-
tional to the normalized distance between the phenotype and the “center of gravity” of the whole
population. The crossover operator polarize the population into two subsets that are located on
the opposite sides of local optimizer, and surround it during the next genetic epochs. If one of this
subsets find the saddle, then the population can pass quickly to the basin of attraction of the better
local optimizer. When the trap test is not satisfied, the impatience operator is deactivated. The
impatience operator strategy was invented by Galar and Kopciuch [15] and can be classified as the
element of AND.

7.1.7. “Hill crunching” strategy

This strategy performs the fitness modification during the evolution. The trap test is performed
in order to detect the long-term oscillation around the local optimizer, then the best individual is
stored as the potential global solution and fitness is decreased in some neighborhood of the best
individual (hill crunching). Such fitness modification make the population difficult to concentrate
near the optimizers already recognized and push it to review another promising regions. Such kind of
strategy was introduced by Beasley, Bull and Martin [7] in 1993 and was classified as the sequential
niching procedure.

There are several methods of hill crunching. Obuchowicz [20] proposed in his ESSS-FDM (Evolu-
tionary Search with Soft Selection — Deterioration of the Objective Function) decreasing the fitness
by subtracting Gauss “hut” function with a center in the best individual.

Telega and Schaefer [33, 34] use hill crunching as the part of genetic clustering strategy. Clustering
can be defined as the process of finding approximations to basins of attraction of local maxima.
The main goal of this process is to reduce the number of local searches, perfectly to one in each
basin (see e.g. [20] and references inside). However, sometimes it is also desirable to store and utilize
rough information about basins.

Genetic clustering strategy consists in performing three steps in the loop:

a) performing GA steps that start from the uniformly distributed population Py,

b) cluster recognition by density clustering which is performed using the current population as the
measure estimator,

c) fitness modification which “crunches” clusters already recognized, until the global stop criterion
is satisfied.
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The point a) is stopped after SGA concentrates sufficiently on the basins (parts of basins).
Another words the measure is locally sufficiently concentrated. Density clustering in the point b)
consists in the following strategy: the domain D is divided into hypercubes. Hypercubes with the
best individuals are seeds of clusters. Neighbor hypercubes are joined to clusters if the density of
individuals inside them is greater than a certain threshold. In the point c) fitness is modified in such
a way, that its value in the already recognized parts of clusters is set to the maximum value so far
found. This is responsible for the pushing of individuals away from the clusters in the subsequent
generation.

The algorithm should be stopped if there is no attractor that can be recognized by density
analysis. For a class of fitness functions the global stop criterion can be defined as recognition of
plateau outside of already known clusters. In this case the Cauchy-like convergence criterion can
be justified on the base of presented theory if we assume that the plateau corresponds to the only
fixed point of G in the center of A"~1. More details can be found in the paper [9].

Approaches that contain hill crunching are rather classified in AN D.

7.1.8. Varying population size (life-time algorithms)

This is perhaps the oldest and most popular adaptive strategy in genetic computation. Population
size is the important parameter that affects on the population mobility and the computational
complexity. There are two contradictory opinions about the influence of the population size on the
behavior of the genetic search. The first one represented by Michalewicz [23] finds large population
better suited to the global search, because it can better fill the whole admissible set D. Small
populations converge quickly, so they are more effective at the final phase of the search, when
the basin of the global optimizer is already recognized. The second one introduced by Galar [16]
underlines the high mobility of small populations. It is because a mutation of the single individual
can affect on the whole population in several steps and then reinforce the saddle crossing. Large
populations tends rather to occupy the basin of attraction of the local optimizer and the single
individual mutation can not destabilized its equilibrium.

The main tool to obtain the varying population size is to introduce the new parameter which
is called the individual life time. Examples of life time modification strategies leading to increase
the population size at the introductory phase of computation and decrease it later are given in [23].
Another approaches may be found in [2, 35]. This algorithms may be classified in the set ARL.
Obuchowicz and Korbicz in [25] set the life time proportional to the ratio between the current fitness
and the maximum fitness from the previous epochs. Such setting avoids the precocious convergence
of individuals. The population size increases when the average fitness increases and decreases when
the population is trapped around the local optimum, or average fitness decreases. This strategy
belongs to AN D.

7.1.9. Sharing function and another niching methods

This is the simplest strategy that allow to spread the single population and force the individuals
to concentrate near more than one global optimizers. Individuals are penalized if they are bound
one to each another. If this mechanism is well tuned, and fitness is locally convex, then individuals
can concentrate only close to the global optimizers, and have large discrepancy out of their basins
of attraction. Basic ideas of sharing function strategy are presented in [17].

Sharing function strategy may be generalized to the niching strategy which tends to spread
population in to several niches, that can cover several local or global optima. Significant results in
this direction (crowding algorithms) are obtained by De Jong [11]. Another concept of niching called
speciation method was introduced by Spears [38].

Niching seems to be the part of the class AN & of genetic algorithms.
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7.2. Concurrent multipopulation cooperative strategies
7.2.1. Island model

The island model involves running several single population genetic algorithms in parallel. Each
island is GA of this same type with its own population. Some individuals may migrate between
population in order to improve the genetic material. The migration process may follow different
topologies, and may involve different number of individuals. Whitley and Scott [46] applied SGA
and GENITOR algorithm for each island and allow to migrate the single, best individual from each
island according to the ring topology. Each island is started randomly and independently form each
other, then it can potentially concentrate near different local optimizer. The experimental results
that confirm this feature as well as the high efficiency of island strategy applied to linearly separable
problems were presented in [46]. Whitley, Soraya and Heckendorn try to explain the mechanism of
island collaboration basing on the Markov model for each island. This strategy belongs to BN €.

The review of another island strategies, their efficiency and applications may be found in
Seredyriski [36] and Martin, Lienig and Cohoon [22]. All this results show the high efficiency of the
island strategy with respect to the multimodal problems that is mainly the issue of the concurrent
search, not only the consequence op parallel implementation (implementation in the multiprocessor
computer environment).

7.2.2. Hierarchic genetic algorithm

This is quite recent strategy introduced by Kolodziej and Schaefer [31] that is able to overcome
evolutionary barriers and increase the efficiency of classical GA, especially in case of solving multi-
modal problems. It consists in running a parallel set of dependent genetic processes. The dependency
relation among processes has a tree or a forest structure. The lowest order processes represent basic,
chaotic search with lowest accuracy. The higher order ones represent more accurate search and are
introduced when promising region on the optimization landscape has been found. The hierarchic
genetic search aspire to be a member of BN E.
Main differences between island and hierarchic strategy may be stressed as follows:

e All island processes are active during the whole computation period. Hierarchic genetic algorithm
performs only one process of most chaotic search with lowest accuracy up to the end of com-
putation. Another processes are started only if the new promising region is found. Each higher
order process is killed just after it founds the local optimizer, or recognizes plateau. Moreover
two processes of this same order are reduces to the single search if they fall into this same region.

e Islands are introduces randomly. The higher then one order processes in hierarchic genetic al-
gorithm are started by the lowest order ones by “sprouting” its best individual into the new
population of longer genotype, that enables more effective and more local search.

8. CONCLUSIONS

1. Two-phase stochastic optimization strategies are well suited for‘solving inverse problems and
optimization problems in mechanics.

2. The Markov model of SGA exhibits the real nature of the convergence of genetic search. It can
not been the well posed local optimizer, because there is impossible to define the correct stop
criterion (GA may pass the global optimizer, but we have no information when it happened).

3. Genetic algorithms transform measures in regular way, so they can be utilized in the first phase in
two-phase global optimization stochastic strategies. In particular, they may effectively recognize
attractors of the multimodal objective function.
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4. The main advantage of genetic search seems to be the significantly greater efficiency then in the
case of a simple stochastic search (e.g. PRS) by preserving the ergodicity. This is due to the
self-adaptability feature of genetic algorithm (the sampling measure is automatically adopted in
each step).

5. The computational efficiency of genetic algorithms may increase if the proper adaptation tech-
niques are applied. There are three basic directions in GAs adaptation: fasten the local optimizer
recognition, mobilize the population in order to pass the nearest saddle in the optimization land-
scape and perform the concurrent global search.

6. The multipopulaion genetic strategies are much better suited to solve multimodal problems then
the single- or twin-population ones. It is mainly due to the internal concurrent search that is
performed even in case of the serial, single processor implementation.

7. Another possibility to increase the computational efficiency is to utilize the multiprocessor com-
puter environment. This possibility is discussed in the paper [36].
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