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Attitude control of flexible space structures
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In this paper, we construct a nonlinear Extended State Observer (ESO) to estimate the dynamics of linear
or nonlinear systems with parameter uncertainties and unknown external disturbances. We then apply
ESO to the high-precision attitude control of a flexible satellite whose dynamics are unknown. Simulation
results demonstrate the usefulness of the proposed control method.

Keywords: attitude control, extended state observer, flexible satellites

1. INTRODUCTION

Space structures, such as space robots, spacecrafts, and satellites, are likely to play an increasingly
important role in space missions. Indeed, a large number of satellites are currently orbiting the earth.

Unlike ground-based structures for industrial use, space structures must be very lightweight, and
thus tend to be very flexible. The flexibility of the structures causes elastic vibration, which in turn
brings about problems in modeling and control design [6].

For a long time, linear and nonlinear control techniques have been developed for control of space
structures [1, 6, 9]. In particular, the implementation of such control laws require the knowledge
of the entire dynamics of the systems. Meanwhile, there has been some interests in working on
the modeling and identification of the flexible space structures. Modi et al. studied the dynamics
of the space station-based mobile servicing system using the Lagrangian approach [8]. In another
experiment, Japan’s National Space Development Agency (NASDA) carried out several in-orbit
identification experiments in order to obtain the exact parameters for the model of their Engineering
Test Satellite (ETS-VI) [3].

In this paper, we are interested in designing a controller for high-precision attitude control of
a flexible space structure whose dynamics are unknown. The main idea is to consider the unknown
dynamics of the flexible space structure including oscillation characteristics, as a new state variable,
and to use an Eztended State Observer (ESO) to estimate the new state variable for feedforward
compensation. The advantages of the proposed control algorithm are twofold:

e No knowledge of the system dynamics is required in the implementation of the control law, since
it can estimate the system’s unknown dynamics,

e The derived control algorithm is simple, allowing us to easily implement it.
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This paper is organized as follows. In Section 2, we first give an illustration of a flexible satellite
as the most common example of a space structure. We then introduce the general idea of the ESO in
Section 3, and also show how to design an ESO for attitude control of a flexible satellite. Simulations
using the developed controller are performed, and the results will be presented in Section 4.

2. MODEL OF A FLEXIBLE SATELLITE

Flexible space structures cover a wide range of mechanical structures, including flexible space sta-
tions, flexible satellites, and flexible robot arms. In this paper, we restrict our discussion to a satellite
with flexible solar paddles (see Fig. 1) in order to give a more concrete illustration and to simplify
our discussion. However, the discussion is also applicable to other space structures.
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Fig. 1. Schematic diagram of a flexible satellite

Consider a flexible satellite whose schematic diagram is shown in Fig. 1. The attitude of the
satellite is described by three axes, i.e., pitch, roll, and yaw. Since the structure of the satellite is
symmetric, the pitch motion of the satellite is independent from those of roll and yaw. Meanwhile,
roll and yaw are coupled via the solar paddles which rotate around the pitch axis. However, in
a linearized approach, it is possible to eliminate the coupled motion between roll and yaw by
defining in-plane deflection 9; and out-of-plane deflection 1, such as depicted in Fig. 1 (see [7, 10]
for detail), so that we are able to treat the attitude control problem as three independent SISO
control problems, i.e., roll, yaw, and pitch axis control problems. The transformation from in-plane
and out-of-plane deflection to roll and yaw axis angular position is written as follows [3],

1) cosé siné P;
= , (1)
(0) [ —siné cosé ] (1/)0> ’
where ¢ [deg| denotes the angular position of the solar paddle towards the body of the satellite, and
¢ |deg] and @ [deg] are the attitude of the satellite in the roll and yaw axis direction, respectively.
Since the model for each control problem can be represented in the same manner, only the control
problem for the yaw axis is considered here.
Let u(s) be the control input (thruster torque), and 6(s) be the attitude in the yaw axis direction
(referred hereafter to as the yaw angle), which is measurable. The transfer function from u(s) to 6(s)

then can be represented as the sum of n-dimension oscillation models, which is expressed in the
following transfer function [2].

it el L 7
= e o ; 2
; s2 + 2¢wis + wiZ 2)
In (2), J [kg'm?] denotes the moment inertia of the solar paddle. {;, w;, and v (i = 1,...,n)
are, respectively, the damping coefficient, the characteristic frequency, and the torque admittance
for i-th oscillation model. Particularly in the control design of satellites, the exact values of these
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parameters are usually difficult to obtain. Therefore, in the next section we assume that most of
the parameters are unknown, whereas the approximate values of some are known.

3. CONTROLLER DESIGN
3.1. A general extended state observer

Before we design a controller for a flexible satellite discussed in the previous section, let us give
a general idea of an extended state observer [4].
Consider a nonlinear uncertain system described below:

2™ = fz,5,..., 20D, 1) + d(t) + bu(t), )

where f : [0,00) x D = R denotes the unknown dynamics, d : [0,00) = R and u € R denote an
unknown external disturbance and the input to the system respectively. b(# 0) € R is a constant
gain which is known. Assume that f, d, and u are piecewise continuous in ¢ and locally Lipschitz
in z on [0,00) x D, and D € R™. Suppose we can only measure the state z € R. Our question is
whether we can construct an observer to estimate the unknown functions f(-) + d(t) by an online
algorithm. For this purpose, let us define

aft) = f(z,...,2" 1, 1) +d(t),
as an unknown time function, and rewrite (3) as
™ = a(t) + bu(t). (4)

An important point here is that, instead of considering f(-) + d(t) as a nonlinear function of z, we
are considering a(t) as a time function. In this way, the nonlinear equation (3) apparently becomes
a time-varying equation (4). The problem now is how to estimate the time function a(t). To proceed
further, we define

{ z; =z01), (i=1,...,8)

Tny1 = (M — bu(t) = a(t).

where Zn41(= a(t)) is referred to as an extended state variable. In terms of these variables, (4) is
equivalent to

:i:l =2,

(5)

Tp =Tpslt+ bu(t)a

Here, it is necessary to assume that a(t) is differentiable to guarantee the existence and the bound-
edness of a(t). To estimate the states z;, (i = 1,...,n+1), we construct a nonlinear observer

#(t) =2z - pfiglal),

i) = znr1(t) — Bugn(er(D) + bu(d),
#nt1(t) = = —Brt19n+1(€1(2)),
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where €;(t) = 2i(t) — zi(t), (i = 1,...,n+1) denote the observer’s estimation errors. By this defini-
tion, we are able to rewrite (6) as follows

é(t) = et) — Prgr(er(?)),

én(t) = €n+1(t) — Bngn(e1(t)), (7)

én+1(t) = —a(t) — Bn+1gn+1(e1(?)).

When a(t) varies in a certain range, it is possible to choose the appropriate nonlinear functions gi
and constants f3; in (7) such that the estimation errors €;(t) are bounded as time tends to infinity, or
in other words, €(t) converge to the neighborhood of the origin. Therefore, ,,11(t) tracks the system
dynamics a(t), allowing us to use the estimated dynamics to compensate for the uncertainties in
order to achieve good control performance.

In the next section, we show the concrete forms of the nonlinear functions in the extended state
observer (6) for a flexible satellite, and we explain why they work.

3.2. ESO for a flexible satellite

Let us consider that the dynamics of the flexible satellite are written as the following second order
differential equation,

6*(t) = f(6*,6%) + d(t) + bu(t), (8)

where 6* := Jof, and Jp is the approximate value of J. In (8), \ye know only the constant Jy
and b, which are not necessarily the exact values of the plant. f(6*,6*) and d(t) are assumed as the
unknown dynamics and unknown external disturbance. As in the previous section, we define

a(t) := f(6*,6%) +d(t)
as an unknown time function, then substitute this into (8) to get
0*(t) = a(t) + bu(t). 9)

Obviously, if the values of a(t) can be estimated in real time, then the unknown dynamics can be
compensated by the control input u(t).

In what follows, we consider a(t) as an extended state and we construct an ESO for (9) to
estimate a(t) for feedforward compensation. Specifically, the ESO is given by the following nonlinear
differential equations,

2 =2z — Pig1(€1), z1(0) =0,
2o = z3 — Paga(€1) + bu, z2(0) =0, (10)
z3 = —Pags(e1), z3(0) =0,

where

e1(t) = z1(t) - °(¢)

represents the estimation error of a quantity related to the yaw angle of the satellite. The nonlinear
function g;(€;) are chosen as

le1|% sign(e1), |e1] > 6,

i(e1) = (11)
gi(e1) % lex] < 6.
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Bi >0and 0 < o; <1 (i = 1,2,3) are prespecified design parameters, which are constants.
Basically, g;(e1) are switching functions, but to avoid chattering at €, =0, a small constant §( > 0)
is introduced. It also should be noted that due to the existence of the nonlinear term |e;|*, the gain
of gi(e;) in the neighborhood of the origin is very large.

Let us put the case that o; = 1, (i = 1,2,3), and study the stability of the ESO. First, we
introduce ESO’s estimation errors €;(t) (¢ = 1,2,3) defined as

eilt) = % (t) - zilt), (12)
Differentiating (12) and substituting (10) to the result yields the following state space representation,
€(t) = Ae(t) — v(2), (13)

where

- 10 0 €1(t)
A= {—ﬂz 0.1}, vt)= ( 0 ) , €)= 62(t)) :
=fs. 0.0 a(t) €3(t)

We can view (13) as a perturbation of the nominal system é(t) = Ae(t), with the perturbation term
v(t). When v(t) = 0, it is immediate to see that (13) is exponentially stable if and only if A is
a Hurwitz matrix, that is, all eigenvalues \; of A satisfy Re Xi(A) < 0. This condition can be easily
satisfied by choosing

P12 > B3 - (14)

We are, however, concerned with the stability of (13) when v/(t) # 0 since v(t) contains the derivative
of the system dynamics a(t). Due to the perturbation term v(t), the origin € = 0 may not be an
equilibrium point of the system shown in (13). Thus, we can no longer study the stability of the origin
as an equilibrium point, nor should we expect the solution of the perturbed system to approach the
origin as t — 0o. The best we can hope for is that if v(t) is bounded in some sense, the () will be
ultimately bounded by a small bound, that is, |l(¢)|| will be small for sufficiently large ¢.

To simplify the stability analysis, we transform the system shown in (13) into the following
controllable canonical form

é(t) = A&(t) - v(t), (15)

where &(t) := Te(t), #(t) := Tv(t), such that A is a diagonal matrix written as A :=TAT! =
diag()\1, A2, A3). This can be done by defining T' as

50 5 1
T:=VT= A% AZ 1 ’
Mbosesed

where V is the Vandermonde matrix. Here, we need to assume that \; # A;, (i # j) to guarantee
the non-singularity of the transformation matrix T Since A is a diagonal matrix, we are now able
to treat (15) as three independent state space equations, which can be rewritten as follows

&) = ME(t) —at), =123 (16)

Using the convolution theorem, we see that the solution of (16) is given by

&(t) = — /t Mi(t="g(7) dr. . (17)

0
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Taking the absolute value of (17), we have

& /t Ie’\i(t‘T)d(T)l dr < /t 'e’\"(t_T)
0 0

Now, let ag be the upper bound of |a(t)| such that

t
&) = ' /0 Xt-4(r) dr Ja(r)]| dr. (18)

sup |a(t)| < ap,
t€[0,00)

and let ); be the real part of ); defined as \; := Re[A;(4)] < 0. Thus, (18) can be calculated as
follows

ki 4 e ¥
l€(t)| < ao/ |e’\i(t_7') dr < ag ‘e’\it’/ 'e—/\i'r TR (1 . e'\it) ' (19)
0 0 |Ad
Hence, for sufficiently large ¢, it is obvious that
lim [&(t)] < =% :=b 20
B IO < i = bo .

which shows that €;(t) are uniformly ultimately bounded'. This implies that the estimation errors
€i(t) are also uniformly ultimately bounded, i.e, €;(t) converge to the neighborhood of the origin as
t — oo, with the upper bound by. It should be noted that, since v/(t) # 0, the estimation errors €i(t)
do not converge to the origin but to the neighborhood of the origin instead. However, as the upper
bound is inversely proportional to |);| and ); can be arbitrarily specified by choosing proper design
parameters f;, we are able choose f; such that |);| is sufficiently large and thus by is sufficiently
small. This result can be summarized in the following theorem.

Theorem 1. Under the condition (14), the estimation errors (t) of the system shown in (13) are
ultimately bounded as t — oo, where it is possible to choose the design parameters f3; such that the
upper bound by is sufficiently small.

Now, let B; be properly specified such that the upper bound by is sufficiently small, or by — 0. If
we determine the control torque u according to

u(t) = uo(t) — b~ z3(t) (21)

where wuy is a properly designed feedback controller, then it is obvious that

0*(t) = buo(t)

which shows that the dynamic a(t) is canceled, and §* depends only on ug(t). With this result, it
is possible to design a controller ug(t) such that, the yaw angle 6(t) moves accurately to a given
desired position. Here, uo(t) is chosen as an I-PD controller given as

ug(t) = —kpB(t) — kab(t) + ki /Ote('r)d'r, (22)

where e(t) = r — 0(t) represents the yaw angular position error.

We have shown that the ESO (10) can estimate and compensate for the unknown dynamic a(t),
allowing us to realize high performance attitude control. This is a significant advantage since we do
not need to conduct identification experiments.

'The general idea of the ultimately boundedness is given in [5]
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4. SIMULATION RESULTS

Several simulations are conducted to verify the effectiveness of ESO. The closed loop system for
simulations is shown in Fig. 2. The model for the flexible satellite is given in (2), where the order
of the oscillation mode n = 3. The physical parameters for the model, some of which are the same
as those in [3], are listed in Table 1.

For comparison, two controllers are used:

1. I-PD only, [ Eq. (22) |,
2. LPD + ESO, [ Eq. (22) + Eas. (10), (21) ].

The latter controller is referred hereafter to as an ESO controller. Unless otherwise specified, the
various constants for both I-PD and ESO are as listed in Table 2, where «; and ; are determined
by trial and error.

The objective of the simulations is to control the output of the closed loop system shown in
Fig. 2, which is the satellite’s attitude in the yaw axis direction 6(t), so that it moves from its initial
position 0.0° to a given desired position +0.05°.

Simulations results are shown in Figs. 3-7. Figure 3 (top) shows the yaw angle 6(t) when the
parameters of the plant are exactly known, using both controllers. The result using the I-PD is
plotted with the dashed line, and the result using ESO is with the solid line. Both results show
good transient response and there is no significant difference between the two controllers. This is
natural since the I-PD parameters are determined such that the system gives the best result using
the frequency region method [11]. However, the results become different when, for instance, the
inertia J is not exactly known.

0:(s), e@)| prpp |wols), _ u(s) Flezible Satellite 0(s)
& - eq.(13) - - Model - Eq. (2) -
ESO
- Eq. (10)

Fig. 2. Closed Loop System

Table 1. Physical parameters of the flexible satellite Table 2. I-PD and ESO parameters
Parameter Value Unit Parameter Value
M f Inerti J = 13256 kg-m?/rad? s
i e = ] I-PD feedback gain k; = 1.329
v = 0.0155 kq = 1329
Torque admittance v = 0.007 oy =1
¢, = 0.005 by Y
Fepiiy, Loslidicey ? = gg; ESO design parameters | 81 = 10
3 =0. :
wy = 27 x 0.177 B2 =10
Characteristic frequency | ws = 27 X 1 [rad/sec] Bs =10
w3 = 2w x 10 §=10"°
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Fig. 7. System output using ESO, when the design parameters (a;, ;) vary

Figure 4 shows the yaw angle 6(¢) when the real inertia J is twice as much as the nominal value
Jo, i.e., J =2xJy. From Fig. 4 (top) we can see that, when only I-PD feedback controller is used
without compensating for the unknown dynamics, the yaw angle 6(t) overshoots the desired position
0.05° before it converges to it, as is plotted with the dashed line. On the contrary, if the unknown
dynamics are compensated by using ESO, the yaw angle §(¢) moves smoothly to its reference point
without overshooting, as if J were known. Figure 4 (bottom) shows the dynamic of the plant a(t)
(which are actually unknown) and its estimated value 23(t). We see that z3(¢) estimates the unknown
dynamic a(t) precisely. This allows us to eliminate a(t) by feedforwarding z3(t).

Similarly, we show simulation results when the nominal values (y;, wp; are ten times as much as
the real value ((p; = 10x(;, w1 = 10xw;, 2 = 1,2,3). As depicted in Fig. 5, the I-PD yields poor
transient performance, with 8% of overshooting. However, the ESO shows satisfactory transient
response, which corresponds with results of the previous simulations, and the estimated output
23(t) tracks precisely the unknown dynamic a(t).

From Figs. 3, 4, and 5, it can be stated that the transient performance of the I-PD controller is
greatly affected by the plant’s parameters and the controller’s parameters, while the ESO controller
gives robust performance in terms of the parameter variation.

The next simulations demonstrate how the ESO can also estimate possible external disturbances
and automatically attenuate the disturbances. In the simulations, two kinds of step disturbances
given below are added to the input: (1) a step function from 20 [sec] to 21 [sec] (1-second long), and
(2) a step function from 20 [sec] to 24 [sec| (4-second long). The results are depicted in Fig. 6 (top)
and Fig. 6 (bottom), respectively. From both simulations, it is observed that the maximum displace-
ment of (¢) using ESO controller is approximately 25% compared to that of using I-PD controller,
which implies that the ESO yields a great disturbance attenuation characteristic, whereas the I-PD
does not. i

The last simulations are to study the effect of the variation of the ESO’s design parameters «;,
B; to the output of the system 6(t). The plant’s parameters (; , w; are set to be the same as those of
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Fig. 5, causing the I-PD to give a poor performance since the nominal values (p; , wp; of the plant
are far from their real values (;, w; . The results are shown in Fig. 7, and the corresponding design
parameters «;, B; are shown in Table 3. We can obviously see that Fig. 7(a)-(d) shows almost
the same results regardless to the variation of the design parameters. In fact, a simulation with
B1 = 10,8, = 10*, B3 = 10° was also conducted and the result remained unchanged. This fact
allows us to easily choose the design parameters with relatively little effort.

Table 3. ESO design parameters for Fig. 7(a)-(d)

Parameter Value
Fig. 7(a) | Fig. 7(b) | Fig. 7(c) | Fig. 7(d)
a; = 0.9 0.8 0.9 1.0
Qg = 0.6 0.7 0.5 0.9
az = 0.3 0.6 0.2 0.8
B = 10 20 10 20
B = 20 40 20 40
B3 = 30 70 30 70

5. CONCLUDING REMARKS

This paper has been concerned with high-precision attitude control of a flexible space structure,
where the dynamic model of the flexible space structure is represented as a second order nonlinear
differential equation. The physical parameters involved in the dynamic model considered in this
paper are not necessarily known.

By viewing the unknown dynamics as a new state and by constructing an ESO, we are able to
estimate online the unknown dynamics for feedforward compensation. This allows us to accurately
control the flexible space structure without knowing the physical parameters, so that in-orbit iden-
tification experiments to find the exact parameters are not neccessary. The stability of the ESO is
theoritically proved in the case when a; = 1.

Simulation results show the effectiveness of the ESO’s feedforward compensation even though
the real parameters are not known, and moreover, the ESO also shows a satisfactory disturbance
attenuation characteristic. In addition, since the ESO control law is not complicated, it is easy to
implement, and also does not require large scale memory or a high speed CPU.
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