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The paper is a development of research originated in [8]. The identification problem deals with searching
the location of a small mass attached to a steel plate. The corresponding inverse problem is based on
measurement of dynamic plate responses on a laboratory model of the plate, taking into account only the
bending plate eigenfrequencies. In the inverse analysis the Recurrent Cascade Neural Network was applied,
developed in [3]. Much attention is paid to recognition of identification possibilities of RCNN. The testing
process is in fact an unsupervised learning, which can lead to unstable and inaccurate recurrence procedure.
That is why the verification testing process was carried out adopting the barrier bound approach. These
problems are discussed in the present paper.
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1. INTRODUCTION

The paper is a continuation of investigation reported in Piątkowski’s Ph.D. dissertation [8]. The
problem discussed involves identification of location of a small mass attached to a bending elastic
plate, see Fig. 1a. The plate dynamic characteristics can be tuned owing to change of the mass place-
ment. This effect can be explored in formulation of new non-destructive methods of construction
damage detection, see [1].

a) b)

Fig. 1. a) Laboratory model for testing steel plate, b) scheme of tested plate.
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On the basis of laboratory tests the plate responses were measured using an experimental lab-
oratory set shown in Fig. 1a. The responses corresponded to the plate natural eigenfrequencies,
where related to the bending forms of plate vibrations. They were measured for 27 locations of the
mass attachments at the nodes of the square mesh corners, placed on a half of the symmetric plate,
see Fig. 1b.
In order to identify an unknown location of the mass the Recurrent Cascade Neural Network

(RCNN), described in [3], was applied. This network is a generalisation of the commonly used
Cascade Neural Network, in which only the first step of recurrent process is carried out, cf. [11].
Due to continuation of this process, the recurrence of RCNN enabled us to improve significantly
the accuracy of the network learning and change the character of the testing process, see [3].
Similarly as in [8, 9], the displaced coordinates {y1, y2}m for m = 1, . . . , 27 measurement points

of the additional mass attachment, were adopted as identified control parameters. The vector
of measured plate eigenfrequencies {ωj}m were the plate dynamic responses, corresponded to
j = 1, . . . , J plate measured eigenfrequencies. Thus, the inverse problem {ωj}m → ym was analysed
without introduction of any numerical model for the approximation of responses. Similarly as in
[8], the amount of input data was increased adding the artificial white noise to the measured
eigenfrequencies.
It was stated that the recurrent process, applied to the training patterns, runs similarly to

that performed in the Jordan neural networks [7]. The learning process fully corresponds to the
standard training of neural networks. A great difference is in the training process, which turns out
to be related to unsupervised learning, recurrence iteration process. Contrary to results obtained
in [3], where the computer simulation data were adopted, the problem investigated in the present
paper is based on noisy data measured on the laboratory model. This caused difficulties with the
stability and convergence of the recurrence testing process. These questions are discussed in the
subsequent sections of the present paper.

2. TESTING OF PLATE LABORATORY MODEL

A rectangular steel plate was clamped in the rigid stand, cf. [8, 9] and see Fig. 1a. The plate was
made of an elastic steel strip of Young’s modulus E = 208 GPa and thickness h = 10± 1 mm. The
plate weight was 10.76 kg and the additional mass of weight 109 g was attached at the corners of the
quadratic 50×50 mm mesh atM = 3×9 = 27 points (mesh corners) at the half of symmetric plate,
see Fig. 1b. The experimental equipment was composed of eight PCB acceleration sensors, LMS
SCADAD III analyser and LMS CADA-X software. Accelerograms were obtained for 27 locations
of the small mass attachment with the measurement resolution of 0.5 Hz.
By means of Fourier Fast Transformation the first eight eigenfrequencies, corresponding to the

bending forms of the plate vibrations, were selected for each additional mass location, see Fig. 2.
Numbers 1-8 correspond to bending vibration form of the plate.

Fig. 2. Scheme of the Recurrent Cascade Neural Network (RCNN).
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The measured plate responses are the eigenfrequency vectors ωm ∈ RJ corresponding to the
locations Xm ∈ R2 of the attached small mass. This means that the following mapping is made for
locations points m = 1, . . . , 27, corresponding to the measurement process:

Xm ∈ R2 → ω
m ∈ RJ , (1)

where J – number of eigenfrequency vectors taken into account at the mapping.
In Table 1 the bands of measured eigenfrequencies are given. From among them the first eigen-

frequency ω1 was omitted and the next five eigenfrequencies were adopted, as these with the bands
appropriate for the identification analysis. This means that in [8] the number of adopted eigen-
frequencies was J = 5.

Table 1. Measured eigenfrequency bands of the bending forms of plate vibrations.

Number
of eigenfrequency

Interval values of eigenfrequencies

ωmin ωmax

1 35.5 37.0

2 116.0 125.0

3 236.0 256.0

4 430.5 445.0

5 588.5 636.0

6 645.5 673.0

7 829.5 862.0

8 930.5 984.0

On the basis of extended investigations both eigenfrequencies and corresponding vibration forms,
the number of eigenfrequencies in the present paper was reduced to three that gave J = 3. The
eigenfrequencies ω2, ω3 and ω4 were adopted in the identification analysis. This means that in the
present paper the number of measured vectors of eigenfrequencies P is M = 27 locations of the
attached mass.

3. RECURRENT CASCADE NEURAL NETWORKS

3.1. Some general remarks on RCNN

As mentioned in the Introduction, RCNN is a kind of Jordan’s neural network, cf. Fig. 3. It is
composed of two parts. The input unit is the MLP (Multilayer Perceptron) network which has
inputs corresponding to measured eigenfrequencies {ω}m . The other part of RCNN, called context
unit, has the input/output self feedbacks y(k)i /y

(k+1)
i for i = 1, 2.

The learning process proceeds under supervised learning. This means that the learning set of
data L is composed of ML known values of input/output pairs, randomly selected from the set of
known data, which correspond to the measured set of patterns P = {(ω,y)m}Mm=1. The patterns
which were not selected compose the testing set T composed of MT = M −ML patterns (random
selection fulfils the following conditions: P = L∩T = ∅, P = L∪T ). In case we use the randomly
selected testing set T , we perform the testing process for the known outputs, whose values are used
in measuring of the testing process errors. Such an approach has a subjective character, see [4]. In
the training process commonly used we compute predicted values of outputs without exploring their
known outputs. Such outputs serve to verify computer results with those obtained on laboratory
models or real structures.
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Fig. 3. Eigenfrequencies for the bending forms of a steel plate vibrations.

The training process discussed above does not correspond to recurrent computations carried out
by RCNN because we have a set of discrete values of output vectors components yri (k). Because of
the recurrence process, instead of standard testing we have to perform the unsupervised learning
process.
Unsupervised learning is performed in cases we do not know the output values. Such a problem

is related to the identification analysis. Looking at the learning process from the view point of the
Hopfield type neural networks learning, the supervised learning corresponds to the stage of the
network fundamental memory computation, see [2] when we compute attractors, which play the
basic role in the next, recognition stage. Such a stage corresponds to the unsupervised leaning.
From the mechanical point of view this process is related to searching of asymptotically stable
points in the basin of attractors (searching for minimal values of network energy, cf. [2]).
The discussed analysis was numerically verified in [3], where the geometrical parameters of

elastic circular, shallow arches were identified. The direct problem of computation of arch eigenfre-
quencies was carried out by the FE code ADINA. Then the inverse analysis was performed by the
RCNN network. In [3] also artificial noise was introduced into the computed eigenfrequencies. The
supervised learning gave satisfactory results after K = 3 recurrence cycles. The training process,
supported on the un-supervised learning, gave convergent identified values of geometrical param-
eters for K = 3 recurrences, both for the perfect and noisy data. The results of the unsupervised
learning were poorer than for the network recurrence learning, but the accuracy of the identification
process could be estimated as quite good from the engineering point of view.
The analysis of the identification of the mass locations, concerning the problem reported in

the present paper, turned out to be much more complex than identification of the geometrical
parameters of arches. The number of needed recurrences reached K ≈ 10−20 cycles of recurrence
in the supervised learning process. This number of iteration steps gave stable but very inaccurate
values of the unsupervised learning, performed for the measured noisy patterns. That is why an
approximate approach was introduced. It can be called the verification testing process, related to
introduction of a barrier bound as a penalty term. This corresponds to a subjective element of the
testing process commonly used, induced by the recurrent character of RCNN. Such an approach is
discussed below.

3.2. RCNN in the inverse analysis of additional mass location

In the problem considered we have a 2D space of control parameters. They correspond to the vector
of computed displaced mass location vector ym = {ym1 , ym2 }. We consider an inverse regression
problem, related to the parametric identification, which is related to the following mapping:
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ω
m ∈ R3 RCNN−−−−→ y(xm, w) ∈ R2, (2)

whereωm
(3×1) – vectors of eigenfrequencies measured at m = 1, . . . ,M points of the additional mass

locations, y(2×1)(x
m, w) – vector of displaced mass locations at point m, xm = {X,Y }m – vector

of coordinates of point m, w ∈ RW – vector of the neural network weights.
The RCNN is shown in compact form in Fig. 3. The extended form, developed in [3], is presented

in Fig. 4. Figure 4a illustrates a neural network called a Multi-Layer Perceptron (MLP), cf. [2], of
architecture MLP: 3-H-2 with a single hidden layer. This network corresponds to mapping (2).

Fig. 4. Transition from a) Multi-Layer Perceptron (MLP) to: b) Cascade Neural Network (CNN) for k = 1,
c) Recurrent Cascade Neural Network (RCNN) for k > 1.

Instead of MLP shown in Fig. 4a, a two-level RCNN is formulated for subsequent recursive
cycles k. The standard CNN is applied for the first cycle k = 1, cf. [8], using two level networks
with single outputs: I) CNN I(1): 3-H-1, II) CNN II(1): 4-H-1, see Fig. 4b. The networks CNN I(k)

and CNN II(k) are of architecture 5-H-1 used for k > 1, see Fig. 4c.

3.2.1. Learning of RCNN

The supervised learning of RCNN corresponds to recursive computation of the network weights.
Following [8, 9] the data set was extended. Besides the measured eigenfrequency vector ωm

(3×1),

artificial noisy frequencies {ω̃m
n }Nn=1 ∈ R3 were added at each measurement point m. Thus, the

noisy vector of eigenfrequencies has 1+N vectors of frequency, i.e. {ω̃m
n }N+1

n=1 = {ωm + ω̃
m
n }N+1

n=1 .
The noisy vector input {ω̃m

n }N+1
n=1 is related to the 2D output vector y

m = (y1, y2)
m.

According to the algorithm developed in [3], the RCNN is formulated by introduction of the self
feedback with respect to two coordinates y1 and y2, see Fig. 3. This means that for the recurrences
k > 1 the networks are of architecture 5-H-1, see Fig. 4c. Figure 4 is valid for each point m of the
attached mass location. Due to self feedback the context input has the time delay character.
The learning process, carried out in the context unit of RCNN, corresponds to the prototype

stage in the Hopfield NN, cf. [2]. This means that due to the training process, attractors are
generated at each measurement point included into the network learning process. The accuracy of
the RCNN learning was estimated by the Root Mean Square Error (RMSELi) for single outputs yi:

RMSELi =

√√√√√ 1

ML × (N + 1)

ML∑

m=1

(1+N)×ML∑

p=1

(yp,mi − tmi )2, (3)

where i = 1, 2 – the number of the displaced coordinates of a point of the mass location, cf. Fig. 5a,
ML – the number of learning measurement points m, N – the number of noisy patterns p related
to the mass location point m, tm1 = Xm and tm2 = Y m – coordinates of the target output.
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a) b)

Fig. 5. a) Circular barrier bound for diminishing of the output vector y(k+1) length,
b) location of verification points r for Example A and Example B.

The algorithm discussed above needs stopping criteria. They correspond to the number of cycles
Kadm , which enables fulfilling an adopted admissible error AdmRMSEL, see [3]. The other criterion
is related to a fixed value of cycles, for instance K = 20, which was adopted as a stop criterion in
the present paper.

3.2.2. Identification of mass location for given measured eigenfrequencies

The approach commonly used has a subjective character, (see [4]), which is related to testing
patterns T , randomly selected from the set or patterns P with known values of outputs, cf. previous
Subsec. 3.1. Then for MT measurement points, the predictive outputs yr should be computed by
means of unsupervised learning for r = 1, . . . ,MT patterns not included into the network training.
In case of RCNN the above mentioned approach can not be general and efficient, since it can

lead either to bad predictions or the recursive iteration process can be divergent. Such numerical
effects are caused by self feedbacks, which can cause the unsupervised learning very unstable for
measured noisy patterns.
In the present paper we adopted the approach developed in [8]. The total number of M = 27

points, where the plate eigenfrequencies vectors ωm
(3x1) are measured, coincide with the locations of

subsequently attached additional mass. The set P composed ofM patterns was randomly split into
ML andMT learning and testing (identified) points, respectively. Thus, the testing error commonly
used has the following form:

RMSETi,(k+1) =

√√√√ 1

MT

MT∑

r=1

(yr
i,(k+1) − tri )

2. (4)

A number of numerical experiments pointed out that unsupervised learning cannot be applied
directly in the testing analysis corresponding to the adopted error measure (4). As previously
mentioned, the noisy data obtained during measurements cause a great inaccuracy of computed
vales of outputs. That is why the barrier boundary of circle shape was introduced as a penalty term
to reduce the growth of the output vector length, see Fig. 5a. The centre of the barrier bound is
placed at a fixed point r, see Fig. 5a.
The barrier bound of circle shape was adopted as a penalty term for reducing the growth of the

output vector length |y(k+1)|, see Fig. 5a. The computation of the improved vector of the length
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|ŷ(k+1)| = R can be made after both components of this vector are known, i.e. after the second
step of each recurrent cycle k. The improvement condition can be written in the form:

if |ŷ(k+1)| ≥ R then |ŷ(k+1)| = R and (ŷ1 = R cosϕ, ŷ2 = R sinϕ),

where R – radius of the circle barrier bound, ŷ(k+1) – improved vector related to the centre point r,
see Fig. 5a.
In case the centre of the circle barrier bound coincides with the fixed location r of the additional

massm we obtain the approach adopted in [8]. The unsupervised learning, with such a barrier bound
with the known location of its centre, can be called a testing verification process or verification
process, for short. This process, used in [8], can verify the accuracy of the coincidence of the points
mass location corresponding to the measured and verification processes.

4. VERIFICATION OF NEURAL INVERSE ANALYSIS

4.1. Formulation of patterns and design of RCNNs

The additional mass was placed subsequently at M = 3 × 9 = 27 locations marked in Fig. 1b
as measurements points m = 1, . . . , 27. Around each of them twelve noisy points were randomly
generated assuming artificial white noise with Gaussian distribution of zero mean and standard
deviation σ. On the basis of the investigations carried out in [8], we assumed noisy values of
frequencies {ω̃j}4j=2 generated in [1] for σ = 0.001.
Thus, the input data set is completed of P = 3 × 9 = 27 measured vectors of eigenfrequencies

(patterns) and PN = 12 × 27 = 324 noisy patterns. Altogether P̃ = (1 + 12) × 27 = 351 input
patterns were adopted. They correspond to 2M output coordinates treated as components of the
target vector t(54×1) = {Xm, Y m}27m=1.
For the design of RCNN at the first cycle k = 1 a single output CNN networks of architecture

4-H-1 and 5-H-1 were designed. In order to estimate the optimal value of hidden neurons Hopt the
data set P̃ was randomly split with respect to the number of measurement points to have learning
and testing data sets corresponding to the learning and vverification sets. Next, using the MLP with
two outputs, the cross-validation method was applied in [8], which gave the estimation Hopt = 5.
The same number of hidden neurons was estimated as the optimal number of hidden neurons for
the network of architecture 5-H-1 for the next recurrent cycles in RCNN(k) for k > 1.
The networks mentioned above were composed of bipolar sigmoid hidden neurons and the linear

output. The computations were carried out by means of the package called Neural Networks Toolbox
for use with MATLAB [5], applying the Levenberg-Marquardt learning method.
The computation was carried out applying dimensionless variables: ωj = ωj/ωmax ∈ (0, 1.0],

X = X/12.5 ∈ (0.0, 1.0] and Y = Y/42.5 ∈ (0.0, 1.0]. In the discussion of results and in the figures
and tables physical quantities were used.

4.2. Two random selections of verification mass locations

In order to compare the results obtained by RCNN, the verification measurement points were
adopted as those randomly selected points analysed in [8].

• Example A: Three verification points r = m = 11, 24, 25 selected randomly in [8], see Fig. 5a.

• Example B: Four verification points r = m = 5, 12, 19, 25 selected in this paper and shown in
Fig. 5b.
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Example A:

The learning and identification (testing) error curves RMSES i for the learning and testing type
of unsupervised learning and verification processes (marked by S = L, U , V ) for the coordinates
i = y1, y2 are shown for the barrier bound parameter R = 2.5 cm, see Fig. 6.

Fig. 6. Error curves RMSES i(k) for Example A, where: i = y1, y2, and for the supervised learning S = L,
unsupervised learning S = U and for verification S = V processes, i.e. RMSELi(k), RMSEU i(k) and

RMSEV i(k), respectrively.

The learning process is characterised by the monotonically decreasing learning error curves,
clearly visible at the curve RMSELi(k), for i = y2, see Fig. 6b. In case of the coordinate y1 the
learning process is monotonically decreasing up to the cycle k ≈ 6. Then errors are so small that
the numerical instability occurs and only a decreasing trend can be deduced.
The unsupervised learning error curves RMSEU i(k), computed for points r, are nearly inde-

pendent of the recurrence number k. They are strongly insensitive to the recurrence process. The
validation error curves RMSEV i(k) have discontinuous gradients caused by the interference of the
penalty barrier bound. The shape of these curves is similar to the learning curves. Other effects
are caused by a small number of the testing patterns (three patterns in Example‘ A). Such a set is
statistically non-representative so the error of the verification curve can only point out a decreasing
trend.
The convergence of verification iterations is shown in Fig. 7, where the computed points of mass

locations are presented vs. target values tm, depicted for selected recurrence cycles k = 1, 5, 10, 20.
It is visible a quick convergence of the recurrence process in case of the coordinate y1. An acceptable
value of K ≈ 10 cycles is twice smaller than the number of recurrence cycles for the identification
of y2 This corresponds to larger movements of displaced points in the direction parallel to the axis
y2 then to y1. The values of verification errors are listed in Table 2 for different values of the barrier
bound parameter R and k = 20.
Figure 8A illustrates the movements of verified points r = 11, 24, 25 in Example A. The initial

movable position of the ends of vectors yr, k+1), see Fig. 5a, are marked in Figs. 8 by H and the final
position, related to k = 20 corresponds to �. These positions of the movement of mass location s
are joined by the broken line.
It is visible that for the points located far off the clamped edge of the tested plate, the bounds

of movement are smaller than for the locations which are close to the lower, clamped boundary of
the plate. For the higher value of barrier bound parameter R the bands of location movements are
wider. Nevertheless, for R = 5.0 cm (equal the site of the measurement point mesh) the validated
positions of mass locations are quite accurate. In case of R = 7.5 cm the verified location of the
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Fig. 7. Relations of computed outputs yi(x
m; k) vs. target outputs ti(x

m; k) for Example A.
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Table 2. Displacements of points m for barrier parameters R for recurrence cycle k = −20.

Example m
(OXm, OYm) (∆OXm, ∆OYm) for: (∆OXm, ∆OYm)

[cm] R = 2.5 cm R = 5.0 cm R = 7.5 cm According to [1]

A

11 (7.50, 17.5) (0.00, 0.02) (0.00, 0.05) (0.01, 0.16) (0.00, 0.85)

24 (12.5, 37.50) (0.00, 0.06) (0.00, 0.14) (0.01, −0.44) (−0.09, 1.13)
25 (2.50, 42.50) (0.0, 0.08) (0.00, −0.74) (5.00, 1.35) (5.00, 3.21)

B

5 (7.50, 7.5) (0.00, 0.54) (0.00, −0.39) (0.03, 0.52) –

12 (12.5, 17.50) (0.00, −0,24) (0.00, −0.49) (0.00 0.65) –

19 (2.50, 32.50) (0.0, 0.21) (0.00, −0.13) (0.00, −0.07) –

24 (12.5, 37.50) (0.0, 0.12) (0.00, 0.75) (5.00, −0.59)

Fig. 8. Movements of location points H and � for Example A and B.

point 25 is false. After k = 20 recurrent steps this point moves towards the point 26, which is closer
to the measurement point 26 than to the validation point 25.
In Fig. 8A the verification performed for the same points as in [8] is shown. The identification

obtained for k = 1 (standard CNN was used in [8]) is much poorer than that obtained by RCNN
for R = 5.0 cm and k = 20. This especially concerns the point 25. The values of identified positions
of three measurement mass locations r = 11, 24, 25 are given in Table 2.
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Example B:

The verification of mass locations at four points r = 5, 12, 19, 24 was computed similarly as in
Example A. The only results are shown in Fig. 8B and Table 2. They confirmed the conclusions
expressed above, concerning the influence of the clamped edge boundary conditions of the tested
plate and on the accuracy of verification. The same effects are related to the adopted values of
barrier bound parameter R. The movement of points shown in Fig. 8A similar to the movements
shown in Fig. 8B. The displacements of points related to the verified points r = 5, 12, 19, 24,
computed for k = 20, are given in Table 2.

5. APPLICATION OF SBNN

Having single outputs in RCNN the Semi-Bayesian Neural Network (SBNN) was also used. It was
concluded in [10] that this kind of neural network can improve the accuracy of neural approxima-
tion. Application of SBNN in the considered problem of identification of location of a small mass
attachment gave results comparable to those obtained by RCNN for the training process. In case
of validation process basing on the SBNN application turned out to be divergent. This question
needs further investigation.

6. GENERAL REMARKS AND CONCLUSIONS

1. The paper is a continuation of research originated in [8]. The investigated problem was based
only on the measurements of a steel plate responses, which were eigenfrequencies corresponding
to locations of a small mass attached subsequently to the plate points. In such a way the
empirical data set EMP was composed of mass location points, distributed regularly over the
plate.

2. The Recurrent Cascade Neural Network (RCNN), developed in [3], was applied for the analysis of
a reverse problem. The problem was related to the validation of the location of the attached mass
knowing only measured eigenfrequencies. Thus, a hybrid computational system EMP&RCNN
was formulated. The system is of a low degree of fusion of two components EMP and RCNN,
cf. [6]. Contrary to the commonly used approaches, no computational method was used for the
approximation of measured responses.

3. The recurrence of RCNN enables significant improvement of the accuracy of supervised learning.
The testing process should correspond to unsupervised learning. This learning process proved
to be stable and quite accurate in case of computationally simulated patterns, see [3]. In the
case of measured noisy patterns, used in the present paper, the testing process is not convergent
with the identified patterns. Introduction of the barrier bound with immovable centre made the
recurrence process convergent with the known locations of the mass locations. These processes,
called verification process, do not well correspond to objective identification of tested patterns.

4. The results obtained for the verification process supported the introduction of the barrier bound,
and can be treated as a step towards deeper knowledge of the identification features of RCNN.
The current investigations are directed a the development of a new unsupervised learning process
corresponding to the RCNN network structure.

5. Application of Semi-Bayesian Neural Network gave results of the supervised learning comparable
to those obtained by RCNN. This was not the case of verification process which turned out to
be divergent if SBNN was applied. This question needs further investigation.
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