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Comparison of the classical methods and the tools of the catastrophe theory is presented through the
imperfection-sensitivity analysis of the classical stable-symmetric bifurcation problem. Generally, classical
global methods are related to a large interval, while catastrophe theory concerns the neighborhood of
the critical point only, being a local method. Unfortunately, in most cases of practical problems, by
using classical global methods, there can hardly be obtained analytical solutions for the multivalued
imperfection-sensitivity functions and the associated highly folded imperfection-sensitivity surfaces. In
this paper, an approximate solution based on the catastrophe theory is presented, in comparison with
the exact solution obtained in graphical way. It will be shown that by considering the problem as an
imperfect version (at a fixed imperfection) of a higher order catastrophe, a topologically good solution
can be obtained in a considerably large, quasi in a nonlocal domain.

1. INTRODUCTION

Catastrophe theory in comparison with the classical methods is presented, applied to the
imperfection-sensitivity analysis of the classical stable-symmetric bifurcation problem. Imperfection-
sensitivity analysis of the three classical types of bifurcation, the stable- and unstable-symmetric
- and the asymmetric bifurcation, is detailed in [7] related to geometric imperfection and perfectly
' dead loading devices. However, it may happen in practice that the nature of loading process is not
- perfectly “dead”, namely, it is not perfectly independent of the occurring deflections. On the contrary,
'~ some loading devices — for example the hydraulic loading — show certain deformation-sensitive but
conservative characteristics leading to the term ,configuration-dependent” loading device detailed
in [1].

Modification of the classical finite element model in the case of deformation-sensitive loading
ices is introduced in [3] by modifying the tangent stiffness of the structure. Comparison of
e effect of dead and configuration-dependent loading devices on the postbifurcation behaviour of
ctures, the modifications of the classical postbifurcation equilibrium paths are detailed in [4].
However, the path dependent characteristics of loading devices can be considered as imperfection of
the dead loading program. Imperfection-sensitivity analysis of the three classical bifurcation models
yith simultaneous material, geometric and loading imperfections is investigated in [5] where the
nathematical difficulties of any analytical solutions concerning the imperfection-sensitivity func-
are made evident. On the basis of the classical methods, the exact imperfection-sensitivity
es can be represented by certain sections only, obtained by graphical way. Even in the simple
mples of the well-known basic bifurcation models, the analytical solution of the global analy-

l

ubtful correctness. In this paper, approximate solutions are introduced based on the principles
catastrophe theory applied to structural stability problems [2, 6]. It will be proved that by
sidering the problem as an imperfect version of a higher order catastrophe, a topologically good
can be obtained in a considerably large domain.
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2. CLASSICAL AND LOADING IMPERFECTIONS

The three classical models of bifurcation with the referring equilibrium paths A(q) are seen in Fig. 1
for one parameter dead load F' = A\Fp where Fy = 1 is the basic loading level and ) is the loading
parameter. In Figs. 1a and 1b the stable and unstable-symmetric, while in Fig. 1c the asymmetric
bifurcation model are seen, respectively [7]. These types of simple structural models are assumed to
be composed by a perfectly rigid element pinned to a rigid foundation and connected to the support
by linear elastic springs.

The classical imperfection-sensitivity functions Ac;(e4) are also seen in Fig. 1 related to geometric
imperfection €, only. The system is geometrically perfect in the sense that the springs are unstrained
when the links are vertical, that is ¢4 = 0.

In this paper the stable-symmetric bifurcation problem is analyzed only, by extending the analysis
to loading imperfections, moreover, to the interaction of the geometric and loading type imperfec-
tions, as well.

Let us consider F' as the given external load acting vertically on the top of the rods in Fig. 1.
If the load F is independent of the occurring displacement u, it is a dead load, while if it is in
interaction with wu, it is a configuration-dependent load. Fundamental aspects and classification of
loading devices are detailed in [1]. :

Dead type conservative loading device supposes the applied load to be independent of the oc-
curring deflections. This kind of loading process can be characterized by the function F = \F,
regularizing the load level by the scalar parameter A, seen in Fig. 2c. Configuration-dependent or
deformation-sensitive conservative loading process assumes the applied load to be dependent on the
occurring deflections, but to be path-independent [1]. This kind of loading device can be specified by
a load—deflection function F(u) = AFp+ f(u) containing the classical controllable part A\Fy governed
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Fig. 1. The three classical bifurcation models, equilibrium paths and the classical imperfection-sensitivity
functions; a) stable-symmetric, b) unstable-symmetric, c) asymmetric
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Fig. 2. The configuration-dependent loading and the loading imperfection; a) linear configuration-dependent
loading, b) nonlinear configuration-dependent loading, c) dead loading, d) loading imperfection

by the load parameter A, and the deformation-sensitive part f(u) specified as a linear or nonlinear
function, seen in Figs. 2a and 2b. For the linear case the function is F'(u) = AFp + fu.

In this paper linear configuration-dependent loading is considered as loading imperfection. The
system is perfect in the sense that the load is perfectly dead, that is f = 0, thus, the loading tangent
f = g can be considered as loading imperfection, seen in Fig. 2d. ;

Let us consider now the modification of the classical imperfection-sensitivity functions in depen-
dence of the imperfection, that is, the deformation-dependence of the loading device.

In spite of the fact that imperfections are generally small in the classical imperfection-sensitivity
analyses, in this study large imperfections are also considered. Namely, the aim of the analysis is to
extend the local characteristics of the catastrophe theory to quasi-global one.

3. GEOMETRIC-LOADING IMPERFECTION-SENSITIVITY OF THE STABLE-SYMMETRIC
BIFURCATION MODEL OBTAINED BY CLASSICAL ANALYSIS

The linear elastic behaviour of the hinged rod seen in Fig. la can be characterized by the stress—
strain relation M = ¢ where c is the spring constant, M is the moment in the spring and 9 = ¢
is the angle of rotation of the rod, representing the strain in the spring. By considering exact
nonlinear geometry, the strain-displacement relation is represented by the trigonometric function
u=1[(1 - cosgq).

In the case of configuration-dependent conservative loading, by assuming the linear function
F(u) = AFy + fu, the external potential yields

Text (¢, A) = '/F(U) du = — /()\Fo + fu)du = —AFou — %fu2

= —\Fpl(1 — cosq) — -;—flz(l — cosg)?. (1)
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In the case of both geometric imperfection represented by an initial strain €y seen in Fig. la, and
loading imperfection by considering the load modulus f as imperfection ¢; seen in Fig. 2d, the total
potential, including the strain energy, too, yields

1
(g, A, €g,€1) = —AFpl(1 — cosq) — %elﬂ(l —cosq)? + 3 (g — eg)*. (2)

The classical imperfection-sensitivity analysis aims to obtain the function Xicr(€g, €1), namely,
the function of the critical loading parameter A, in term of the imperfection parameters €g4 , €. As
it is known, for equilibrium the condition é7 = 0, and for critical states also the condition 627 = 0
has to be fulfilled. That is, practically, to determine the function Acr(€g, €1), the following system of
equations is to be solved for ¢ and A,

—\Fylsing — gl?(1 — cos q) sing + c(q — Eg) =1, (3)
—\Fpl cos q — g1? (sin2 g+ (1 — cosq) cos q) +c=0. (4)

However, the global solution ¢ = ger(eg,€;) and A = (g, €;) of the highly nonlinear problem can
not be obtained analytically, thus, approximate solutions are needed. Namely, although from Eq. (3)
we can obtain the functions of the equilibrium paths of the imperfect structure

ca-&
l sing

1
Mg, eg,61) = 7 ( —gl(1 - cos q)) 3 (¢ # km, k any integer) (5)

which can be introduced into Eq. (4) yielding the function of the tangent stiffness of the imperfect
structure which is vanishing at the critical point, namely

K(q,eq,61) =c (1 - qt;;g) — gl?sin?q =0, (q # k), (6)

b)

Fig. 3. Geometric imperfection-sensitivity; a) equilibrium surface A(q, Eg, 0), b) sections of A(g, &4, 0) for
constant g, c) section Acr(gg , 0) of the imperfection-sensitivity surface Aer(gg , €1)
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Fig. 4. Geometric imperfection-sensitivity influenced by loading imperfection; a) equilibrium surface
g, &g, 1), b) sections of (g, &g, 1) for constant €y, c) section Acr(gg, 1) of the imperfection-sensitivity
surface Acr(eg , €1)

nevertheless, no analytical solution of this equation exists. Unfortunately, by applying Taylor expan-
sion for the trigonometric functions, the validity of the approximate solution of the imperfection-
sensitivity function Acr(gg, 1) will be limited to a local domain of the possible deflections g.

Global solutions can be obtained in a graphical way, only for sections of the imperfection-
sensitivity surface Acr(gg, €1), by fixing one of the parameters ¢, and ¢;. For this solution, the
equilibrium surface (5) of the imperfect structure is used. The expression \(g, €4, €;) represents
a hypersurface, thus, by fixing each of the imperfections as ¢, = o, or ¢ = B, the subdomains of
g, &g, €1), namely, the surfaces A\(¢,a,€;) or A(q, €4, B) can graphically be obtained, from which
the critical loads M. and critical deflections g.r can be identified. In this way, from the corresponding
values of A¢; and €4 or g, the sections of the ezact imperfection-sensitivity surface Acc(eg, €1) can
graphically be obtained.

In the following, for the numerical examples the values ¢ = 1, ] = 1 and Fy = 1 will be
applied. Let us fix first the loading imperfection for the surface A(g, ¢4, ). Two cases are considered:
g =B =0 and g = 8 = 1. The corresponding equilibrium surfaces (g, ¢, 0) and A(g, g4, 1) are
seen in Figs. 3a and 4a for the intervals —m < ¢ < m and —m < g4 < 7. In Figs. 3b and 4b the
sections of the surfaces A(q, €4, 0) and A(g, €4, 1) are plotted at constant values for the geometric
imperfections &4 . From the corresponding values of the critical loads A and imperfections €4, the
sections Acr(€g, 0) and Acr(gg, 1) of the ezact geometric-loading imperfection—sensitivity function
Acr(€g 5 €1) can graphically be obtained, seen in Figs. 3c and 4c.

The two imperfection-sensitivity curves Acr(gg, 0) and Aer(gg, 1) are qualitatively different. In
the case of Ar(gg, 0) in Fig. 3c, there is only a single critical load parameter for each value of ¢,
while for Acr(g4, 1) in Fig. 4c, three of them exist. The reason for this fact is that the geometrically
perfect structure exhibits a stable-symmetric bifurcation for the first, and an unstable-symmetric
bifurcation for the second case, as it can be seen in Figs. 3b and 4b respectively. Moreover, since
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the imperfection-sensitivity surface Acc(q, €;) is continuous, there exists obviously a certain value
of &; in the interval 0 < ¢; < 1 which represents the transition between the two cases. This question
has been mentioned from another aspect even in [3, 4, 5]. Let us determine the point of transition.
In this case the curvature of the equilibrium path at ¢ = 0 is zero, thus, by differentiating (6) with
respect to ¢, and by substituting £, = 0, the loading imperfection &; can be expressed, from which,
in limit ¢ — 0 the value g = ¢/3I? is obtained, corresponding to the transition point.

It is worth to be mentioned that in Fig. 4c the two curves have a common tangent at ¢ = w/2
and ¢ = —m/2. Since the fact that the curves are tangent to each other is a degenerative character-
istic, thus, by applying any small change in the parameters or by introducing approximation, the
degeneration can be avoided.

Let us consider now the surfaces A(g, a,¢;) by fixing the geometric imperfection as g, = a = 0
and €4 = a = 0.2. The corresponding equilibrium surfaces A(g,0,e;) and X(g,0.2,¢;) are seen in
Figs. 5a and 6a by applying the interval —m < g; < . In Figs. 5b and 6b the sections of the surfaces
Ag,0,¢;) and A(g,0.2,¢;) are illustrated at constant values of the loading imperfections ¢;. From
the corresponding values of the critical loads A.; and imperfections €, the sections A (0,¢;) and
Acr(0.2,€1) of the ezact geometric-loading imperfection-sensitivity function A (eg, €;) can graphically
be obtained, seen in Figs. 5¢ and 6c.

Between the two imperfection-sensitivity curves A(0,&;) and Aer(0.2,€;) there is qualitative
difference again. In Fig. 5¢ there are two curves tangent to each other and bifurcating at ; = ¢/3I2.
Notice that the decreasing curve is a double one representing the symmetry of the equilibrium
paths in Fig. 5b. However, the applied geometric imperfection destroys the symmetry in Fig. 6b,
consequently, in Fig. 6¢ the two curves of Fig. 5¢c diverge. Nevertheless, it can be seen that not the
horizontal and the decreasing curves are separated from each other, on the contrary, each of the
two covering parts of the double curve has been joined with the left or right part of the horizontal
curve.
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Fig. 5. Loading imperfection-sensitivity; a) equilibrium surface A(g,0,¢;), b) sections of A(g,0,¢;) for
constant €, c) section Acr(0,€;) of the imperfection-sensitivity surface Acr(gg , €1)
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Fig. 6. Loading imperfection-sensitivity influenced by geometric imperfection; a) equilibrium surface
A(g,0.2,&1), b) sections of A(g,0.2,¢;) for constant &;, c) section Acr(0.2,€;) of the imperfection-sensitivity
surface Acr(eg, €1)

Notice that in Figs. 5¢ and 6c the fact can be confirmed again that to smaller values of ¢; a single
imperfection-sensitivity point belongs, while to larger values of it three points belong, as we have
seen in Figs. 3c and 4c, too. This is obvious since all the curves Ac;(eg,0) or Acr(gg,1) and Acr(0, &)
or Ar(0.2,¢;) are sections of the same folded surface A (eg, €1).

As for the classical method to obtain the global imperfection-sensitivity function and surface, we
can conclude that for the exact global solution, a graphical method can be used, leading to sections
of the imperfection-sensitivity surface. Numerically, due to the Taylor expansion of the functions,
any solutions are limited to local parts of the global domain.

Let us consider now, how can we solve the problem by using the catastrophe theory. The idea
of applying the catastrophe theory is obvious, since it concerns approximate solutions only. As
a by-product, the classification of the problem with respect to the types of catastrophes will also
be obtained.

4. GEOMETRIC-LOADING IMPERFECTION-SENSITIVITY OF THE STABLE-SYMMETRIC
BIFURCATION MODEL OBTAINED BY CATASTROPHE THEORY

It is known in the catastrophe theory that if an universal unfolding of a catastrophe needs k number
of parameters, than in an arbitrarily small vicinity of it all the types of catastrophes occur which
need less than k parameters.

It is known [8] that stable-symmetric bifurcation occurs if the total potential energy of the
structure has a standard cusp catastrophe, while for unstable-symmetric bifurcation a dual cusp
catastrophe is needed. As we have seen above, in the imperfection domain to be analyzed both cases
occur, thus, a higher order than cusp catastrophe is needed, and the local analysis suggested by the
catastrophe theory will be investigated at this point.
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The potential energy function (2) has one variable (¢) and two parameters (gg, €;). (The dif-
ference between variable and parameter depends on the potential energy: it is differentiated with
respect to variables only.) With the cusp catastrophe the first three derivatives of the potential
energy have to be equal to zero. If a higher order catastrophe is needed, vanishing of the fourth
derivative is required, too.

These four conditions yield a system of equations with four unknowns (g, €4, &, A) which, by
considering Fy =1, c =1, | = 1, again, can be solved by MAPLE, leading to the point

1

q0 =0, €g0 = 07 Ao = L €0 = § (7)
(Notice that the solution provides even the common point of the horizontal straight line and its
tangent decreasing curve of Fig. 5c.)

The local analysis will be carried through at this point, thus, the origin of the coordinate system
(g, €g, €1, A) is transposed to this point by the transformations

q=4+qo =4q, €g = €g + Eg0 = £y, A=A+ X=A+1, el=é1+sm=él+%,(8)
obtaining the new variables (¢, &4, &, }). By substituting the new variables into the derivatives of
the potential energy, the first four derivatives will obviously be zero. Moreover, due to the symme-
try, the fifth one is also zero, and only the sixth derivative differs from zero, having the value 4.
Consequently, the potential energy function at this point has a standard butterfly catastrophe point.
In this way, for obtaining qualitatively correct results in the vicinity of this point, approximating
the potential energy function up to the sixth order by its Taylor-expansion seems to be enough.
Since the coefficient of the sixth order term of the Taylor-expansion is nonzero even at the origin,
the effect of the imperfections in the coefficient of the sixth order term can be neglected. But the
coefficients of the lower order terms are zero at the origin, so the effect of the imperfections in these
terms are to be considered,

& L e - 1 6 1 4 o # 1 2 L A
The canonical form of the butterfly catastrophe

1 A B :
f(a:,A,B,C,D)=—z6+—x4+—z3+gx2+D:c (10)
6 4 3 2
has been analyzed intensively in [6] concluding that the points of its bifurcation set can be described
by means of the parameters r, s, ¢ seen in [2] as

A = 4r — 10s%, (11a)
B = 3t — 12rs + 20s°, (11b)
C = —6ts + 12rs? — 15s*, (11c)
D = 3ts® — 4rs® 4 45°. (11d)

To use these parameters, function (9) has to be derived from the canonical form (10). By applying
the transformation

z = 30'/5¢, (12)
the form can be obtained

o 130%/3 :134(5\— él) 3048

2 0 "
w(z, &g, A &) = rid -+ o7 z2) — 301/6 Ty, (13)
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from which, by comparing (10) and (9), the coefficients of (10)

2/3 . "
ad 306 (,\ bi 3@,) VB T C=-3013%, D= -30M8¢,, (14)
are obtained. By substituting these into Eq. (11) of the bifurcation set, we have
RS o
» (A s 3@1) = 4r — 1052, (15a)
0 = 3t — 12rs + 20s3, (15b)
—30'/3 \ = —6ts + 12rs® — 1554, (15c)
—301/6 ¢y = 3ts? — 4rs® + 45°. (15d)
where the variable ¢ can be eliminated by fulfilling Eq. (15b),
t=4rs— @33. (16)
3
Thus, the parametric form of the imperfection-sensitivity surface can be obtained,
Eg = % 30%/6 3(—r + 25%), (17a)
< p2ownafeni g Diasasca i Aigaals 2 01732, 1
£ = 1530 rs 1830 s 1530 r+330- S +3, (17b)
o _% s2(=12r + 255%)302/3 + 1, (17¢)

as a section of the bifurcation set. By means of the above expressions, the approximate versions of
the classical imperfection-sensitivity curves can be calculated on the basis of the catastrophe theory.
Figures 3c and 4c illustrate the sections of the imperfection-sensitivity surface at ¢, = 0 and
e = 1, respectively. In both cases, from Eq. (17b) parameter r can be expressed in term of s.
By substituting this into Eqgs. (17a) and (17c), the required sections of the imperfection-sensitivity
surface can be obtained, seen in Figs. 7a and 7b. By comparing Figs. 3c and 4c with Figs. 7a and 7b,
respectively, the correspondence between the exact and the approximate curves seems to be evident.
In the second case the curves do not tangent each other any more due to the approximation.
Figures 5c and 6c illustrate the sections of the imperfection-sensitivity surface at ¢, = 0 and
gg = 0.2, respectively. In the first case, from the first equation of (17) two solutions are obtained:
s = 0 and r is arbitrary, or r = 2s%. By substituting the first solution into the other two equations
of (17), the horizontal line A = 1 and its decreasing tangent curve are obtained, seen in Fig. 8a.
Naturally, this latter is a double curve again, since to any values +s and —s the same point belongs.

a) R b)
\;
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geomimp

Fig. 7. Sections of imperfection-sensitivity surface Acr(eg, £1) obtained by catastrophe theory;
a) section Acr(gg, 0), b) section Acr(eg, 1)
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Fig. 8. Sections of imperfection-sensitivity surface Ac:(gg , €1) obtained by catastrophe theory;
a) section Acr(0,;), b) section Acr(0.2,€;)

In the second case, value of r can be expressed unambiguously. Although in this expression
the denominator is zero at s = 0, even this condition separates the two curves seen in Fig. 8b.
By comparing Figs. 5c and 6c with Figs. 8a and 8b, respectively, the conclusion is the same in
this case, too: the approximation provides topologically equal solution to the exact one. Namely,
the topologically equal figures contain the same features of curves: a smooth and a cusped one.
Moreover, for ¢, = 0 (Figs. 5c and 8a) the two curves partly coincide, while for gg = 0.2 (Figs. 6¢c
and 8b) they are separated. However, in spite of topologic equality, the associated curves are different
in geometry.

Moreover, the catastrophe theory solution provides the visualisation of the whole imperfection-
sensitivity surface, too. Since it is expressed in parametric form (17), it can be illustrated in three
dimensions, as seen in Fig. 9. Although the surface can not be expressed in term of the imperfections
being multivalued, by using the catastrophe theory, the visualisation is possible.

b)

Fig. 9. Geometric-loading imperfection-sensitivity surface Ac:(gg, €1) of stable-symmetric bifurcation,
representing butterfly catastrophe
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5. CONCLUSION

Imperfection-sensitivity analysis was presented by comparing the classical and catastrophe theory
methods in the case of the classical stable-symmetric bifurcation problem.

Generally, by using classical methods, no analytical solutions can be found for the imperfection-
sensitivity functions, being multivalued representing the folded characteristics of the corresponding
surfaces. In this paper, an approximate solution based on the catastrophe theory was introduced, by
means of which, not only the sections but even the whole surface of imperfection-sensitivity could
be obtained, in both numerical and graphical forms. :

The analysis was based on the principle of the catastrophe theory, according to which, by con-
sidering the problem as an imperfect version of a higher order catastrophe, a topologically good
solution can be obtained in a considerably large domain. The stable-symmetric bifurcation problem
with geometric imperfection yields a cusp catastrophe. Thus, by introducing a new imperfection,
namely, the deformation-dependence of the loading, the problem leads to the higher order butterfly
catastrophe. The approximation through Taylor-expansion was applied to the butterfly catastrophe,
to its canonical form, yielding a parametric description of the imperfection-sensitivity surfaces.

By comparing the classical and catastrophe theory methods in aspect of Taylor expansion, it
can be stated that for the classical method the Taylor expansion in the critical point of the perfect
structure provides a relatively good solution for a smaller domain. However, the catastrophe theory
determines the point at which the Taylor expansion yields a good solution for a larger domain, too.

It is known that the catastrophe theory provides topologically exact local solutions. It was proved
in this paper that by using the catastrophe theory, not only topologically exact results can be
obtained, but, by applying a higher order catastrophe, considerable good solution can be obtained
for a quasi-global domain, too. Moreover, the catastrophe theory solution provides the possibility of
visualising the very complicated imperfection-sensitivity surfaces, too. This advantage stems from
the parametric description of the canonical forms of the types of catastrophes. Thus, by using the
catastrophe theory, the multivalued functions and the corresponding highly folded imperfection-
sensitivity surfaces can be shown in a three dimensional representation.

The presented method has theoretical importance first. Indeed, to apply it for more dimensional
problems yields difficulties. Nevertheless, it has been confirmed in this paper that the catastrophe
theory can give helpful tools in imperfection-sensitivity analyses.
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