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Different friction models: the classic one proposed by Amontons-Coulomb (AC) with a constant friction
coefficient, a three-parameter model proposed by Wriggers et al. [9], and a model based on the concept
of ‘work-hardening’ proposed by de Souza Neto et al. [8], are applied to the 3-D square-cup drawing and
S-rail stamping FE simulations. The benchmark problems used during NUMISHEET’93 for a cup drawing
and NUMISHEET’96 for S-rail stamping were simulated here. The results obtained for these three models
are presented to illustrate the influence of the friction model on the drawing process.

NOTATION

n;

61.]

pPots

unit normal at contact point
surface traction

contact pressure

friction stress vector

2nd Piola-Kirchoff stress tensor
displacement in Lagrangian frame
displacement normal to surface
displacement in contact plane = frictional sliding
rate of frictional sliding

rate of elastic adhesive state sliding
rate of frictional slip (non-recoverable sliding)
tangential contact stiffness constant
magnitude of slip

slip potential function

slip yield function

coefficient of friction (c.o.f.)
parameters of the WVS model
density of frictional work

friction function of WH model
identity tensor

density of material at ¢ =0

body forces
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pofr inertia forces

E,,; Green-Lagrange strain

7o elastic-plastic hyper-operator

* body at time ¢

i surface of body at time ¢

T surface subject to displacement boundary conditions
d(X, 1) prescribed displacement boundary condition
T surface subject to force boundary conditions
G, prescribed force boundary condition

Ld contact surface subject to friction

Tr, frictional stress, also po

€ strain

1. INTRODUCTION

The purpose of this paper is to compare three different friction models in the finite element method
(FEM) simulation of a complex metal-forming processs. The process chosen is prismatic square-cup
deep-drawing as proposed for the NUMISHEET’93 conference, and the S-rail stamping simulation
chosen for the NUMISHEET’96 conference. As a result of the conference data is available against
which to compare the results of the simulations, and also a very detailed standard set of data is
available describing the simulations.

Three different friction models are used: the classic Amontons—-Coulomb model with a constant
coefficient of friction, a nonlinear model proposed by Wriggers, vu Van and Stein [9] which uses
three constant parameters (WVS), and a model proposed by de Souza Neto et al. [8] which is
based upon work-hardening (WH). This model is appropriate for coated sheet metal, and takes into
consideration wear of the surface coating.

The foundation for the friction model is based upon that proposed by Michalowski and Mréz [4]
and the work of Curnier [1]. The three models, AC, WVS, WH, are modifications of the basic
model where the relationship between frictional limit stress and contact pressure is varied taking
into account material behavour and experimental data.

All three friction models presented here are static and do not consider the kinetics of blank
motion around punch and die roundings, where normals rotate through almost 90°, which affects
particle velocity. The kinetic effects of rotation are considered in a co-rotational model [6].

The simulation is implemented in the finite element program PAM-Stamp, released by PAM-
System International of France. That programm is well known in automotive industry and impe-
mented by all leading car designers. Finite strain shell elements and user friction routines are used
here for stamping simulation. The material model used is elastic-plastic with hardening, with the
given relation between yield stress and plastic strain as was provided by the NUMISHEET ex-
perimental data. The symmetry of the square-cup deep-drawing process allows one-quarter of the
process to be used in the simulation. The tools: die, stamp, and blankholder, are modelled using
rigid Bézier surfaces. The blank is modelled using the shell elements described. All tools dimensions,
process parameters and material properties are approved by the automotive industries. The S-rail
simulation has no symmetry and the entire tool set has to be used.

The results for major and minor strains, and also contour maps of thickness changes, for the two
simulations with various friction models are presented and discussed.

2. FRICTION MODELS

Introducing the concept of a slip rule ¥ and a slip criterion ® the three friction models considered:
the standard classical Amontons-Coulomb (AC) model, a model proposed by Wriggers, vu Van and
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Fig. 1. The local directions for the friction variables at the contact point

Stein [9] (WVS), and a work-hardening (WH) model proposed by de Souza Neto, et al. [8], can be
shown to be based on the same rules. These rules are the following:

e the decomposition of the surface traction (stress vector) p; = S;;n; into:

— the normal component py = S;ynn;,
— and the tangential component pr; = p; — pnnis,

as can be seen in Fig. 1,
e the decomposition of the relative displacement at the contact surface u; into:

— the normal component uy = u;n;,
— and the tangential component u; = u; — unn;,

e the decomposition of the rate of tangential displacement u, = u2d +ug} that can be also expressed
by increments Au, = Aud + Aus!

— with the adhesive component defined by a linear relationship (ad)

1
Audd = ——Ap,, 1)
o
— and the slipping component (sl) defined by the slip rule
ov ov
bl o e MUE 8l ot
Uy = 'yapa " Aug, A'ya 2)

where S, is the stress at the contact point, and n; is the outward normal to the contact surface
at the contact point, the tangential displacement in local contact coordinates is denoted by u,,
a="T,, Ty, ky is the tangentlal contact stiffness, -y is an unknown function giving the magnitude
of slip.

The slip rule plays a s1m11ar role in friction to the flow rule in plasticity. The slip potential ¥ is
a function of the stress vector, and the derivatives of which give the direction of slipping. In addition
a slip criterion ® is defined to determine the state of friction,

® <0 = adhesive state,

3

® >0 = slipping state. (3)
Further, there exists the following conditions on the slipping/sticking states,

sticking = <0 and 4 =0, )

slipping = ¥=0 and ¥>0.
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The following particular forms of ¥ and ® are proposed for the three models considered:

1. the isotropic Coulomb friction

‘I’(pa) = v/PaPa
®(pa, Pn) = V/PaPa — PN

where 4 is the coefficient of friction, which may depend on internal parameters such as wear,
work-hardening, etc,

2. the WVS model

\I’(Pa) = VPaPa
(I)(pa y pN) = V/PaPa — ap; + Bpw

where a, v and f are the parameters of the model, usually constant, but which may depend on
internal parameters such as wear, work-hardening, etc,

(5)

(6)

3. the work-hardening (WH) model given in de Souza Neto, et al. [§]
¥(pa) = vPaPa
q’(Pa, PN,W) = vPaPa — “(w)pN,

where the coefficient of friction u(w) is now a function of the density of frictional work w, which
is the internal variable of this model,

(7)

W=—patl; Awwm —pAull. (8)

A predictor-corrector algorithm is used to calculate the frictional stress and slip over a single
timestep. The algorithm for the AC model is given in Fig. 2. Given the current contact pressure

(i) Input: the current increment displacement and pressure
Aua("“), pN(n+1)

(ii) Calculate:

Elastic predictor P+  (pa™ — kpAu, (D)

Slip function P (1 /pf}(n+1)p§1(ﬂ+1) 2 NPN("+1))

(iii) Evaluate contact sub-regions:
If ® <0 then adhesion region
set  po("tl)  pel(ntl)

Else slipping region

set po ("t [MPN(n+1)(pgl(n+1)/ /p%l(n+1)p%1(n+l) )]
solve for A~y: ,/p;}("ﬂ)pg'(nﬂ) — kz Ay — pp ) =0
set  Audlntl) o —Afy(pg‘("ﬂ) / /D)

Fig. 2. Algorithm for AC friction model over the interval [try tn+til
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(i) Input: the current increment displacement and pressure
Aua(““), pN(n+1)
(if) Calculate:
Elastic predictor pIHD)  (po™ — kpAu, (D)
Slip function @+ (/pHDpgn+) — a[p (D] — gp (D)
(iii) Evaluate contact sub-regions:
If & < 0 then: adhesion
set pa(n+1) (_pgl(n-!-l)
Else: slipping
set pa("+l) ~ [(a{pN(n‘l'l)}y + ﬂpN(n+1)) (pgl("‘*‘l)/ p%l(n-l-l)p%l(n'i-l) ]
solve for Ay: | /pg(+Upg(n+1) — k Ay — a(pe™tD)” — Bp (1) = 0
set  Ausl+D) ¢ Ay (pg(nm / pg () pel(nt D))
Fig. 3. Algorithm for WVS friction model over the interval [t , tn41]
(i) Input: the current increment displacement and pressure
Aug D), py(n+1)
(if) Calculate:
Elastic predictor P  (po™ — kpAu, ("))
Slip function ® (1 [p% (n+1)pel(nt1) u(w("))pN("+1))
(iii) Evaluate contact sub-regions:

If ® < 0 then: adhesion
et pal™t) & g4

Else: slipping

solve for Ay and w(™+1): 0 =, /[pe(n+Dpel(nt1) — g Ay — p(w(+1))p,, (n+1)

0 = wntl) — y(n) _ ”(w(n+1))pN(n+1)A,7

set  pa(™D  p(w™+))py (pgl(n+l)/ pg(n+1)p§l(n+1))
st Aufl™HD) ¢ — Ay (D) [ fplmpglntn)

Fig. 4. Algorithm for WH friction model over the interval [t, , tn+1]



614 J. Ronida, K.W. Colville and O. Mahrenholtz

px™*t1) and the increment of contact displacement Auq ("1 at step tny1, the algorithm provides
the frictional stress p,(®*1) and the slip increment Auﬂ("“) at step tp41 using the values at the
previous step . Firstly the elastic predictor stress is found, then the slip criterion is calculated
to determine the state of friction. The frictional stress is exactly the elastic predictor stress for
the adhesive state. The frictional stress is set to the limiting stress upy, where the direction is
along the elastic predictor, for the slipping state. Also the slip contribution is calculated. In a FEM
program it is also necessary to provide the derivatives of the frictional stress p, with respect to the
contact presssure py and the sliding displacement u, needed for the Newton-Raphson algorithm.
Expressions for dp,/0py and Op/0ug can be found from consistent linearisation of the frictional
constitutive equations.

Figure 3 gives the algorithm for the WVS model. It consists of identical steps to the AC algorithm
except for the change in expressions involving u.

Figure 4 shows the algorithm for the work-hardening friction model. The only difference between
this and the AC model is the use of the frictional work internal variable w. This is changed only
when slipping occurs, and must be calculated during the slipping stage of step (iii) of the algorithm.

3. FORMULATION OF THE DEEP-DRAWING PROBLEM

The deep-drawing problem is formulated in the total Lagrangian framework with the following
equations:

e equation of motion

(SkrOrr + Skrurr) x + pofr = potr, (9)

— second Piola-Kirchhoff stress tensor Sk, ,
— displacement u; ,
— body forces pot;

— inertia forces p, f; ,

e the elastic-plastic constitutive equation
SKL == L?;,MNE-'MN ) (10)

— L% un > the representation of constitutive operator transforming strain rate to stress rate
and reflecting elastic and plastic material parameters, also known as the elastic-plastic hyper-
operator,

— Green-Lagrange strain tensor E;, = %(uu + Uy + Uk UK.

In the deep-drawing simulation the point on the blank directly under the centre of the punch is
the fixed point that is required to ensure the existance and uniqueness of the numerical solution.
This point moves down with the punch, and is then fixed during each step of the solution calculation.
The mathematical necessity of the fixed point boundary condition is essential otherwise the solution
for the displacement is not unique. The existence and uniqueness of solution of frictional contact
problems were broadly discussed by Demkowicz et al. [2].

The conditions for the deep-drawing finite element simulation are the following:

e boundary conditions on the surface 'T';, where the boundary displacement is given u; = ¢, (X,9),
for particles X € 'T'; and time £ € (¢, , tny1).

o fixed point of the blank P € ‘T’ where ¢(X, &) = 0, 9¢(X,&)/ON =0, (X,£€) € Ty X (tn, tnt1),

e boundary conditions on surface !I' where force G, is prescribed (Skr0rr + Skrur )Nk = Gy,
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¢ boundary conditions on the contact surface T with applied friction Tr, , StylN;—S;xkN;NgN; =
TT; y1=1,2,

e initial conditions u,;(X,0) = 0 and %,(X,0) = 0.

4. DEEP-DRAWING SIMULATION

The simulation of the deep-drawing process is conducted for a three-dimensional prismatic square-
cup. The FE model of prismatic-cup deep-drawing [7] consists of three tools: punch, die and
blankholder, shown in Fig. 5, and a single workpiece: the blank. The dimensions for the tools
and material parameters for this simulation are taken from the benchmark chosen for the NU-

MISHEET’93 conference.
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Fig. 5. The die, punch, and blankholder used in the deep-drawing simulation (only one-quarter shown)

The dimensions for the square-cup deep-drawing tools are:

Tool piece Dimensions Rounding radii
internal (mm) external (mm) (mm)

die 66 x 66 170 x 170 12

blankholder 84 x 84 170 x 170 12

punch 70 x 70 10

The clearance between the die and the punch is 2 mm, and between the punch and the blankholder
is 7 mm. The mesh for the three tools are shown in Fig. 5. The workpiece is 150 x 150 mm in size
with a thickness of 0.78 mm and is made of mild sheet steel with the following material properties:

Young’s modulus 206 GPa,

Poisson’s ratio 0.30,

Yield stress o = 565.32 (p +0.007117)%2%%9,
Coefficient of friction 0.144.

Only one quarter of the blank and tools are modelled for this FE simulation because there exist
two axes of symmetry. Two thousand and five hundred shell elements are used to model the quarter
of the blank with a uniform mesh of 50 x 50 elements. The tools are modelled using rigid Bézier

surfaces.



616 J. Ronda, K.W. Colville and O. Mahrenholtz

The stepping procedure for this FE simulation is as follows:

1) Place blank on die; place blankholder above die.

(1)

(2) Move punch down by 0.01 mm.

(3) Fix punch in place; apply blankholder force.
(4) Move punch down to full stroke.

Step (1) sets up the tools and blank in the correct positions without the blankholder force.
In step (2) the punch is moved down slightly to establish contact between the punch and blank,
and also between the blankholder and blank. In step (3) the blankholder force is applied to the
blankholder. The punch is then moved down to the full stroke in step (4). Step (2) is necessary to
establish contact between the tools and the blank, before the blankholder force can be applied. The
blankholder force can only be applied once there is contact between the blankholder and blank.

The AC friction coefficient 4 is 0.144 as has been given in the benchmark data.

The values of a and B for WVS model inferred from experimental data are estimated to be
a = 0.03 and S = 0.144, where the second value is chosen so that for high pressure the WVS model
tends to the AC model. The value for v for the case of metal-metal contact is v = 0.80.

Experimental measurements of x(w) for the WH model for aluminium-killed steel sheet are given
in de Souza Neto [8], where the linear fit

pw)=aw+p (11)
is made. For w measured in kN/mm, the constants have values and units:

a = —8.757 x 10 2mm/kN ,
B = 0.1448.

This fit for the function pu(w) actually represents a “work-softening”, as the decrease in the value
for 4 as w increases reflects the smoothing of the surface of the blank when the asperities are
flattened by sliding.

5. S-RAIL SIMULATION

The S-rail simulation is taken from the NUMISHEET’96 conference benchmark and consists of a
similar set of tools as shown in Fig. 6. There is no simple symmetry and the entire set is used in
the simulation. Two meshes are used: a medium mesh and a fine mesh shown in Fig. 7 at the full
displacement. _

The S-rail forming process is modelled with a double-action simulation: the first step closes the
blankholders; the second step moves the punch to its full stroke. This is illustrated in Fig. 8.

The blank has thickness of 1.0 mm and is made of mild sheet steel with the following material
properties:

Young’s modulus 206 GPa,

Poisson’s ratio 0.30,

Yield stress o =526 (¢ + 0.015)%2%9
Coefficient of friction 0.11.

The AC friction coefficient 4 is 0.11 as has been given in the benchmark data.

The values of a and f for WVS model inferred from experimental data are estimated to be
a = 0.03 and B = 0.11, where the second value is chosen so that for high pressure the WVS model
tends to the AC model. The value for v for the case of metal-metal contact is v = 0.80.
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Fig. 6. The die, punch, and blankholder used in the S-rail simulation
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Fig. 7. Comparison of the coarse and fine meshes showing the final deformed shape of the work piece
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Fig. 8. Steps of the double-action press

For the WH model, to ensure compatibility with the benchmark data, the constants are chosen,
for w measured in kN/mm, to have values and units:

o= —8x10"2mm/kN ,
B =10.11.

6. RESULTS

Results obtained for the square-cup deep-drawing and S-rail stamping benchmark problems are
shown in the form of plots of principal strains vs. distance along both the diagonal and the side
of the blank, contour maps of thinning, and tables with extremal values of principal strains and
thining. Figure 9 shows the cross-sections used to measure principal strains in the deep-drawing
simulation. For the S-rail simulation Fig. 10 shows the cross-sections used.

k 4 D

Fig. 9. Schematic of the deep-drawing simulation showing the cross-sections OX and OD used for measuring
principal strains. As shown, only one-quarter of the blank is modelled with suitable boundary conditions
applied along OY and OX to accommodate the symmetry
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Fig. 10. Schematic of the S-rail simulation showing the cross-sections EI and DJ used for measuring
principal strains

6.1. Deep-drawing

Figures 11 and 12 illustrates that the AC model has the largest strain values, which is due to this
model using a constant value for the coefficient of friction and not taking into account the variation
of  from pressure and wear as in the case of the WVS and WH models, respectively. The WH
and AC results are similar because the WH model is a modification of the AC model with work-
hardening included. The WVS results are different in shape from the AC and WH models as its
non-linear term dominates.

These features are confirmed in Tables 1 and 2 which show the maxima and minima of the
strains. Along the diagonal OD the WVS and WH models have smaller extrema than the AC model
as shown in Table 1 and Fig. 11. The WVS model’s maximum is 47% smaller than the AC model,
which indicates that the nonlinear term, apy;, of the WVS model contributes significantly. The
lower values of the extrema of the WH model indicate that slipping work has smoothed the surface
and reduced the friction stresses.

Along the side OX it is found that the major strain maxima for the WVS and WH models differ
by a small amount as shown in Table 2 and Fig. 12. However, for the WVS model the minor strain

0.3 T 0.1
 |—AC : £
0.25 [H-- WVS [} g 7%
r ~--WH / 0 ;.;ém-——;\v/\‘
02 | 3 _ \ \\ il
€ : /-\ £ 005 | \
S o015 | g : N
@ ; ) A @ - Al ikt
B .. | il TR |7
o 01 - £ 3 o 1L
= g l i 2 015 | ‘\ ‘.',’
005 : // ‘\\ . _0.2 2 —AC “:j
0 == T [ [-- WVS /
F S -0.25 2 '-'WH V
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Distance along diagonal (mm) Distance along diagonal (mm)

Fig. 11. Graphs showing the principal strains for the diagonal of the deep-drawing blank
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Fig. 12. Graphs showing the principal strains for the side OX of the deep-drawing blank

Table 1. Extreme values for the principal strains along the diagonal of the deep-drawing workpiece

Along diagonal OD

Friction model

major strain
maxima % resp. to AC

minor strain
minima % resp. to AC

AC
WVS
WH

0.263 100
0.140 53
0197 75

—0.262
—0.225
—0.220

100
86
84

Table 2.

Friction model

Along side OX

major strain

minor strain at punch edge

maxima % resp. to AC extrema % resp. to AC
AC 0.1013 100 0.0033 100
WVS 0.0800 79 —0.0100 303
WH 0.0713 70 0.0083 251

Extreme values for the principal strains along the side of the deep-drawing workpiece

extrema near the punch edge (approximately 27 mm from centre) is a minima compared to the
maxima for the AC and WH models. This can be attributed to the nonlinear term dominating
under the high pressure region where the blank bends over the punch.

These observations are confirmed by the Mises stress contours in Fig. 13. They show the overal
higher values of the Mises stress for the AC model, and the similar distribution for the WH model.
The lower WVS values are also shown with the key area of peak values at the corner appearing
smaller in size showing lower distribution of stress.

6.2. S-Rail

The medium mesh reveals qualitatively similar results for the principal strains and thinning across
cross-section IE in Fig. 14. For thinning it can be also seen from the smooth contour plots in Fig. 15.
The peaks are mostly at the same position with differences occuring in value. The relatively coarse
mesh shown in Fig. 7 reveals the likely reason: the larger elements tend to smooth out the results
and offer lower resolution. The differences in the finer mesh results of Fig. 16 are more dramatic.
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SECTION POINT 1 AC model

WVS model

WH model

Fig. 13. Contour plots of Mises stress distribution for the deep-drawing simulation
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Fig. 14. Graphs showing the principal strains and thinning for the section IE of the S-rail blank with
coarse mesh
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Fig. 15. Contour plots of thinning for the coarse mesh S-rail simulation
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Fig. 16. Graphs showing the principal strains and thinning for the section IE of the S-rail blank with fine
mesh
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Fig. 17. Contour plots of thinning for the fine mesh S-rail simulation
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The greatest distinction in the the thinning curves where larger peaks for the WVS model are a
result of its higher friction forces for lower pressure regimes. This is clearly seen in the contour maps
of thinning in Fig. 17 were the WVS model has the largest area of thinning above 5% in the wall of
the S-rail.

Table 3 shows that the thinning peaks of WVS for both meshes to be some 11%-12% higher
than AC. WH is close to AC with the more accurate result for the fine mesh showing it lower. Here
the reduction in p over larger slipping areas for the WH model has made a significant contribution
to the result.

Table 3. Extreme values for the major principal strain and thinning along the line EI of the S-rail workpiece

Coarse Mesh

Friction model major strain thinning

maxima % resp. to AC extrema % resp. to AC
AC 0.1278 100 0.07920 100
WVS 0.1379 108 0.08904 112
WH 0.1393 109 0.08156 103

Fine Mesh

Friction model major strain thinning

maxima % resp. to AC extrema % resp. to AC
AC 0.2203 100 0.07502 100
WVS 0.2296 104 0.08300 111
WH 0.2245 102 0.07063 9

Table 4. Proportion of energy devoted to frictional dissipation with respect to internal energy of the S-rail
simulation

Friction model

coarse mesh

1 % of total def. energy % of total def. energy

fine mesh

AC 24.75 22.49
WVS 27.75 26.23
WH 20.01 19.93

Globally, the energies for the simulation are clearly affected by the different models. Table 4
shows the proportion of the total deformation energy accounted for by frictional work. The total
deformation energy consists of the internal plastic work and the contact sliding work. Table 4 shows
that frictional dissipation varies from 20% to 28% of the total deformation energy. As expected the
WVS model has highest values since the frictional forces are higher for lower pressure areas. The
WH model shows lower values than AC as the lower p value requires less frictional work.

7. CONCLUSIONS

Three friction models of different characteristics were used in the deep-drawing and S-rail simula-
tions. The AC model has a single constant coefficient of friction, the WVS model has three param-
eters with a nonlinear pressure-dependent term, and the WH model accounts for wear proportional
to the frictional work.

Using different friction models in the deep-drawing simulation it was found that the results for
major strain along the diagonal differed by 25% to 47%, and the minor strain from 14% to 16%,
compared to the AC model. Along the side the major strain differed by 21% to 30%, and the minor
strain at the punch edge differed by 150% to 200%, compared to the AC model. These values have
sufficient variation to indicate that more accurate models of friction are needed for this simulation.
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WH generally gives similar results to AC, which is related to the history of deformation of the
blank. This is because the value of y for the AC model represents an ‘average’ of the function p(w)
for the WH model. The WVS model uses only the current state of pressure and does not consider
the history of the surface deformation.

In the S-rail simulation results were presented for two mesh sizes. The less fine mesh showed little
difference between the friction models, however, the finer mesh results showed differences almost
a large as for deep-drawing. This indicates that large element sizes tend to reduce the contribution
of friction and hence are less accurate.

The energy results show that the three friction models contribute significantly to the final result.
Friction is thus an important part of the simulation and the need for more accurate friction models
is crucial in the S-rail simulation.

For the two typical metal forming simulations it has been shown that friction plays a crucial role
and that the different friction models influence the result as much as 25%. The accuracy of metal
forming simulations thus depends as much on a more accurate, more realistic, friction model as on
a sufficiently fine mesh.
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