Computer Assisted Mechanics and Engineering Sciences, 8: 629-644, 2001.
Copyright © 2001 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Trefftz spectral method for elliptic equations of general type'

Sergiy Reutskiy
Magnetohydrodynamics Laboratory, P.O. Boz 136,
Moskovski av., 199, 310037, Kharkov, Ukraine

Brunello Tirozzi
Physics Department, University of Rome “La Sapienza”,
P. le A. Moro 2, 00185 Rome, Italy

(Received May 14, 2001)

A new numerical method for 2D linear elliptic partial differential equations in an arbitrary geometry
is presented. The special feature of the method presented is that the trial functions, which are used to
approximate a solution, satisfy the PDE only approximately. This reduction of the requirement to the
trial functions extends the field of application of the Trefftz method. The method is tested on several one-
and two-dimensional problems.

1. INTRODUCTION

The aim of the work is to describe a new numerical method for solving elliptic boundary value prob-
lems in irregular regions. The application of the method is illustrated for a general two—dimensional
partial differential equation (PDE) of the type,

2
L(u)=—za%( )+Zb Ex—,*c() =f(x), xeQCR? (1)

1,j=1

where x = (z1,22) = (2,9)-

We assume that: 1) aj2(x) = ag,1(x); 2) aij(x), bi(x), c(x) and f(x) are analytic functions in ;
3) Q is a simply connected domain bounded by a simple closed curve 99; 4) coefficients a; ;(z,y)
satisfy, for some p > 0 and any &; and &, the condition,

Z a; j(x) €& 2 pil : x € Q. (2)

1.7 —"1
The boundary condition is

l(w) = afxju + B ge = g(x),  x€ON, Q

where % is the outward normal derivative and a(x), 8(x), g(x) are prescribed functions of position.

IThis paper was presented at the Second International Workshop on the Trefftz Method, Sintra, Portugal, in
September 1999, and selected to be included in the special issue of CAMES (Vol. 8, Nos. 2/3). Following the Guest
Editor’s unfortunate ommision, this paper appears with delay in the current issue.

J.P. Moitinho de Almeida
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The method presented falls into the group of embedding methods. The basic idea is to solve
a given PDE in a simple cartesian domain g in which the complex domain € is embedded. The
initial PDE (1) is replaced by the following one,

K
LO@w) = fOx) + ) qel(x | &), x€Q, & €\ (4)
k=1
Here,
= 9 (00 (o)., 0
(9ot i -4 5 LTI ; Esit o0

a,(g-), bgo), ¢, £ are some extensions of a;j, bi, c, f from § to Qg . This means that ag}) ; bgo)’ 0,
£(© are analytic functions defined in £ . They are approximations of the corresponding coefficients

of the initial PDE in the sense of the C(€2)-norm,
lulle = max {|u(x)|} - (6)

To obtain these extensions we use the so-called C-ezpansions technique developed by Smelov [11],
which is briefly described in the next section (see [10] for more details). Note that all the terms on
the right hand side of (4) and the solution are supposed to be analytic functions in €. They are
approximated by truncated series using an orthogonal complete system in £2(€p) of smooth global
functions 9y, (x) defined on g, for example

M
u(x) =Y Unthn(x). (7)
n=1

So, from the point of view of the representation of solution, the method presented belongs to the
group of spectral methods.

The additional term on the right hand side of (4) contains the d-shaped source functions I(x|¢)
which essentially differ from zero only inside some neighborhood of the source point . The general
method of constructing such functions in the form of expansion over a broad class of complete
orthogonal systems in £2(€) is described in [10]. Some examples of such functions are presented
in Section 2.

The coefficients g are the free parameters of the algorithm. They should be determined from
the boundary conditions (3). As it follows from (4) an approximate solution can be written in the
form of a linear combination,

K
U(x|q1, ,QK):"'”(X)'*‘EQk‘I’k(X), (8)
k=1

where v(x) is the particular integral and the trial functions ¥y (x) satisfy the equation,
LO (W) =I(x | &), x €, 9)
or, if it is regarded on €,

L) = (L-LO) (0 + I(x | &) Ze(x), xeQ. (10)

Note that if L(®) approximates L well and the source point & is removed from Q, then ||¢]|c is
a small value.
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We obtain parameters g as a solution of the minimization problem,

Ne
min{z[l(U(xz' lg1, ..., qx)) - g(xi)]z}, (11)

e =1

with N, > K collocation points x; distributed uniformly on the boundary 9%.

It follows from (8)—(11) that the method presented can also be regarded as a generalization of
the Trefftz methods [2, 13, 14, 15]. It should be recalled that the main idea of Trefftz-type methods
consists in looking for an approximate solution of the boundary value problem,

L(u) = f(x), x € Q, (12)
I(u) = g(x), x € 99, (13)

in the form of a linear combination,

u(x) =v(x) + qufbk (14)

Here the trial functions ®;(x) satisfy exactly the homogeneous PDE L(®x) = 0 but do not neces-
sarily satisfy the boundary condition (13). This condition is used to determine the unknowns g .

Comparing (8)—(11) and (12)—(14) we can conclude that the method presented follows the basic
scheme of the Trefftz methods. However, it uses trial functions ¥(x) which satisfy the initial PDE
only approximately. It becomes a Trefftz method when €(x) = 0, i.e. when L(®) = L and I(x|&) =0
for x € Q.

This reduction of the Trefftz requirement on the trial functions extends the field of application
of the method because such trial functions can be found for a broad class of differential operators
(e.g. see [10]).

This method was first suggested for studying magnetohydrodynamic flows in a complex geometry
[9]. In the first publication it was called the Method of Equivalent Charges, and the designation
of QTSM (Quasi Trefftz Spectral Method) was adopted from then onwards. QT'SM has been used
successfully in the solution of certain elliptic boundary value problems [5], initial value problems [6],
problems with moving boundaries [7] and the Stokes problem [8].

A brief outline of the paper is as follows. In Section 2 the C-ezpansions and the source functions
are described. The main algorithm and numerical results are considered in Section 3. Important
particular cases when the basic algorithm can be simplified considerably are discussed briefly in
Section 4. A conclusion is given in Section 5.

2. C-EXPANSIONS AND J(-SHAPED FUNCTIONS

The first step in applying the method is to extend the coefficients a; j(x), bj(x), c¢(x) and the right
hand side f(x) from Q to Qg . We use a C-ezpansions procedure developed by Smelov [11] to obtain
these extensions.

According to the C-ezpansions algorithm, the eigenfunctions ¢n(z) of a one-dimensional Sturm-
Liouville problem,

{d(p() ) —gq(z)p = —/\T() z €[4, B],

GAN S BTN 5 0(B) + B delB) =0, (15)

defined in an interval [A, B] are used to approximate a smooth enough function f(z) defined in a
smaller interval [, 8] C [4, B].
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It assumes a representation of the approximated functions in a form similar to Fourier series,

o0
f(@) = Fapa(a). (16)
n=1
The coefficients F;, are obtained as a solution of the minimization problem
8 2
I%in f(z) - Z Fopn(z) (17)
n=1 [a,8]
because the functions ¢n (z) are nonorthogonal on [, B]. Here ||.. . ||4,5) denotes some norm defined
on [a, A]. :

As it was demonstrated in [11] and [10] a smooth enough function f(z), together with its deriva-
tives defined on [a, f], can be well approximated by the following finite sum, using the algorithm of
C-ezpansions with a small number of terms,

N
Fa) =zl Biyony Fu) = ) Fupale). (18)
n=1

In practical calculations, to obtain F,, we write conditions

N
f(@i| Fryeon Fy) = ) Frn(mi) = f(m:) (19)
n=1

at the collocation points z;, ¢ = 1,...,N; > N which are distributed uniformly inside [, 8]. As
a result we get an overdetermined linear system,

) . pi(z1) ... en(z1) # f(z1)
AF=f, A= fLoimegyloh g jgigbol boodbasis ks : , (20)
pi1(zn) .- en(zN,) Fy flzn,)
which is solved in the least squares sense, :
F: min|AF—f|. (21)

Here ||z|| denotes the euclidean norm of z.
In this work we use the following two systems of orthogonal functions,

M) (z) = sin(n7z) and @) (z) = cos((n — 1)7z), n=1,...,+00, (22)

which are solutions of the Sturm-Liouville problems (15) with boundary conditions <p$ll)(0) =
@5 (1) = 0 and 02 (0) = da 2 (1) = 0.

As an example of such technique we present the results obtained by applying the C-ezpansions
procedure to the following three functions defined on [, 8] = [0.3,0.7],

a(z) =1+ 22, b(z) = sin®(z), dej=e. (23)

To estimate the accuracy we use the maximal absolute error defined as

o= max, \f(z;) ~ f#i] By, 5.5 P (24)

Here z;, j = 1,..., N2, are the checking points distributed uniformly inside [a,]. For this we
decompose [a, 8] into N subintervals and place z; in the middle of each interval.
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Table 1. Maximal absolute error ea

N o (z) o (z)
a(z) b(z) c(z) a(z) b(z) c(x)

51 48.10° | 24.10° | 7.2.103 | 40.10% | 1.9-10-% | 6.6.10°
101 30.10° | 85.10-° | 39-105 | 72-107 | 33-107 | 7.8-10~"
51 75.10° [ 36.10° | 1.1-10-7 | 2.0-.10° | 9.1-10-10 | 32107
20 163.1000° [ 1.8.10-1 [ 82.10-10 | 7.7-102 | 35-10-12 | 8.6.10

In all the computations, presented in Table 1, we take N; = 100 collocation points in (19) and
N3 = 1000 checking points in the calculation of e, .

It should be underlined that the C-ezpansions procedure provides a high precision inside the
smaller interval [, 8] only. For example, all the C-ezpansions which use sin(nmz) as a basis system
become equal to zero at the endpoints of the interval [0, 1] independently of the functions being
approximated.

The same algorithm can also be applied in the two-dimensional case. For more detailed informa-
tion and numerical examples see [10].

Now let us consider -shaped source functions on the right hand side of (4). A general procedure
of constructing such functions in the form of truncated series over a broad class of eigenfunctions is
described in [10]. In particular, it is shown there that, if {¢s(z), An} is a solution of a Sturm-Liouville
problem (15), then a d—shaped source function can be represented in the form,

M 5 l
©+3 [—“(”,f—”MJ‘)l—’] Bu(€) oal2),

n=1

I(z | §) = Bo (25)

B
Bul®) = r(O)0nlO)/gn,  9n = /A r(2)¢(z) dz,
Vn :
V(naM)=Wm, 7= lim (\/E/n)

The first term in (25) is absent when there is no zero eigenvalue.
It is shown in [10] that (25) can be regarded as the result of applying the Riemann (R, [)-method
of summation to the divergent series, see [1],

=Y Ba(€)en(2)
n=0

In this paper we use the orthogonal system ¢p )(:1:) = sin(nnz) to obtain the source functions.
In this particular case (25) is replaced by Lanczos o-factors method,

(26)

I(z | €) ch sin mnz, (27)
) = %rn(l, M)sinn, (28)
— l G5s nmw nm
oll, M) = (M), a(M) =sin s [P (29
where o,(M) are Lanczos o-factors, see [4].
The normalized value
> _ (=18
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Table 2. Normalized §—shaped source function I(z | €) in the form of expansion over wﬁl)(x), with source
centered at point £ = 0.5

T Parameters of expansion
M =10,1=4| Mi=15,T=6 } M =20,Lk=6 | “M:=50; | =8|im=100;l = 8

0.5 1.0-10° 1.0-10° 1.0-10° 1.0-10° 1.0-10°

0.55 9.1-107! 8.6-107! 8.2-107! 3.1-107! 6.3-1073
0.60 6.7-107! 5.5- 107" 46-107! 5.6-107° 6.6 -10~°
0.65 4.0-107! 2.6-1071 1.6-107! 1.2-107" 1530
0.70 1.8-1071 8.1-1072 3.5-1072 751057 6.0-10~12
0.75 6.0-1072 1.5-107% 3.8-1073 3.4-10710 21.-39342
0.80 1.0-1072 1.2 1078 1.3-1074 9.4-10711 4.8-10~14
0.90 1.8-107* 4.0-107 46-1078 7.9-10713 1.8 1ozl

is presented in Table 2 for different parameters M and [. The source point is £ = 0. One can see
that I'(z | €) has a d-shaped form.
Using (27) the two-dimensional source function in (4) can be written as a product

M
I,y &m) =1 Iy |n) = D cam(&n) sin(nrz) sin(mry), (31)
n,m=1
enm(én) = en(§) em(n). (32)

A general method of constructing such source functions is presented.in [10].

3. MAIN ALGORITHM

The material of this section is divided into four parts, addressing the formulation and the solution
of one- and two-dimensional eliptic PDE.

3.1. One—dimensional problems

It is reasonable, for the sake of simplicity, to consider first the following two—point value problem,
where a(z), b(z), c¢(z), f(z) are analytic functions on [a, ],

d?u(z)

o(z) 1 du(z)

dz

+ b(z)

+ c(z)u(z) = f(z), dia < PLPLl (33)

The boundary conditions are

du(a)
dz

du(B)
dz

B +ou(a) =g, Po + agu(B) = go, a2 +B240, i=1,2 (34)

According to the general scheme described above we replace (33) by,

a(z) M + b0)(z)

dz?

W) + @) u(e) = 1) + al(zl6) + wl(ele),  0<o<l,

where the one-dimensional source function I(z | £) is given by (27). The source points ¢; and &5 are
constrained to: 0 < §; < a, B < & < 1.
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Functions a(9(z), bO)(z), ¢(O(z), f©)(z) result from applying the C-ezpansion procedure to the
coefficients of (33), where <p$,1), <p$?) are given by (22):

a(z) Z Arpd(z) (36)

b%z) = ZBkso“) z), (37)
k=1

C(O) Z Ck<P(2) (38)

) = }: Fr{(z), | (39)

We look for an approximate solution of (35) in the form of a truncated series

Z Um o (z) Z Up, sin(mnz) (40)

Substituting (36)—(40), (27) in (35) and integrating on [0,1] with weight functions sin(nwz),
n=1,...,M, we obtain the linear system

SU=F+ ¢ CY + ¢,C? (41)

with the M x M system matrix

s = {S’nm}rﬂl/!m—l’ Snm = S:m G Sg.m + szm ) (42)
Sa ., = —(mm) Z Ay / cos(knz) sin(nmz) sin(mnz)dz = —(mm)? Z Ay ,97)1 o (43)
k=0
1 N
St =mn Z By / cos(mnz) sin(knz) sin(nrz)dz = mn Z Ber(;)k i (44)
k=1 4 k=1
N-1
Sem = Z Ck / cos(kwz) sin(nmrz) sin(mnz)dz = E C’kZ(?lm. (45)
k=0
Vector U contains the unknown coefficients of (40). The vectors on the right hand side are
EEEOL) mlagmils (‘J<i>=[c§"),...,c§?], e 9. (46)
C) =calls), i=1,2. (47)
The coefficients ¢, (£) are given by (28).
It is easy to prove that
Z() . = 0.25[A(k+n—m) + A(k+m—n) — A(m+n—Fk) — A(k+n+m)], (48)
1. ifke={)
Ak)=0o =%’ ; 49
it {0, otherwise. o
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The term A(k+n+m) can be neglected because n,m > 0. Moreover, analyzing the expression
A

kn,m>
matrix S is a banded matrix with 2N + 1 non-zero diagonals.
Solving the linear system (41), we obtain the solution in the form of a linear combination of the

free parameters ¢; and ¢,

U=V +qDW +¢DO, e

one can see that the entries in S will be zero whenever |n —m| > N + 1. This means that

where vectors
Vit Wl s [D{“, ,Dgy], D@ — [Df"), ,ng)]
are the solution of the linear system with the same matrix S and the right hand sides F, C(") and

c® respectively.
So, an approximate solution can be written in the form

u(z | q1,92) = v(z) + 1 ¥1(2) + g2 ¥a(z) (51)

where the particular integral is

M
v(z) = Y Vmsin(mmz) : (52)
m=1
and the trial functions are
M M
Vy(z) = Z DY) sin(mrz), Uy(z) = Z D@ sin(mnz). (53)
m=1 m=1

The free parameters ¢; and g9 should be determined from the boundary conditions. Substitut-
ing (51), (52) in (34), we obtain the system of linear equations

Agq=h, (54)

(e a1¥(a) + 1 :;;\I:il%(?—) a1¥s(a) + A1 d_\IZ;_a) , 55)
2 ¥1(8) + 5 L2 ayn(s) + 5, L2200)

b = {91 —v(a), g —v(B)}". (56)

After solving this system and determining ¢; and g, we obtain the coefficients of the approximate
solution (40)

Un = Vi + 1DW + ¢,D), (57)

Let us refer to the choice of free parameters of the algorithm. These are: M, the number of
harmonics in (39), (40); N, the number of terms in the C-ezpansions of the coefficients (36)-(38); &1,
{2, the coordinates of the source points; /, the parameter of the source function I(z |£), see (27)-(29).

As far as M and N are concerned their influence on the solution is quite clear. Their increase
reduces, in general, the error in the approximate solution. For example, the increase of N improves
the approximation of a(z), b(z), ¢(z) and that leads to the decrease of the first term of €(x), which
is connected with the approximation of the initial differential operator L, see (10). It is clear that
these two parameters should be related. For example, if N is small, then it is impossible to obtain
a very accurate solution by increasing M because of the errors in the approximation of a(z), b(z),
c(z).

In the present case, the influence of the parameters &; , & and [ is analogous to the one described
in [10], where the particular case of separable PDEs is considered. In particular:
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1. The error due to the additional term on the right hand side of (35) can be reduced by removing
the source points from the boundary of the solution domain €2 as far as the dimensions of 2
permit. So, in the particular case which is considered, the most accurate solutions are achieved
when & ~ 0 and & ~ 1;

2. For every fixed M, N, & and & there exists an optimal [ = loét which provides the minimal
error in the solution,;

3. The increase of M leads to the increase of the corresponding lopt -

3.2. Numerical applications for one-dimensional problems

In order to illustrate these statements we consider the problem

(1 +x2) ey 5 +sin’(z) g— +exp(z)u=f(z), uw(03)=g1, u(0.7)=gs. (58)

In this case, functions a(z), b(z), c(z) are the same as in (23).
The right-hand side term f(z) and the values g; and go are chosen here for the exact solution:

Uex (z) = exp (—100(z — 0.5)?) (59)
In Table 3 we present the scaled maximal absolute error es, defined as follows,

i |
€sa = U—s ]—I{}a‘},(Nz |'U'ex($1) (wj)l ’ (60)

where the scaling value is

Yy = [i = /j u2, (z) dz. (61)

We use N» = 1000 checking points inside [a, 8] to compute eg,.

Table 3. Maximal absolute errors es,

dE =005 | d€=0.10 | d =0.15 | d€ = 0.20 | dé = 0.25
1.2-10L | 7.2-10-2 | 56-10~2 | 5.0- 102 | 4.7- 1072
22-102 | 1.7-102 | 1.3-10~2 | 1.1-10~2 | 1.0-10~2
1.7-101 | 50-10-3 | 20-10-2 | 93-10~* | 6.2-10~*
36.101 | 2.1-10~2 [ 45-10% | 1.1-10~* | 2.0-10~*
55-10-1 | 7.5-10-2 | 2.0- 10~ | 2.4-10~* | 5.7-103
73-10-1 | 1.5-10-1 | 1.4-10~2 | 24-10% | 1.1-10~%
91-10- | 24.10-% | 3.7-102 | 34-10~3 | 1.2-10~*

DU |WIN=IOf ™

The value d¢ is the distance between the source and the nearest boundary point

d=a-4L =60

The results presented in Table 3 are obtained for M = 20 and N = 20.

One can see that the optimal values lop; are 1, 2, 3, 3, 4 for distances d¢ equal to 0.05, 0.10, 0.15,
0.20, 0.25 respectively. Note that [ =0 corresponds to the case when the source function I(z|€) is
taken in the form of truncated formal series for the Dirac é-function

Kz &)= Z sin(nm€) sin(nwz). (62)
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The numerical experiments show that the optimal parameter I,y is slightly different for different
problems. However, the values | = 4 for M < 20 and ! = 6 for M > 30 when d¢ ~ 0.2 seem suitable
in all the cases. These values are also used in all the two-dimensional problems considered in the
next subsections.

3.3. Two-dimensional problems

As mentioned above we replace the initial PDE by Eq. (4). We take the following C-ezpansions to
approximate the coefficients,

N
a(z,y) = Y AL 02 (2) oP (), (63)
k,l=1
agog( ) = aga(z,y) = ZA(lf)wfcl) oM (), (64)
k=1
0 s 22 2 2
asy(z,y) = 3 AL oP(z) oP(y), (65)
k=1
0 4 1 2
80(z,9) = Y B o{M(2) Py), (66)
k,l=1
0 y 2 2 1
8 (,y) = 3 BE ¢P(z) pM(y), (67)
k,l=1
4 2 2
z,y) = Y CriePlz) oy), (68)
k=1
M .
fOz,y) = Y Fumo(z) oP(y), (69)
n,m=1

and look for an approximate solution in the form

Z Un: <P(1) gc,(l)() (70)

n,m=1

Multiplying Eq. (4) by <P( )( )‘PSrlz)(y) and integrating the resulting equation over the square €,
we obtain a linear system similar to (41),

M K
> SnUij = Fam + ) qkenm- (71)
1,j=1 k=1

Matrix S,i{,;n is the sum of the 7 terms,

Spim = Spon(a11) + Spin(a1,2) + S (a2,1) + Sphn(a22) + Sila(b1) + Sk (b2) + S7,(c), (72)
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each of which corresponds to one of the terms in (4). For example

/ / [(O) 0 3= (¢ “’(y))] #O(z) 6 D(y)

Sui (a1,1)

(1) 1
- > A ( [2 [soﬁ?(w) ——a‘”;;,x(””)}sog“(m)dx) ([ e eua).

k,l=1

The second integral is defined by (48)-(49),

1
/0 o2w) 6°) o) dy = /0 cos(l — 1)my] sin(jry) sin(mry) dy = 2 ..

The first integral is
/1 3 cos((k — 1)mz) —a—sin(iwx) sin(nnz) dz
0 3:1; or
: def
= —z'n1r2/ cos((k — 1)wz) cos(inz) cos(nnz)dz = —ianZ,S?lin.
0 a2
It is easy to prove the following result, where A(k) is defined by (49)

72

k.«

= 0.25 [A(k+n—m) + A(k+m—n) + A(m+n—k), +A(k+n+m)].

Therefore, the first addend in the matrix term .S’:{fm can be written in the form

1 2
Sn’ m(al 1) = Zn7r2 Z A(u) ZIE )l,z,n Zl(i)l,j,m
w,=1

We obtain the other terms in (72) in a similar way,

Sit (a1,2) = jnn® Z A(m) Zr(zll)c,z J(,lz)m’
Ki=X

S:;Jm(ag §) = imn? Z Am) f;’nz,(,?,’],
k=1

N

= : 22) (1 8

it (az2) = jmn® Y Ai,l) ZIE—)I,i,n Zl(—)l,j,m’
k=1

1 1 1
S:{Jm bl) =m Z B( )Zz(k)n ; )l,j,m’
k=1

§° 1
S:L’Jm b2) =gm Z B(z) Zl(c )lzn ](,l)m’
kid=1

N
Spisle) = Z Cky Zlgl—)l,i,n Zz(l)l,j,m'
k=1

(73)

(74)

(76)

(80)

(81)
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System (71) can be written in a form similar to (41), where F and C*) are known M x M vectors
and g are free parameters,

K
SU=F+) qC¥. (84)
k=1
Solving (84), we obtain a solution in the form of a linear combination,

K
U=V+) ¢D®, (85)
k=1

where_\_f and D®) are the solution of the linear system with the same matrix S and right hand
sides F and C*), respectively.
Therefore, an approximate solution of (4) can be written in the form,

K
U(:E,y | q, .-, QK) ='U(m1y)+zqk\pk($ay)) (86)
k=1
where the particular solution is
M
v(z,y) Z Va,m sin(nmz) sin(mmy) (87)
n,m=1
and the trial functions are
Z D(’“) sin(nmz) sin(mny). (88)

nm—

The free parameters gi are determined from the boundary condition (3), written at the collocation
points (z;,y;), j = 1,..., Nc, which are distributed uniformly on 8. The linear system with N,
equations and K unknowns is solved by the least squares procedure.

Note that, in general, any products of the basis functions gog)(z) gol(s)(y), r,s = 1,2, can be used

in the C-ezpansions as (63)—(70). We obtain the matrix elements Sy’ from analytical expressions,
without numerical integration. However, the C-ezpansions of this particular form lead to a band
matrix in system (85). This follows from the fact that

Z®) = 0,8 =12 when |¢ —n| > N.

k,i,n

3.4. Numerical results for two-dimensional problems

In this subsection, we present the results of the numerical experiments conducted on a representative
sample of 12 boundary value problems listed below. In all the examples the solution domain €2 is the
disk of the radius 0.25 centered at point (0.5,0.5). The number of harmonics N in the C-ezpansions
is N =10 for M = 10 and N = 15 for M > 10. To approximate the boundary conditions we take
K = 40 source points and N, = 100 collocation points uniformly placed on boundary 9.

In Table 4 we present the maximal absolute error (24) and the mean square root error,

N2
1
il | Z [u(25, yj) — uex(25, y7)1%, 5%
g
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Table 4. Maximal absolute error e, and mean square root error esy

Problem

M =10

M =20

M =30

€a

€sr

€a

€sr

€a €sr
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1

0~*|38-

197

2.3-

e [11g™

16-106°" | 54-107°

1.3.

1
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102

3.5-

i 15:.10°

2.7.107° .85 .107°

5.6 -

1

0t i25:

e

14-

i g A

130" PeT I’

1]

1

0~%4 5.7-

104

1.6+

1t 1 80-10"

52:10°8 | '1.9-10°

34-

1

e

04

6.4-

10-% |73:6-109

3010 %|15-10"°

3.1

1

0THE1T

103

6.4-

oL "

53 T 11T

2.9-

1

i 18

1073

20-

W 1110

e & i I P e |

3.8-

1

0=* |37

102

8.2

1= 72 100

78:107" 1.7.5:307"

OO || | WD =

5.2

1

0=2:]:2:8-

103

3.7

1075 121 15~¢

12. 07163 109

—
o

8.0-

1

0+ 78

{1

3.4-

104 30-107*

37-10°° [ A5 10"

p—t
ot

3.0-

1

LR e

i oy

3.2

10-4 | 3.0.10~*

3810591939410

—
(3]

8.0-

1

g B K

L

13-

0 [T

15710 1 1.5 107

where uex denotes the exact solution of the problem considered. We use N2 = 1000 test points inside
Q to calculate e, and eg . All the calculations were performed with double precision.
Problems 1 to 7 correspond to Dirichlet conditions,

u(z,y) = 9(z,y),

(90)

where function g(z,y) is taken in accordance with a given exact solution uex(z,y)-

0%u

0%u

Problem 1: 9% 32 = f(z,y) Uex(Z,y) = €®sin(y)
Fu Pu. 44 i
= _—_— = = eTTYgj —
Problem 2: 9%~ 3y + z°y*u = f(z,y) uex(T,y) = e*T¥sin(z — y)
Pu 8 ou 5o 5 §
Problem 3: — 5% ~ By <cos(y)5§) —eVu = f(z,y) uex(z,y) = cos(10z)(y* — y)
. _i 1+U?ﬁ __6_ z+ya_">_ =i 0..8,.3 5
Problem 4: % (e 8y) By (e e b= f(z,y) Uex(z,9) =1 —32°y° + =
. _0 ([ eyOu _2<z+u"’_") s
Problem 5: = (e By By e 3 Uex (2, Y) = TY
+(1+2° +y")u = f(z,y)
Problem 6: —ai (e’?—) - (—96— ((1 + y)g—u) Uex(T,y) =1+ +y
= y y s ‘2 +zy + 22 +y?
sy Lo
te s e fz,y)
Bu 8 Ou i} Ou
. Ou 0 ([ _@ipOt) _ O [ @+ _ &
Problem 7: 52 " B2 (e 8y> By (e 61:) Uex(z,y) =1+z+y
e - + sin(z + )6_u + €” sin( )0_u
Oy? Srr ¥ oy

+1+2* +y*)u = f(=z,y)
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Problems 8 to 12 correspond to mixed boundary conditions (3) which include the normal deriva-
tive. For problems 8 to 10 the governing equation and the exact solution are the same as in prob-
lems 1, 3 and 6 respectively. The functions a(z,y) and B(z,y) in boundary conditions are taken as
constant,

W - u(z,y) = g(z,y) (91)

and the function g(z,y) is derived from the exact solution uex(z,y).
The last two problems, 11 and 12, include the governing equations and the exact solutions of
problems 1 and 6. The boundary conditions are

cos(z +9) Z2Y. 0y, ) = g(z, ). (©

When M increases, the errors decrease rapidly as it is typical of spectral methods. Note that in
problem 12 the errors become e, = 3.7- 1077 and es; = 3.3 - 10~7 when we take M = 40 and [ = 8.

4. PARTICULAR CASES

The algorithm described above can be considerably simplified for separable PDEs and for PDEs
with constant coefficients. Note that the heaviest part of the algorithm is solving linear systems (71)
to obtain the trial functions ¥x(z,y). In both cases we can avoid solving these systems and the trial
functions Wi (z,y) can be defined analytically.

If a separable PDE is considered, the initial operator L, as well as the operator L is a sum of
one-dimensional operators

L%,y) = L{z) + L{(y), (93)
©o_ 1 9 ( (0 9\ _ o, -
r i n“”(xi){awz (”" ’az) B ("")}’ i=12 (94)

Let 1/),‘3 )(:vi), 1 = 1,2, be eigenfunctions of L,(O), i.e., they satisfy the equations

LOWO(z:) = \Dy@(z:), n=1,...,00, i=1,2. (95)
The source functions can be represented in the form of truncated series,

M

I@yl&6n =Y cnmEn ) v2), (96)

n,m=1
as it is described in [10]. Se, the trial function ¥x(z,y) is a solution of the PDE,
{L0%) + L) } () = S enumln) W) ¥210). (97)
n, m=1

Using (95), we obtain the trial function also in the form of a truncated series,

a7
Uy (z,y) = )‘(1";—’(2)— O(z) pP(y). (98)
n,m:l n + A17'I,

The numerical examples illustrating the use of such trial functions are presented in [10].



Trefftz spectral method for elliptic equations 643

In the case of PDE with constant coefficients,

o%u 0%u %u Oou Ou
L(u) = a1,1 922 +2a12 5zby +az2 %) +h oz + by o +cu = f(z,y), (99)

the trial functions satisfy the following equation, when the source functions (31), (32) are used,

M
L(¥) = I(z,y | &) = Y cam(ék, k) sin(naz) sin(mmy). (100)

n,m=1

If we denote

;A {eiw(nz+my)} = Zn mei'rr(nz+my)

=4 [—1r2(a1,1n2 + 2a1 2nm + agam?) + i(byn + bym) + c] ol miiaa Cu 1)

the trial function can be written in the form

M

i(z,y) = Z cnm €k, k) L™ {sin(n7z) sin(mmy)}
n,m=1
18 . :
i R Z Cnm (Eky k) [Zn,mem(m;-'-my) = Zn,_mem(nm—my)
n,m=1

o Z_n’mei'rr(—m:+my) = Z_n’_me—.i-/r(nm+my):| 5 (102)

It is easy to prove that this is a real function.
In Table 5 we present the results of applying these trial functions to the approximate solution of
the PDE,

?u  0%u *u  du ou

gl i, o0 S = By

261‘2 & azay i 38y2 + oz ¥z 36’!] u f(xyy)a (103)
with different boundary conditions. To approximate these boundary conditions we use K = 50
sources placed on a circle with the radius 0.49 and N, = 100 collocation points on 02. The exact
solution is uex (z,y) = 1+ +y+zy+2z2+72. The calculations are performed with double precision.

Table 5. Maximal absolute error e, and mean square root error es,.

(M, 1) u=g Ou/on —u=g
€a €sr €a €sr
(10,2) SR 121.10° 125.107 [ 2130
(15,4) 271071 46-10°° Ty By
(20,5) 6.0-107° 16-10° |68-10* | 56-10*
(
(
(

.6 157-100° 110" 111.10°° 189-10°°
& j14:-10° [25-10° 132-10°7 | 27- 1077
50,10} 176-107° | 54.107'.163-10° | 1.7-107°

The data presented in Table 6 show the dependence of exactness of the approximate solution on
parameter [. The problem is the same as above. The Dirichlet boundary conditions are used. The
number of harmonics sources and collocation points is the same in all the cases, M = 20, K = 50
and N, = 100, respectively. One can see that in this case lopt = 5.
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Table 6. Maximal absolute error e, as a function of parameter [

l

0

1

4

5

6

10

€a

2.6-107!

25 1072

6.0-107°

2.5: 30"

7.6-107°

6.4-1073

5. CONCLUSIONS

A new numerical method for elliptic PDEs with varying coefficients in a complex geometry has been
presented and tested. It follows the general scheme of Trefftz type methods. The main difference is
that the trial functions satisfy the PDE only approximately. This reduction of the requirements to
the trial functions extends the field of application of the method presented, as these trial functions
can be found for a broad class of differential operators.

Although the method is developed for 2D problems, the ideas extend quite simply to the 3D case
and also to time-dependent problems as it is shown in [7]. The method presented can also be used
as a basis for the so called Trefftz—elements technique, as it has been done for the classic Trefftz
method, see e.g. [3], [12]- [15].
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