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Variational formulations that can be employed in the approximation of boundary value problems involving
essential and natural boundary conditions are presented in this paper. They are based on trial functions
so chosen as to satisfy a priori the governing differential equations of the problem. The essential boundary
conditions are used to construct the displacement approximation basis at finite element level. The natural
boundary conditions are enforced on average and their integral forms constitute the variational expression
of the finite element approach. The shape functions contain both homogeneous and particular terms, which
are related through the interpolation technique used. The application in the framework of the finite element
method of the approach proposed here is not trouble free, particularly in what concerns the inter-element
continuity condition. The Gauss divergence theorem is used to enforce the essential boundary conditions
and the continuity conditions at the element boundary. An alternative but equivalent boundary technique
developed for the same purpose is presented also. It is shown that the variational statement of the Trefftz
approach is recovered when the Trefftz trial functions are so chosen as to satisfy the essential boundary
conditions of the problem.

1. INTRODUCTION

The number of trial functions used to construct conforming displacement elements is usually iden-
tified with the number of degrees of freedom of the nodes of the element. This option leads, in
general, to an indirect and discrete relationship between the internal displacement functions and
the element loading. In the hybrid stress approach to the finite element method, the assumed force
functions at element level are directly related to the loading, as the homogeneous and particular
terms of the stress functions are established separately. In both cases, the relationship between the
displacements and the loading is established when the elementary algebraic systems of equations
are assembled for the finite element mesh, and after eliminating the free terms present in the hybrid
stress models.

There is, however, a direct relation between the internal displacement functions, or the conju-
gated stress functions, and the load functions at finite level, expressed by the governing differential
equations of the problem under analysis. This relationship is considered explicitly in the alternative
Trefftz approaches to the finite element method, which, in general preserve the independence of
homogeneous and non-homogeneous solution terms.

A survey of Trefftz-type finite element formulations can be found in [12]. In all formulations
reported there, the internal displacement field contains a homogeneous part weighted by a vec-
tor of undetermined coefficients and a particular term associated with the integral form of the
non-homogeneous governing equation. The basic idea supporting most research works is to find a
conventional-type finite element formulation described by such displacement fields rather than the
assessment of the essential boundary and inter-element continuity conditions [7-9]. The contribu-
tions of several authors to the application of the Trefftz method [26], differ from each other mainly
in the technique used to enforce the boundary and inter-element continuity conditions [10, 11, 20,
21, 231
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The use of Trefftz displacement trial functions had already been reported in [1] in the derivation of
equilibrating stress fields. It is shown there how hybrid stress and hybrid-mixed elements suggested
by T.H.H. Pian and other authors [17, 18, 25, 27|, can be developed to model plate bending and plane
stress elasticity problems, as well as geometrically linear problems on folded structures [2, 13-16].

Some applications of the hybrid stress and hybrid-mixed approaches are reported in [1], using
equilibrating stress fields and compatible displacement fields independently assumed on the element
boundary. In the subsequent research reported in [3-6], the essential boundary conditions at finite
element level are used in an interpolation technique to derive the internal displacement field. The
homogeneous term of this field satisfies the homogeneous Lagrange equation and the added par-
ticular term contains shape functions that satisfy the non-homogeneous Lagrange-equation. These
particular shape functions depend on the geometry and on the loading of the element and are
explicitly linked to the homogeneous shape functions.

Beam and plate bending elements based on the application of such internal displacement fields
in the context of the conventional finite element displacement are presented in [3, 4]. Unfortunately,
this plate bending element does not satisfy the inter-element continuity condition [3, 5]. Therefore,
a more general formulation should be developed for such cases in association with a variational
statement on the natural boundary conditions, in order to ensure the enforcement of the inter-
element and boundary conditions. :

To enforce inter-element continuity, the strategy suggested by J. Jirousek is followed here. It
consists in introducing at the element boundary an independent conforming displacement ‘frame
function’ field. Conformity of the internal displacement function with the frame function on the
element boundary is enforced using the Gauss divergence theorem for the stress variation and the
essential boundary conditions at finite element level.

For the convenience of the reader, the interpolation technique introduced in [3] is first recalled.
It is shown that a simple modification in the use of the interpolation theory enables the modelling
of the element loading at the finite element level and establishes a direct relationship between
the internal displacement functions and the load functions at element level. It relates, also, the
homogeneous shape functions with the non-homogeneous shape functions.

2. DISPLACEMENT APPROXIMATION BASIS
In the following, Latin indices in brackets range over the nodal points, where Greek indices identify

the natural co-ordinates. Consider the variational problem governed by differential equation (1) and
boundary conditions (2) and (3),

Aaﬂua = qﬂ, (1)
ey = fla 008y, : (2)
SR =1 on i (3)

In Eq. (1), A% is a matrix of differential operators, uq is the displacement function, and @®
is the load function. In the boundary conditions (2) and (3), s, is the surface of the domain on
which the displacements are prescribed and s, is the surface of the domain on which the forces are
prescribed.

After dividing the domain into finite elements, in addition to the requirements on continuity, lin-
early independence and completeness of the assumed displacement functions, the essential boundary
conditions of the element require further that

[ualoa=og,, = Ua(k) (4)

where 6% (k) are the co-ordinates of the element nodes and uq(x) are their displacements.
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To describe the internal displacement field, the usual parameter form (5) can be used, where the
terms of matrix M§ are functions of co-ordinates 6% (o = 1,2, 3), and cp represents the undetermined
parameters,

e = MicC, . (5)

The number of parameters c, is now chosen to be larger than the usual (nodal) number, in order
to identify the load functions. Substitution of Eq. (5) in the differential equation (1) yields the
relationship between free parameters and the load functions,

AP M, = . (6)

Equation (6) shows that a subset of free parameters ¢, can be expressed in terms of the element
loading, ¢, as stated by Eq. (7), where N q(p) are loading shape functions and g?® the corresponding
nodal values,

A sultable solution of Eq. (6) or (7) enables the separation of the trial functions present in
Eq. (5) into a homogeneous term, with the same dimension as the number of degrees of freedom of
the element, and a particular term dependent on the element loading,

Ua = MI™ epmy + Mop)d®, (8a)
Or
Uy = M§Meg(ny + My q®. (8b)

The free parameters c(,) can now be eliminated using property (4) at the element nodes, to
yield,

m) T £
Uak) = AN Cnm) + Aagi)p)®), (9a)
_ palk)
ey = Beg (o) = Aay@®) (9b)

where B?((n)) is the inverse matrix of AZ((,C)), AZ((T)) and /ia(k)(p) are matrices derived from MZJ(’")

and M, (p) , respectively, by substituting the co-ordinates of the element nodes, and index n varies
as m and k.

Substituting in Eq. (9) the free parameters defined by Eq. (8), the following relationship between
the internal displacements u,, the nodal displacements Uq(k) and the loading @”, is obtained,

k 7 o = =
uy = MPBEE (uagey = Aaqryy7®) + My 3, (10a)
uy = NoW®ypy + N,y @@, (10b)
where the following definitions apply,
k (k)
No = MBS ThE (11a)
N 1 (k) v s k) 1 7
Ny = =MW B Aatryp) + M) = =N ® Agiyp) + My (11b)

In the equations above, ny( ) are the homogeneous shape functions, weighted by the nodal
displacements the homogeneous term of u., , and 1\77(1,) are the non-homogeneous shape functions,
weighted by the non-homogeneous part of u,, associated with the element nodal loading.

The displacement approximation basis (10), constructed as suggested above, can be used in the
application of the displacement version of the finite element method. As the displacement trial
functions defined by Eq. (8) satisfy the non-homogeneous differential equation that governs the
problem under analysis, they satisfy also the non-homogeneous equilibrium equations. Therefore,
they can be used to derive the force functions needed to implement hybrid stress version of the finite
element method and they can, also, be used directly in the application of the Trefftz-type approach.
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3. VARIATIONAL APPROXIMATION BASIS

Let us consider a linear elasticity problem described by the domain equilibrium, compatibility and
constitutive Eqs. (12)-(14) and the boundary conditions (15) and (16), where @, are the prescribed
displacements, T are prescribed boundary tractions and ng denotes the unit outward normal vector,

o®Plg+f*=0 inV, (12)
| ;

€ap = 5 (tals + Ugla) in V, (13)

0% = *P¢,p inV, ' (14)

Uy =i onis; Gssi (15)

0*ng =T ot B, ==lag (16)

The governing system of differential equation (1) is obtained combining Eqgs. (12)—(14) to elimi-
nate the stress and strain components as independent variables.

Assume that the virtual variation du, of the actual displacement field u, satisfies the governing
differential equation and the kinematic boundary conditions, so that the variational expression
leads to an approximation of the mechanical boundary conditions. This variational expression can
be stated as the following global enforcement of the mechanical boundary condition,

/ (aaﬂnﬂ - ’f’"‘) duq ds = 0. (17)

So

The Trefftz approximation given in [19, 26] reduces to form (17) if the Trefftz trial functions are
so chosen as to satisfy the kinematic boundary conditions. As Eq. (17) is simply a global enforcement
of the mechanical boundary conditions it can be applied, as in the Trefftz method, to problems for
which a variational principle may not be available. It can also be applied as a boundary method in
its current form or as a domain method after appropriate transformations.

For this purpose, we introduce the first surface integral in Eq. (17),

/ o"ﬁng 0y ds = /a"‘ﬁng Ouq ds — / a"‘ﬁng duq ds, (18)
So S Su
to obtain
oI = /U“ﬂng 0y ds — / aaﬂnﬁ Oug ds — / T §ug ds. (19)
S ' Su So

Now, the integral over boundary s can be replaced by its domain equivalent in different manners.
Firstly, we can replace it directly using the Gauss integral theorem for the displacement variation,

/ 0Png duy ds = / 0% |5 dug AV — / o §ug g dV, (20)
s 14 v

to obtain the following relation, according to result (12),

/ o8 dugp dV — / Fou, dV — / Uo‘ﬂn,g Oug ds — / T% §uy ds = 0. (21)
14 v Sy

So

The variational expression (22) is obtained by introducing the kinematic field equation and
enforcing the kinematic boundary condition in Eq. (21),

/ o deqpdV — / @ 6uq dV — / T 88, ds = 0, (22)
|4 v So
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It is mathematically similar to the principle of virtual work but differs in what concerns the
subsidiary condition of the variation. In Eq. (22), du, must be kinematically admissible and the
conjugate 6o of du, must satisfy the static field equation in the entire domain.

A second possible transformation of Eq. (19) can be obtained by introducing the following mod-
ification,

/U"‘ﬂna Oty ds = d/aaﬂnﬂua ds — / (Jaaﬁng> 15 ds; (23)
S S S
and using next the Gauss integral theorem for the stress variation,
/5 (500%[,) Ue ds = /V Ua 608 |5 AV + /V Uqlp 00°P AV, (24)
as well as the variation of Eq. (12), 600ﬁ|g +6f® =0, to obtain
—/ Uqg|g 5% AV + 5/ (O’aﬂng) U ds — / T dug ds — / aaﬂnﬁ dugidsi=.0. (25)
14 S So Su

The following variational expression, which is mathematically similar to the modified principle of
complementary virtual work but distinct in what concerns the subsidiary conditions of the variation,
is obtained introducing the kinematic field equation and the kinematic boundary conditions,

—/ Eap 60%P AV + / (éaaﬁnﬁ) Uq ds — / ] [(oaﬁnﬂ - T"‘) ua] ds =0. (26)
14 Su So

In Eq. (26), 60®® must satisfy the static field equation and the du, associated with §o*® must
be kinematically admissible. Moreover, u, on s, can not be selected independently.

The following functionals can be obtained from Eqs. (22) and (26) for systems for which a
potential exists,

) {E/ eapc™ Ve s dV — / uq dV — / T%u, ds} sl (27)
2Jv v S0
) {—%/ o%h (Capys) ol / aaﬂnﬂﬁa ds — / (aaﬁnﬁ - TO‘) Ug ds} =, (28)
v Su

So

Equations (27) and (28) are mathematically similar to the principle of minimum total potential
energy and to the modified principle of complementary energy, respectively.

It can be seen that the approach suggested here can be applied as a boundary method in form (17)
or as a domain and mixed method in forms (27) and (28), following a computational technique
similar to those used in the implementation of the conventional displacement and hybrid finite
element approaches, respectively. It is expected, also, that the different computational techniques
will yield the same result provided that all the conditions assumed in the variation are strictly
observed.

4. GENERAL APPROXIMATION OF THE ESSENTIAL BOUNDARY CONDITIONS

The geometrical interpolation technique described above may not comply with the boundary con-
ditions and the continuity conditions. In this case, a hybrid technique or a boundary technique at
the finite element level can be used to enforce the essential boundary conditions.

As we use displacement field functions that satisfy the governing differential equation and, con-
sequently, the equilibrium equation, the Gauss divergence theorem for the stress variation reduces
to the following form, where the integral over surface s is uncoupled in the sum of two integrals on
the static and kinematic boundaries,

/ Uqlp 60°F AV = / (6a°‘ﬂnﬂ) Ug ds = / (Jaaﬂnﬂ) uq ds + / (6ao‘ﬂnﬂ> Uq ds. (29)
V: s

5 Su
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The following equation is obtained introducing the essential boundary condition (15),

/V Uq|B 60 AV = / (Jaaﬁnﬂ) Uy ds.= /sa (6aaﬁnlg) Uq ds + / (50"‘Bng) Uq ds. (30)

S Su
Instead of result (9), the equation above can be used to calculate in two different ways the free
parameters of the trial functions, cy(n,), that depend on ug(x)-
The first option is hybrid and yields the following equation,

/Vuaw 8% v = / (6aaﬁng) Uq ds + /su (5aaﬁnﬂ) 1o ds. (31)

So
The second optional form is encoded by an equivalent boundary description technique and results
from the following identity,

/s (6aaﬁnﬁ) Ug ds = /sa (Jgaﬁnﬂ) Uq ds + /su (6gaﬂnﬂ> U ds. (32)

As Egs. (31) and (32) are valid both for the whole domain and for every sub-domain, they can
be used also at finite element level to enforce inter-element continuity using the so-called ‘frame
function’ concept in the selection of an independent inter-element displacement field for @ .

The application of the trial functions (8) in association with the variational statement of the
natural boundary conditions (17) and the equivalence (32) enables the encodement of the method
using boundary integral expressions only. The undetermined parameters may then be eliminated
from Eq. (32) and the degrees of freedom of the system can be calculated from the variational
statement of the natural boundary conditions (17) after collocation at the nodal points.

Another possibility for enforcing the essential boundary conditions consists in the application of
the internal displacement functions in form (10) in association with modified version of Egs. (19)
or (27) using the Lagrange-multiplier method. To do so, the difference between the displacement
functions on boundary s, , resulting from the geometrical interpolation in the element and the pre-
scribed term, @q, can be added to the variational statement using the Lagrange multiplier method.

Different element have been developed for plate bending using the hybrid and boundary tech-
niques described above in addition to the conventional displacement technique. These elements are
described in the following section and the results they produce are compared next with the solutions
obtained with Trefftz-type hybrid and boundary elements. They are compared also with analytical
solutions for different boundary and loading conditions.

The displacement functions used in the implementation of the plate bending elements satisfy the
Lagrange equation and the displacement (but not the slope) continuity condition. Therefore, hybrid
and boundary techniques are used at the finite element level to enforce conformity and inter-element
continuity.

It is noted that the application of the interpolation techniques suggested here to the solution
of beam bending problems produces shape functions that satisfy the Lagrange equation and the
inter-element continuity. The same results are recovered by applying such functions with the any of
the variational statements described above, provided that the ‘actual’ essential boundary conditions
are strictly observed [2, 4, 6].

5. RECTANGULAR PLATE BENDING ELEMENTS

The elements presented here have been developed by the author to solve the Kirchhoff plate bending
problem [3-5]. The application is implemented in natural co-ordinates.
In the governing differential equation (33) for the Kirchhoff plate, uga is the plate deflection, D is

the plate stiffness, gf‘g]ﬁ g;c’gf represents the product of the components of the contravariant base

vectors and 7% is the Kronecker delta,
93

« . q
9897 9890 ugolapys 870" = 5 - (33)
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5.1. Displacement element (ZDE)

This four-node element, represented in Fig. 1, is subjected to a distributed load (193 (6',6%) with
nodal values (j"s(i).

0 —03(2) 0.
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Fig. 1. Co-ordinates and loading for plate bending element

The conventional finite element displacement approach’is based on twelve polynomial fields and
undetermined parameters. The essential boundary conditions for the deflection and slopes at the four
element nodes are sufficient to determine the free parameters. In the present approach a symmetric
sixteen-term polynomial is selected in order to accommodate the load function,

uga (01, 62) = MPc,, : (34a)
MP = [1 91 02 (01)2 9102 (92)2 (91)3 (91)202 91(92)2 (02)3
(91)362 91(02)3 (01)2(92)2 (91)402 91(92)4 (91)3(02)3] : (34b)
The parameters are chosen using the conditions obtained from Eq. (34) as constrained by con-
dition (33). There are, of course, other choices available, for example, the selection of a 22-term
polynomial containing all sixth-order terms in the Pascal triangle (21 terms) and term (61)3(62)3.
However, in such cases the differential equation does not provide directly the sufficient conditions
required for determining the additional parameters, as there are other possible solutions of Eq. (33).

For the parameters implied by definition (34) the loading function ¢?° (6',62) is approximated
by the following four-term polynomial,

@04,60)=[1 6 6 692]| <8 |. (35)

Using Egs. (34) and (33) and comparing the coefficients of the trial functions with those of
the loading functions, the following decomposition of Trefftz trial functions in homogenous and
particular terms is obtained, after eliminating the parameters of the loading functions depending
on their load values,

ugs (67,0%) = M"™eymy + Mg, (36a)
Mn(m) = [ 1 01 92 (01)2 9102 (02)2 (01)3 (01)292 91(02)2 (92)3 (91)392 91(02)3 ],
(36b)
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311 = 819" 18737841
- g S S S S
i =g Q@R @0 o ERER]| B

S41 S42 S34 S44

In the definition above, coefficients s;; are functions of the geometric properties of the element.

The shape functions for ugs may now be obtained using the procedure described above, following
the steps described from Eq. (8) to Eq. (11). As a result, we obtain the shape functions for the
displacement u33 as a homogeneous part similar to that one of the ‘non-conforming’ 12 DOF plate
bending element and, also, a particular term depending on the element loading and geometry,

uls = Nn(m)un(m) ST N(m)q(m)_ _ (37a)
S11 S12 813 S41 W
vV, g(m) T O S 821 S22 S23 S42 )
L S N, ¢
Nim)q =5 [Mi N N3 N, | e L5 e (37b)
841 S42 S34 S44 @

The following definitions hold in the equations above,
Ny = (1-(6Y)%) (1-(6%?)

N, = 62 (1— (61)2)"
2 ( )2 5
N3 = 6' (1 - (6%)?)

Ny = 0'6% (1 - (6")?) (1 - (6%)?).

We obtain from Egs. (37) and (38) the particular shape functions for the uniformly distributed
load case, (703(1') = . The particular term is defined by

3 e
Nmy@™ = o5 (1= (61)%) (1 - (6°)7). (39)

The derivation of the element matrices is based on the application of the variational state-
ment (27), which leads to the following FEM relations for rectangular elements,

1 1 - 1 5 1 &
6 {§“n(m) KOy + Stm) I + S F16O) + Se — tgm) F 2"("‘)} =0. (40)
In the equation above, the element stiffness matrix is defined by Eq. (41) and the term of the

equivalent nodal forces associated with the particular term of the displacement function is defined
by Eq. (42),

n(m)(n) / N e NO® gy, (41)
hs :

Finem - / N BBV Ny 7P dA. (42)
A b

In Eq. (40), ¢ is a constant term and f2 is the equivalent nodal force resulting from the application
of the conventional displacement finite element model,

sy = /A §P Ny ap B Nigy 06 3P dA4, (43)

Fon(m) — /A N™™) N g®) dA. (44)
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5.2. Hybrid element (TFE)

This element derives from the variational basis (19) and condition (31). The internal displacement
field is approximated by trial function (36). At the element boundary, the conjugate vector of
boundary tractions is determined from Eq. (36) and can be written using different index notations,
as follows,

T(€)(®) — Ral(e)(®))n(m) eyimy F sz;)(e)(b))q(p), (45a)
(

7o) = RAE@OXM Gy RO ), 45b)
TeE®) = RAEOOKOG ) 4 REOD ), (45¢)
STE®) — ROz, (454)

Index ((©)®) varies over the four element boundaries, along which we assume for %, a displacement
field that ensures inter-element continuity,

. o pnm)
Ta((e))) = Lag(e)s))Un(m) » (46a)
B /

Ta((e)®) = Lty Ush) - ~ (46b)

Matrix LZ(&Z))(,))) contains shape functions on the element boundaries. It is built here using Her-
mite polynomials.

In some Trefftz-type formulations the conformity between the internal displacement field (36)
and the boundary displacement (46) is enforced in a weak weighted residual sense [7, 8, 11], and
in others in a least square sense [10, 20]. Here, the undetermined parameters Cn(m) » OF Cg(g) , MAY
now be eliminated using Eq. (31) and hybrid-type technique that leads straightforwardly to the
following relation, where H¢(y¢(n) is the inverse of matrix (48),

ey = Hepm (TP upemy - BEG®), (47)
Hmm) /A MGV et o) qa. (48)
The remaining terms in Eq. (47) are defined as follows,

r(m)cn) _ / RAE@OXm LI g (49)
AR /A Mgy 05 B*P MEGY dA. (50)

Definitions (45) and (47) for the boundary traction vector and for parameters C¢(e) » TESpec-
tively, can be used to derive the following ‘force-displacement’ finite element relationship using the
variational statement of (19),

ks EMm) gy oy 4 705 = (), (51)

In this equation, the symmetric finite element stiffness matrix and the equivalent nodal force vectors
are defined by the equations below,

ksk)n(m) — ps(k)é(e) He) ((n)TC(")”(m), (52)
RO = OO F 0 B ) g TR gom), (53)
= e ra((e)(b (k)

o /s T LE, s, (54)

76 (k) =3 pa((e)(b)) ys(k)
Tl _/sa R(m) La((e)(b)) ds. (55)
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5.3. Boundary element (JFE)

This element has the same computational basis as element TFE. It differs only in what concerns
the elimination of the undetermined parameters c,(m) , Or cg(r) , using Eq. (32) in a hybrid boundary
technique equivalent to the one described above. :

To apply this technique, we derive first from ugg, Eq. (36), the corresponding displacement
functions ua((¢)(p)) On the element boundary,

R ¥ &
Ua((e)(b) = MZ((e))(b))c"(m) e Ma((e)(b))(p)q(”)- (56)

Using these functions and the boundary tractions (45) we can evaluate the boundary integrals

present in Eq. (32), which leads to the equivalently hybrid H n(m)(n) and H (Cp()n ) matrices,
(m)¢(n) — n(m) o((e)(b))¢(n)
¢ ( = Y e)(b))¢(n
HGY = / Mo((eyey) ) R O™ ds. (58)

The elimination of the undetermined parameters cp(m), O cg(r), using Eq. (32) recovers rela-
tion (47), so that the application can be carried out in an analogous way.

6. NUMERICAL RESULTS

The first set of examples address the analysis of a square plate with various boundary conditions and
loads. Besides comparing the finite element results with the analytical solutions available, attention
is paid also to the convergence obtained with different finite element meshes. The second and third
sets of tests are chosen to compare the solutions obtained with the procedures described here with
Trefftz-type finite element solutions.

Three testing problems defined on a square plate are represented in Fig. 2: a) a simply supported
plate subject to an hydrostatic pressure; b) a plate with two simply supported edges and two clamped
edges subject to a sinusoidal load, and; c) a simply supported plate subject to pyramid-type load.

The following normalised values for the transverse displacement, bending and torsion moments
and shear force are used below,

w(z!,z?) = uls(s!,2?)D/ (") (59)
mi (g!,2%) = M*¥ (z,2%)/(°a?) (60)
7@t 2?) = Q" (4,2%)/(d ) (61)

The results obtained for the plate tests defined in Fig. 2 with different elements and meshes are
summarised in Tables 1-3.

The approach presented here is assessed also using the results obtained with the hybrid-Trefftz
elements HTQI1 and HTQI2 due to J. Jirousek [8]. These quadrilateral elements have mid-side and
corner nodes, for a total of 24 degrees of freedom and 21 trial functions. The frame functions are
polynomials of degree five for the transverse displacement and of the second degree for the slopes.
This relative assessment is based on the number of degrees of freedom.

Table 4 shows the results obtained for the displacement and the bending moment at the centre of
the square plate, simply supported and subject to a uniform load, @°. It shows also the drill-moment
at the plate corner and the shear force at the mid-side boundary point, see Fig. 3.

The percentage errors in the same displacement and force components measured now in the
clamped square plate, subjected also to a uniform load ¢°, shown in the same figure, are presented
in Table 5. The error is computed for the solutions found in [8]. Bearing in mind the simplicity of
the elements presented here, their numerical performance seems to be quite satisfactory.
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Fig. 2. Square plate with different loadings and boundary conditions

Table 1. Square plate subject to hydrostatic pressure

Mesh and | Normalised displacement w(a/2,a/2) | Normalised moment m'!(a/2,a/2)
element ZDE TFE JFE ZDE TFE JFE
2x2 0.002023 | 0.001953 0.001935 0.030834 | 0.023698 0.023700
4x4 0.002038 | 0.002026 0.002026 0.025063 | 0.023923 0.023966
6x6 0.002036 | 0.002031 0.002031 0.024409 | 0.023961 0.023963
8x8 0.002034 | 0.002031 0.002031 0.024187 | 0.023946 0.023941
10x10 0.002033 | 0.002031 0.002032 0.024121 | 0.023951 0.023973
12x12 0.002032 | 0.002031 0.002032 0.024023 | 0.023925 0.023941
14x14 0.002032 | 0.002031 0.002031 0.024016 | 0.023934 0.023945
Ref. [22] 0.00203 0.0235

Table 2. Square plate subject to sinusoidal load

Mesh and | Normalised displacement w(a/2,a/2) | Normalised moment m??(a/2,a/2)
element ZDE TFE JFE ZDE TFE JFE
2x2 0.001490 | 0.000868 0.000936 0.040118 | 0.025190 0.022615
4x4 0.001550 | 0.001353 0.001359 0.029862 | 0.024854 0.024652
6x6 0.001549 | 0.001460 0.001462 0.028341 | 0.026130 0.026121
8x8 0.001546 | 0.001496 0.001497 0.027889 | 0.026609 0.026601
10x10 0.001544 | 0.001513 0.001513 0.027626 | 0.026857 0.026820
12%12 0.001543 | 0.001522 0.001522 0.027516 | 0.026954 0.026938
14x14 0.001543 | 0.001527 0.001528 0.027396 | 0.027011 0.027057
Ref. [22] 0.00154 0.0268

Table 3. Square plate subject to pyramid-type load

Mesh and | Normalised displacement w(a/2,a/2) | Normalised moment m??(a/2,a/2)
element ZDE TFE JFE ZDE TFE JFE
4x4 0.001979 | 0.001776 0.001776 0.0266 | 0.0228 0.0228
6x6 0.002069 | 0.001975 0.001975 0.0273 | 0.0254 0.0254
8x8 0.002057 | 0.002003 0.002004 0.0271 | 0.0259 0.0260
10x10 0.002062 | 0.002027 0.002027 0.0271 | 0.0263 0.0263
Ref. [22] 0.002083 0.0271
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Fig. 3. Square plate subject to a uniform load with different boundary conditions

Table 4. Simply supported square plate subject to uniform load

Elements and nodes | w(a/2,a/2) | m''(a/2,a/2) | —m'%(0,0) | ¢*(0,a/2)
ZDE (45) 0.004071 0.048829 0.033685 0.30845
TFE (45) 0.004061 0.047933 0.036033 0.29890
JFE (45) 0.004061 0.047937 0.036064 0.29931
HTQI1 (40) 0.00406 0.0479 0.0348 0.341
Analytical 0.00406 0.0479 0.0325 0.338

Table 5. Clamped square plate subject to uniform load (percent errors)

Elements w(a/2,a/2) | m'*(a/2,a/2) | —-m*'(0,a/2) | ¢*(0,a/2)
ZDE -1.9 +3.1 -1.1 +9.9
TFE +0.2 +0.08 -0.5 +8.3
JFE +0.2 +0.13 -0.7 +9.2
cIQ ~44 149 782 2
HTQI1 -0.0 +0.3 —-0.6 —-1.7
HTQI2 -0.0 +0.3 -0.7 -1.3
Analytical 0.001265 0.02291 0.0513 0.441

Table 6. Simply supported rectangular plate subject to a unit uniform load

Solution | ZDE TFE JFE | Ref. [21] | Ref. [24]
u%, | 2672.88 | 2696.10 | 2694.66 | 2698.70 | 2697.60
M=z | 1.3567 | 1.2950 | 1.2916 | 1.2984 | 1.2992
M==" | 0.8061 | 0.7737 | 0.7770 | 0.7974 | 0.7984

The last test is on a 4 x 6 rectangular plate with thickness A = 0.2, unit modulus of elasticity and
Poisson ratio v = 0.3. The plate is simply supported and solved for a unit uniform load. The results
for the centre transverse displacement and bending moments obtained with a 4 x 4 element mesh
(symmetry is not used) and eight boundary elements are presented in Table 6. Shown in the same
table are the solutions obtained with Trefftz elements [21], and the analytical solutions presented
in [24]. The quality of the results obtained with the elements suggested here compare favourably
with those obtained with the relatively more complex approach proposed by Piltner [21].

7. CONCLUDING REMARKS

The approach proposed here exploits the basic concept of the Trefftz method in the use of assumed
internal displacement fields that solve the Lagrange equation. What distinguishes this approach is
the technique used to approximate the essential boundary conditions.
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The basic concept consists in operating on the natural boundary conditions enforced in integral
form. However, the essential boundary conditions are used in the approximation in a distinct manner.

Whenever it is possible to satisfy the continuity requirement using the usual geometrical inter-
polation technique, the essential boundary conditions at finite element level are used to construct
‘interpolation’ functions over an element that approximate the internal displacement field. This
field constitutes the displacement approximation basis that allows the application of the proposed
method using a computational procedure similar to the one used in the conventional finite element
method based.

Two alternative procedures are followed to enforce conformity and inter-element continuity when
the interpolation cannot ensure the continuity requirement. The “‘rame function’ concept is applied
in both cases. The first procedure is hybrid and consists simply in applying the Gauss divergence
theorem for the stress variation at the finite element level, after imposing the essential boundary
conditions of the element and enforcing the equation of equilibrium, in order to eliminate the unde-
termined parameters. The second procedure is a boundary equivalent. It results from the application
of condition (32) at finite element level in order to relate the undetermined parameters with the
nodal degrees of freedom.
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