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The stress model of the hybrid-Trefftz finite element formulation is applied to the elastoplastic analysis of
solids. The stresses and the plastic multipliers in the domain of the element and the displacements on its
boundary are approximated. Harmonic and orthogonal hierarchical polynomials are used to approximate
the stresses, constrained to solve locally the Beltrami governing differential equation. They are derived from
the associated Papkovitch-Neuber elastic displacement solution. The plastic multipliers are approximated
by Dirac functions defined at Gauss points. The finite element equations are derived directly from the
structural conditions of equilibrium, compatibility and elastoplasticity. The non-linear governing system
is solved by the Newton method. The resulting Hessian matrices are symmetric and highly sparse. All
the intervening arrays are defined by boundary integral expressions or by direct collocation. Numerical
applications are presented to illustrate the performance of the model.

1. INTRODUCTION

The paper reports on the application of the hybrid-Trefftz stress finite element to the elastoplastic
analysis of solids. It shown in [4, 7] that this element performs rather well when applied to the
solution of elastic three-dimensional benchmark problems. It exhibits a negligible sensitivity to
geometric irregularities and to gross mesh distortion, it is free from locking in the incompressibility
or near incompressibility limit and produces accurate estimates for both stresses and displacements.

The non-linear application reported has been selected to assess the combination of the high
levels of performance that can be attained with three-dimensional hybrid-Trefftz finite elements
with the robustness and proven reliability of the implicit Euler backward stress integration and the
Newton-Raphson method, as applied to the elastoplastic analysis of solids, e.g. [8, 9].

The formulation is based on the independent approximation of three fields. Stresses and plastic
multipliers are approximated in the domain of the element and the displacements are approximated
independently on its static (Neumann) boundary. A polynomial basis for the stress field is derived
from the Papkovitch-Neuber potential that solves locally the homogeneous Navier equation. This
polynomial basis is free of spurious modes and involves 186 degrees of freedom for a complete
sixth-degree stress approximation.
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The resulting Hessian matrices are symmetric and highly sparse. All intervening matrices and
vectors are either defined by boundary integral expressions, which is typical of the Trefftz approach,
or computed from direct collocation, as a result of the Dirac approximation of the plastic multiplier
field.

The tests presented here for the elastoplastic analysis of solids confirm the high efficiency that
can be attained in the solution of both linear and non-linear problems reported in [10,12-17] two-
dimensional applications.

2. FUNDAMENTAL RELATIONS

Let V and I' denote the domain and the boundary of a typical finite element and let I'y, and Iy

identify the kinematic (Dirichlet) and static (Neumann) boundaries: I' =T, UT4; 0 =T, N T, .
In the equilibrium and compatibility conditions (1) to (4), w is the displacement vector and

vectors o and € collect the independent components of stress and strain tensors, respectively,

Do =0 in V, (1)
e =D"u in V, (2)
No =tr ondly; (3)
u = ur orFy (4)

For simplicity, the body forces are neglected in the domain equilibrium condition (1), where D
is the differential equilibrium operator. In the domain compatibility condition (2), D* is the adjoint
operator for geometrically linear problems. In the Neumann condition (3), IV is the boundary
equilibrium matrix that collects components of the unit outward normal vector to I' and #r is
the prescribed traction vector. In the Dirichlet condition (4), vector ur defines the prescribed
displacements.

The decomposition of the strains into elastic and plastic addends is defined by Egs. (5) and (6)
states the elasticity condition in terms of the flexibility matrix, f,

€=¢c+Ep inV, (5)
Seiid O in V. (6)

In the perfect plasticity equations (7)—(10), F(o) is the yield function, A is the plastic multiplier,
and n (o) is the outward normal vector to the yield surface and F(o) = 0.

F(o) <0 inV, (7)

€, = An(o) in'V, (8)
__ 0F(a) :

n(o) = e inV, ©))

A>0 in V. (10)

3. FINITE ELEMENT APROXIMATIONS

The hybrid finite element formulation used here is based on the direct approximation of the stresses
and plastic multiplier increments in the domain of the element and, also, of the displacements on
its Neumann boundary,

o=58X in V, (11)
A\ = E,e, inV, (12)
u=2q onT,. (13)
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In the definitions above, S, E, and Z are the matrices that collect the approximation functions.
As generalised (non-nodal) variables are used, the weighting vectors X, e, and q define generalised
stresses, plastic multipliers and boundary displacements, respectively.

Neither the formulation nor the approximation bases used here constrain the geometry of the
finite element, which may not be convex, bounded or simply connected. However, and for simplicity,
only one master element is tested in this report, namely the right 8-node hexahedron. The shape
functions adopted in the mapping operations typical of isoparametric elements are used here only
to support the geometric transformations, as the finite element approximation is implemented on
the independent bases defined below.

3.1. Stress approximation

In the Papkovitch-Neuber solution (14) of the (elastic, homogeneous) Navier equation, G is the
shear modulus, v is the Poisson ratio, r and V are the position and gradient vectors and operators
¥ and ¢ are vector and scalar harmonic displacement potentials, respectively,

2GU = —4(1 —v)yp + V(riap + ¢). (14)

This solution is used to establish the stress approximation matrix. Equations (2) and (6) yield
the following expression, where k = f~1,

8§=KD"U. (15)
The following displacement potentials are used to build this basis,

oF = " Bil&); (16)
¢r = ri exp(f), (17)
or = zkr) exp(Ok). (18)

In the definitions above, P, is the associated Legendre function of order n, r = {/ :cﬁl + mg + xg :
Pe =/t + w?, OrI tan~'(z;/z;), I is the imaginary unit, & = x4 /r and ) represents the local
(baricentric) system of co-ordinates assigned to the element.

When n is integer and an even permutation of 4, j and k is used, the real and imaginary parts of
definitions (16) to (18) define polynomial potential functions [7]. The fifteen functions thus defined
are inserted in Eqgs. (14) and (15) to generate sixty polynomial approximation functions for each
degree, n. Although it is complete, this Papkovitch-Neuber basis may contain linearly dependent
modes, which are detected and eliminated from the stress basis (15) a priori.

As it shown in [7], the stress basis generated in this manner is self-equilibrated, and described by
186 complete, linearly independent polynomial stress modes of the sixth degree. Higher degree bases
are possible, but complete extensions are yet to generated. For Instance, the potential functions (16)
to (18) generate stress basis with completeness deficits of 6, 16 and 31 modes for the known totals
of 237, 294 and 357 independent modes present in complete bases of degree seven, eight and nine,
respectively.

3.2. Boundary displacements approximation

The approximation matrix, Z, present in the boundary displacement approximation (13) is built on
a complete, linearly independent and naturally polynomial bases directly extracted from the Pascal
triangle [7]. This basis is written in the local co-ordinate system assigned to each face of the master
element. The number of boundary displacement modes that are thus generated for a complete basis
of degree n is defined by

n, =3[1/2(n+1)(n +2)]. (19)
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3.3. Plastic multiplier approximation

The plastic multiplier increment in definition (11) is approximated by Dirac functions 4(z). Prelim-
inary tests have shown that, as expected, the Gauss integration points provide the best choice for
the control of plastic deformation [4]. Therefore, the plastic multiplier approximation matrix and

the associated plastic multipliers vector are defined as follows, where @1, 2, ..., N denote the
Gauss points,
Eow [3(:1:1), §(z2), ...S(ZN)], (20)
e. = [AX®1) AA®mg) ... Az (21)

4. FINITE ELEMENT EQUATIONS

Different approaches can be followed to establish the finite element equations resulting from the
basic approximations (11) to (13), namely duality, virtual work and variational approaches.

For instance, the weak form (22) of the virtual work equation can be used to derive Eq. (23),
which enforces on average, in the sense of Galerkin, the compatibility conditions (2) and (4) and
the elasticity condition (6) for decomposition (5),

/ dole dV =/ (Néo)'u dF+/ (Néo)tur dr, ; (22)
1% u

o

FX - Aq+ / Ste,dV =v. (23)
v

In the equation above, F' and A are the finite element flexibility and compatibility matrices,
respectively, and vector v defines the contribution of the prescribed displacements,

P= / StfSav, (24)
Vv

A= (NS)zdl, (25)
T

o5t / (N'S)tup dT. (26)

Additionally, the weak form (27) of the Neumann equilibrium condition (3) leads to the (Z-
weighted, Galerkin) finite element description (28), where vector Q defines the contribution of the
prescribed tractions,

Su!Nodl'= [ Su'trdrl, (27)
! 1874
~A'X = -Q, . (28)
Q= [ Z'trdl. (29)
Iy

It is noted that the domain equilibrium condition (1) is locally satisfied by the self-equilibrated
stress approximation (11), DS = 0. This property, together with condition (15), can be used to
obtain the following boundary integral definition for the finite element flexibility matrix (24) [7], as
it is typical of the Trefftz variant of the finite element method,

_ 4
F = /F (NS)tudr. (30)
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4.1. Time discretisation of the plastic strain

It is assumed that the loading programme is applied in N time steps [¢;, t;+1]. The response of the
structure is fully determined at instant ¢; and at instant ¢; 1, either the loads or the displacements
applied to the structure are prescribed. The following non-linear system is obtained combining, at
instant #;1, Egs. (23) and (28) and the plastic yield condition (7),

FXi+1 s Aq'l+1 + A StspH_l dV = vi"rl ) (31&)
—A'Xi1 = -Qiy1, (31b)
F(0i+1) <0. (31c)

The plastic strain increment in time step [t;,¢;11] is given as follows, where Epip1 = Ep; + Agp,

tit1 tit1
Ag, = / épdi = / An dt. (32)

t; t;

The implicit backward Euler integration of the above relation leads to definition Epiyr = Ep; +
AXn;;1, which is enforced in Eq. (31a) to yield

FXiy— Aq; + / S'ni i ANAV = vy — ey, (33)
v
€p; = / Step, AV. (34)
v

The following results are obtained combining Egs. (12), (20) and (33),

/ S'n; 1 ANdV = N,e,, (35)
v

N* = /VStn,-HE* dV, (36)
N, = [S'(z)nin(o(z1)), S'z)nip(o(@), ..., Szy)nia(o(zn))]. (37)

The weak form (38) of the yield condition, written for the modes that are active at instant tiv1
and for approximation (12), leads to the finite element description (39)

/ SANF (i) dV = 0. (38)

v

/ E'F(0is1)dV = 0. (39)

v ;

The following is the resulting expression for the finite element solving system at instant #;, ,
FX;. — Aqi+1 + N.e. = Vi1 — €p,;, (40&)
—AtXi_;.l = —Qi+1 ) (40b)

E!F(oiy1)dV =0.
/V F(oit1) (40c)

System (40) is non-linear due to Eq. (40c). This equation assumes that the set of active collocation
points, F(0i1(xx)) = 0, is known at instant t;; . The inactive points, for which F(oj41(zx)) < 0,
are not represented in system (40). The selection of the active and inactive control points at each
step of the elastoplastic analysis is discussed in Section 4.4.
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4.2. Linearisation

The non-linear system (40) can be recast in the residual form (41) and linearised by the Newton—
Raphson Method, to yield, for each iteration j, the solving system (42),

[ Ri(Xit1,841,6+) = FXiy1— Agip + Naex —vip1 + €, (41a)
; Ry(Xi41,441) = -A'Xin+ Qi (41b)
Rs(X 1) - [ BiF o), (41c)

\ v
C FiMI —A NP | (AXI R (42a)
0 0 A b={ R, 3. (42b)
| Symmetric 0 Ael R; (42¢)

The following definitions are used in systems (41) and (42), respectively,

N
€p; -5 Z (Stepi)’ (43)
k=1
N
M, = /V S'V2F(0ir1)SE.e,dV = Z [S(zk) V2 F (0i41(zk)) S (k) AX(zk)].- (44)

k=1

System (42) is symmetric and highly sparse. Matrices M, and N, as well as vector e, collect
information on the so-called active collocation points xj. The iterative search method used to
identify this set of points is presented in Section 4.4.

According to approximations (11) and (13) and to the elasticity condition (6), the stresses,
displacements and elastic strains are defined at instant ;41 by the following expressions,

oit1 = SXiy1, (45)
Uit1 = Zq;y1; (46)
Ef—{—l == fSXH_l . (47)

4.3. Load step
The alternative method for controlling the load step proposed in [11] is adopted here. It consists in
accepting variable load and displacement increments by controlling directly a prescribed increment

of the external work. In the system (41), definition (29) for the load vector @, is replaced by the
expressions below, where ¢r final is an (arbitrary) final load, and ;41 is an unknown positive scalar,

Qiy1 = ain1Qr, (48)

Qr = /F Z'tr fina1 dT. (49)

The external work (50) at instant ¢;41 is defined by Eq. (51) for the finite element approxima-
tion (13),

Wi = Wi+ AW = / t%‘,ﬁnal wjy1 dl, (50)
Ly

Wipi = Wi+ AW = / tt final Zqi41 AT (51)
s
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Consequently, Eq. (41b) is replaced by result (52) and the additional residual (53) is added to
system (41),

Ry(Xit1, Qi) iv1) = —A' X1 + 241Qr, (52)
Ry(qi11) = Q%gi1 — Wiy . (53)
The control parameter used in the incremental procedure implemented here, AW, is identified

with a fraction of the external work spent in the elastic phase. The linear system (42) is extended
to accommodate the additional scalar equation (53) needed to determine the load parameter, «,

F+M, -A NY o AXI R, (542)
0155 ko gl A bog Ry (54b)

Symmetric 0 0 Ae; DRy (54c)
0 Ao, Ry (54d)

4.4. Solution procedure

Sub-matrices F' and A present in system (54) are calculated just once, as they depend only on the
elastic constants and the geometry of the elements. The number of columns of matrix N t | that is,
the dimension of array Ae, , is variable as its depends on the number of active collocation points at
the end of each the time step, which is not known in advance. The so-called Active Point Method
is the strategy used here to solve this indeterminacy.

In this method, a collocation point xy is said to be active if F(o;11(2x)) > 0. After implementing
a set of iterations, the number of active points stabilises and the asymptotic quadratic convergence
of the Newton—-Raphson Method is regained. In the first iteration, the collocation points which were
active at the end of the previous time step are assumed to remain active. When the Newton-Raphson
process converges, the plasticity conditions are satisfied at all collocations points. Convergence
occurs when AX?, Aq and Ae, are small enough and there are no collocation points where the
plastic yield and flow laws are violated.

An alternative to the Active Point Method is the Active Set Method, frequently used also in
Nonlinear Programming. In this method a set of active points is assumed and the Newton-Raphson
method is applied and, after convergence, the set of active points is updated. The points that became
active, F'(o;1(x)) > 0, during the process are accepted and those points that ceased being active,
Ae, < 0, are removed from the set. The N ewton-Raphson method is then restarted until the active
set is stabilised.

In terms of the overall number of iterations, the Active Point Method has proved better than the
Active Set Method in the tests reported in [4]. At each time step [t;, #;41] the initial estimate of the
solution is taken as the vector {X;, g;, 0}*. It means that the stress and displacement distributions
are taken from the previous load step while assuming the plastic strains to be null.

The solving system (54) has variable dimensions and must be dynamically allocated in each
iteration. It can be solved by Gauss elimination, taking into account its symmetry and sparsity, or by
an iterative method, namely the pre-conditioned Conjugate Gradient Method. The option followed
here is the Gauss elimination algorithm supported by a sparse storage scheme and a symbolic
pre-factorisation analysis designed to minimise fill-in.

It is noted that, for large-scale problems, the combination of parallel solvers with the pre-
conditioned Conjugate Gradient Method is the best solution scheme for system (54) [6]. This system
is particularly well suited to parallel processing because the generalised stresses, X, and the plastic
multipliers, e, , are strictly element dependent, while the generalised boundary displacements, q,
are shared at most by two connecting elements.
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5. NUMERICAL APPLICATIONS

A clamped cube and a tensile notched plate are used to test the application of the three-dimensional
hybrid-Trefftz stress element. The results presented below are directly extracted from the references
mentioned below or estimated from the graphs there presented when tabulated values are not
available.

Different degrees in the approximation basis (11)-(13) are used in the implementation of the
hybrid-Trefftz stress element. They are labelled HTS(d, , dur , N,) in each test, where d, and dyr
are the degrees used in the stress and boundary displacement approximations, respectively, and N,
defines the number of collocation points in each direction. Therefore, the total number of collocation
points in each element is (Np)3.

The solutions presented for the hybrid-Trefftz stress element are those directly computed from
approximations (11)-(13); no smoothing is used. A perfect plastic behaviour, with the Von Mises
yield criterion and yield stress Y, is assumed in all tests.

The basic system of equations (1)-(10) is implemented in a non-dimensional form, which results
from the application of three global scaling parameters, namely the length scale, Ly, the stress
scale, Y, , and the Young modulus scale, E;, which are identified as the largest values found for
these parameters in each application. Thus, the scaled values that replace the actual tractions and
displacements are the following: A = t/Y; and 6 = uFE; /LY.

5.1. Cantilever tests

The first set of tests is implemented on the clamped cube subject to a uniform transverse load, g,
shown in Fig. 1. Symmetry is used to solve the cube with the four- and nine-element meshes defined
in the same figure. The scaling parameters are Ls = L, Y5 = Y and E; = E and the Poisson ratio
used is v = 0.3.

Three sets of hybrid-Trefftz stress elements is used in each mesh, namely HTS(6,3,4), HTS(6,3,6)
and HTS(4,2,4). The convergence of the corresponding load—displacement diagrams is presented in
Figs. 2 and 3. The displacements measured is the vertical displacement at point A. As expected,
p-refinement is more sensitive in the four-element mesh than in the nine-element mesh. The results
obtained show, also, that p-refinement increases the collapse load while Nj-refinement induces lower
collapse loads, as expected.

The HTS solutions are compared in Fig. 4 and in Table 1 with the solutions obtained with the
20-node C3D20 element available in the library of code ABAQUS [1]. This element is implemented
using two regular meshes, with 4 x 4 x 4 and 8 x 8 x 8 elements. These solutions are compared also
with the solutions obtained with two-dimensional stress models of the hybrid-Trefftz and hybrid-

Fig. 1. Elastoplastic analysis of a clamped cube (v = 0.3)
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Fig. 2. Load-displacement diagrams for the clamped cube (4-element mesh)

A
0.6 T
0.4 1
i ~o—HTS(6,3,4)
6% —— HTS(6,3.6)
i —s— HTS(4,2,4)
0.0 -1 Y ) i Likat ok : { il f Bdicdh t 11 I 11
TP 9955 Slefl g, 1oiigoc STl A g g

Fig. 3. Load-displacement diagrams for the clamped cube (9-element mesh)
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Table 1. Collapse load estimates of the clamped cube at § = 2.5

A
[ Beam theory
i —A— C3D20 (4x4x4)
i HTS-2D —A— C3D20 (8x8x8)
- —o— HTS(6,3,4) 4FE
i HMS-2D —e— HTS(6,3,4) 9FE
0.0 1.0 2.0 3.0 4.0 5.0

Fig. 4. Load-displacement diagrams for the clamped cube

Element | HTS-2D | HMS-2D | HTS(6,3,4) | HTS(6,3,4) C3D20 C3D20
Mesh 4x4 22 32 4 9 4x4x4 | 8x8x8
X 0.411 0.406 0.444 0.451 0.456 0.446
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mixed finite element formulations, HTS-2D and HMS-2D, implemented on regular meshes with 4 x 4
and 32 x 32 elements, respectively. Both formulations are based on distributed plasticity models
and the number of plastic cells per element is 4 x 4 and 1 x 1, respectively [5, 17].

5.2. Tensile notched plate

The notched plate subject to a uniform tension load, ¢, shown in Fig. 5 has been frequently used
to test alternative finite element formulations. Symmetry is called upon again to solve the plate
with the six-element mesh defined in the same figure. The scaling parameters are L; = L = 10 mm,
Y, =Y = 243 MPa and Es; = E = 70 GPa and the Poisson ratio used is v = 0.2. The displacement
considered is the horizontal displacement at corner A.

Four elements are tested, namely, HTS(8,3,4), HTS(7,3,4), HTS(6,3,4) and HTS(6,3,6). The
corresponding load-displacement diagrams are shown in Fig. 6. The collapse load estimates are
presented in Table 2, where Npg defines the stress and boundary displacement degrees of freedom,
Np represents the total number of collocation points used in the control of plasticity and Njctives
identifies the number of active points at collapse. The sparsity indices found for the Hessian matrix
with the HTS(6,3,4) element is 97.4% in the elastic phase of the response and 97.2% at collapse.

The two-dimensional hybrid-Trefftz solution presented in Table 2 corresponds to the 20-element
solution obtained with the non-local plasticity model reported in [17]. The approximation on the
stresses and boundary displacements are of degree nine and five, respectively. The distributed and
regularised (gradient-dependent) plasticity model is implemented on sixteen plastic cells per critical
element. The associated number of degrees of freedom, used to approximate the plastic multiplier
and the boundary plastic radiation fields, is identified by parameter N, in Table 2.

The two-dimensional finite element bounding reported in [3] for the collapse load is 0.595 < Ac <
0.625 and the refined boundary element solution given in the same reference is A, = 0.605. The

b
L,
() z
I — K £’ i
| v J 0.5
} s 1
y
0,5L p.EL[o,aLl 0,8L -
5 S
= &
n
o
(od 34 £
n
o
0% 0% i X
0AL | 04L | 1,00
1 T
1,8L

Fig. 5. Tensile notched plate (v = 0.2)
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Fig. 6. Load-displacement diagrams for the tensile notched plate

Table 2. Collapse load estimates for the tensile notched plate at § = 2.0

Element Ae |'Nrg | 'Np | Nactive | Niotal
HTS(6,3,4) | 0.608 | 1945 384 66 2011
HTS(7,3,4) | 0.620 | 2215 384 70 2285
HTS(8,3,4) | 0.632 | 2497 384 92 2589
HTS(6,3,6) | 0.590 | 1945 | 1296 70 2015
HTS-2D 0.596 | 1302 | 1536 296 1598

Fig. 7. Stress distributions in the notched plate obtained with element HTS(6,3,4) at § = 2.0

same (two-dimensional) problem is solved in [18] using a symmetric Galerkin boundary element
formulation implemented on a refined mesh with linear boundary displacements, constant tractions,
and triangular cells with constant plastic strains. The collapse load estimate reported there is
Ac = 0.596.

An adaptation of the graphic library [2] has been used to obtain the in-plane stress fields shown
in Fig. 7. The equivalent Von Mises stress is shown also. The areas where the plastic criterion is
corrupted (oym/Y > 1) are printed in black. This local deterioration of the yield condition can be
minimised simply by placing the plasticity control points on the surface of the elements.

6. CLOSURE

The results reported above illustrate well the efficiency of the stress model of the hybrid-Trefftz
stress finite element formulation in the solution of three-dimensional elastoplastic problems. The
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algorithms used have proven to be robust and capable of exploiting the accuracy offered by the
hybrid-Trefftz stress model. The best performances have been obtained with elements HTS(6,3,4)
and HTS(7,3,4). The p-refinement procedure is still restricted by the limitation on complete stress
basis of the sixth degree. Research on the extension of this basis is being developed to exploit
fully the hierarchical nature of the formulation. Yet another improvement of the model consists
in controlling the plasticity criterion on boundary collocation points, where the highest Von Mises
stresses are known to develop.
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