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The work presents the application of heat polynomials for solving an inverse problem. The heat poly-
nomials form the Trefftz Method for non-stationary heat conduction problem. They have been used as
base functions in Finite Element Method. Application of heat polynomials permits to reduce the order of
numerical integration as compared to the classical Finite Element Method with formulation of the matrix
of system of equations.

1. INTRODUCTION

Heat polynomials have been presented for the first time in [5], and their application is reported
in [1, 2, 3, 6]. These polynomials solve the heat conduction equation, and their linear combination is
used to solve non-linear stationary heat conduction problems by the Trefftz method. Completeness
of their polynomial basis ensures a very good approximation of the temperature function in a finite
element. The essence of the work presented here consists in introducing space-time elements and in
defining a functional for the solution of the non-stationary heat conduction equation by the Finite
Element Method implemented on a heat polynomial basis. The resulting stiffness matrix is still
symmetric and positive definite but its dimension of integration is reduced by one order.

The calculation of a boundary condition based on the measurement of the temperature at a point
inside the domain is important in many applications. This inverse problem is solved here with the
use of heat polynomials. An inverse problem of non-stationary heat conduction in a planar layer is
solved to investigate the numerical properties of heat polynomials.

2. GOVERNING EQUATION AND SOLUTION OF SIMPLE PROBLEM

Consider the one-dimensional linear heat conduction equation for a layer

2
p-c%z)\%ﬁ—g, 7 € (0,00), z€(0,l), Te€C?*0,l)nC(0,00), (1)

with constant coefficients p, ¢, A and the following conditions:

e initial condition
T(z,0) = f(2), z € (0,1), (2)

e boundary condition (Fig. 1)

T(z=0,7) = g(7), 7 € (0,00), (3)
e N, T € (0,00). (4)
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The auxiliary variables (5) are used to write the heat conduction equations in the non-dimensional
form (6),

(5)

Do —tia ¢€(0,1), te(0,00). (6)

The following result is obtained by expanding the function T'(§,t) € C* in a Taylor series on
point (&, , t,) and eliminating even derivatives on £ using Eq. (6),
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=T, 1 T=zxz—120, t=t—1g.

It is noted that the derivatives of equal order with regard to the same variables are located at the
diagonal, from the left to the right side in Eq. (7). Hence, grouping of the terms of the expansion (7)
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with the same derivatives yields the following solution for Eq. (6).
or 8P A x. F st OO (ot % 2
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The polynomials in expansion (8) solve Eq. (6). Solution (8) can be written in the following form,

=, o"T g o~ i - o AT s
T(é‘vt) :Z otn '”2n(f’t—)+28§w'vzn+1(f,ﬂ = a_gﬁ'vn(é‘,EL (9)
n=>0 n=0 n=0
where
s [%] en—2k {lc
un(§,1) = (_fjk)ﬁ (10)
k=0

The univocal character of the Taylor expansion of function T'(¢, t) gives

N

T(&,t) — Z w (€, 5) = Sniy and lim Sy =0 (11)
4 e o : N—-oo
meaning that the system of functions {v,, v1, ..., vy, .. .} is complete.

Functions vy (€, t) are called heat polynomials [5]. The determination of values of function vn(€,1)
using expression (10) may be charged with considerable numerical errors. The values of function
vn(&,t) can be determined by recurrence formulae. In order to derive the recurrence formulae one
should notice that the function W = exp(p£? + p?t) solves Eq. (6) for any value of parameter p.
The generating function, W, can be expanded into a power series with regard to parameter p,

00
W = ePEtp’t — Zvn(&t) ¥ i) pER. (12)

n=0

Expansion of the generating function W leads to the following relations,

'Uo(f,t) =1, 'Ul(fvt) o 67 ’U2(§’t) = %§2 +1, U3(§)t) = %63 L §’

L 11, epeels S
'U4(£at) 9% ﬁf =) 25 t+ Zt ) v5(§,t) by 120§ . 65 t+ 2§t )
1 6 1 4 1 2,2 1 i 1 4 1 5 1 342 1 3
= — Pr— —_ —_ T = —— [— [— -
& 2t
vnt1(§,t) = E"Un(fat)"'z‘vn—l(f,t)a n 21 (13)

The following relationships are satisfied for the derivatives,

@%?Q=%4@w,n2L 20D — vualet) n22. (14)
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The polynomials vy, (£,t) identically satisfy the heat conduction equation (6). The solution of the
heat conduction equation can be presented in the form

n=0 =l

The unknown coefficients, A, , in the approximate solution,

N-1
T(E,) = Y An-va(§,8) = {4} - {0}, (16)
n=0

are sought through the minimization of the mean square distance of solution (16) from the initial
and boundary conditions. The functional form of this distance is as follows,

1 tr tg
J({A}) = /0 (T(€,0) — F(€)]2dé + /0 (T(0,7) — g(r)] dr + /0 [T, - (). (17)

It is noted that at the initial time ¢ =0 (¢, = 0)

S S D =
TE0) =D An (6, 00=D An=—F—=) An g
n=0 s n=0 :

n=0

Hence, the initial condition f(£) is approximated by linear combination of functions 1, £
g3, ..., that leads to Hilbert matrix elements in the matrix of the coefficients {A}. Therefore,
stable numerical results can be obtained for N ~ 12. In the case of rapid heating or cooling of
bodies, the large gradients of the function & that occur require the number N of heat polynomials
in approximation (16) to be increased. This increase leads to ill-conditioning of the system of
equations defining coefficients {A}. A solution of this problem consists in dividing the solution in
finite elements and approximating the solution of Eq. (6) in the form of linear combination of heat
functions (16).

Division of the solution range in the elements is shown in Fig. 2. Physical properties of heat
conduction process result in the fact that both temperature and heat flux at common element
boundaries are continuous functions. Due to a finite linear combination (16) of the solution ap-
proximation one may require continuity of temperature and possibly small differences in heat fluxes
gj—1 — ¢; at the common boundary. Figure 3 shows an approximation of the function T'(¢,t) in the
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element of 4, 6, and 8 nodes. The order of polynomial in the direction of t-axis is strictly related
with the order of polynomial in the direction of ¢-axis.

Let us determine the form of the solution (16) in a finite element (}; as a function of the tem-
perature at the finite element nodes. The temperature function is expressed by the relationship

N
Tj(g,t):ZA%'wn(E’t), (§7t)€Qja £=§—£ja éjS€S£j+1a (18)
n=}

where for simplicity of programming the condition w, = v,_; has béen assumed.
Function wy, (¢, 1) satisfies also the following equation,

S . iy
ot g’

The solution at the finite element nodes,

Wy =Vn1, in=1,2,:..

N
T, te) =Tk =) An-wal&, %), k=12...,N

n=1

provides the system of equations used to define the coefficients {A,} for each element,

wi (&1, t1) wa (&1, t1) w31, 1) - wn (&1, 1) Ay T
wi(&2,t2)  wa(&e, ta) w3(€2,t2) - wn (€2, t2) Ay i
wi(€s,t3)  wa(&s,t3) ws(és,t3) - wn(és, ts) e g T
w1(§_1\;, tn) w2(§_1\;, tn) ws(fzx;, tn) .- 'wN(gI;I, tn) A.N T.N
The solution of this equation,
[wl{4} = {T}, (20)
N :
{4} =[] ™T} = [UNT}, A=) Uy T
k=1
yields the following results,
N /N : N /N f N
T(E’ t) 5 Z (Z Unk . Tk) " wn(fat) S Z ( Unk : wn(§7t)) 5 Tk - Z‘Pk(g’ t) A Tk (21)
n=l \ke1l Rezel” A=l k=1
N

Sok(f—,t) ZZUnk'wn(gvt)v te (tia tH—k), k:(N_Z)/?'
=i
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The basic functions ¢y (é,t), i = 1,..., N are characterized by the following properties,

8ol Ao op 8 & g
(_a_t—a_g‘é_) (Pk(gat)—o as (a—ggg) wn(ﬁ,t)—O, =1 Y (22)
(ét)— 1 I{,‘:J, k:l,...,N, j:l,‘__’N, (23)
st k#34, (&, t;)— element nodes,
N
Zwk(é, =1, o)
0 o n
*"’* zunk - ZUnk wai(6,1), s
a(Pk ZUnk a'Un ZUnk Wy 2 ) (26)

The defect of the heat flux flowing between the elements caused by the approximation process
is defined in [1] by

- Ot ) 0t -

8g;(t) = ——* 8J§+ Cpty 3§J+ ) =qj — gj+1- (27)
It provides a basis for formulation of a functional of heat flux error on the boundary between
elements, Fig. 4. The functional is a sum of heat flux defects at the element boundaries and takes
the form

t+ i+k
1, —Z/ (645 (r dT—Z/ i) s (DA A N (28)
t A
g o idg
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Cisk
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a0 4 | ajn
t; g
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Fig. 4

The unknown temperatures at the nodes of finite element mesh are determined by minimizing
the expanded functional (29) as compared to (17),

BGie titk
J—Z / [Ty(&, ) — TP(E, 8 dé + / (T1(0,7) — g(r)]? dr + / [T(1,7) — h(r)] dr

1.+k
/ (o el )Pl S0 EIR . K=IN[2-1, (29)
[ :

where T"(f ,t;) is the initial temperature for time ;.
The minimization of functional (29) leads to a solution at each mesh node, which depends on

the initial and boundary conditions assumed.
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3. INVERSE PROBLEM

The definition of the boundary conditions is not possible in many technological problems. This is
the case, for instance, of the combustion chamber of a fuel engine or a rocket jet nozzle. However,
temperature measurement (e.g. temperature distribution) in the proximity of surfaces with known
boundary conditions is possible. Hence, the problem consists in defining the unknown boundary
conditionsat the surface { = 1 see Fig. 1, by taking into account a known initial condition, the
boundary condition at the surface { = 0, and temperature measurement at the surface £*. The
problem thus defined is an inverse problem, and is ill-posed in the sense of Hadamard.

The inverse problem is solved using the solution of a direct problem T'(¢, ¢, h(t)) dependent in the
sought boundary condition h(t). Due to discretization of the problem, the function h(t) is sought
for consecutive time values. Let us consider an 8-node element (Fig. 5). Then the temperatures A, ,

h1, ha, h3 at the surface £ = 1 are unknown at four consecutive time moments ¢; , t;y1, tiyo, tit3,
1 =036, -.

S p L
V4 8
3§
kil
/ v
e o
#a 2
Li t itk

Fig. 5. Solution in time layer (ti, t;1x)

Let us assume that temperature values T = T'(£*, t}) at point £* are known at time ¢}, k > 4.
The boundary condition vector {h} is determined from minimization of the following functional,

Jg = |IT (€, ¢, {h}) = T*|I". (30)
The minimization of the functional (30) leads to the solution of the inverse problem in the form
M
{T} = [STAB|{T0} + ) Zm - Ty + {WA} - go+ {WB} - g1 + {WC} - g + {WD} - g5 (31)
m=1

The temperature disturbance T}, at point (&, ), 6T, , results in disturbance of temperature
T, , 0T, (beside the first time-layer). So, the disturbed temperature distribution may be expressed
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by the relationship

M
{T + 6T} = [STAB] - {To + 6To} + > Zm - (T, + 6T},)

m=1
+ {WA} - go + {WB} - g1 + {WC} - g2 + {WD} - g3, (32)
M
(6T}  =[STAB]-{0To} + > Zm - 0T}, . (33)
m=1

Relationship (31) is subtracted from definition (32) to obtain a formula of propagation of tem-
perature measurement error and the error of determination of the initial temperature onto a tem-
perature distribution in the whole area. The matrix STAB is called the stability matrix. The inverse
problem is stable when spectral radius r of the STAB matrix satisfies the condition r < 1.

4. NUMERICAL CALCULATIONS

For the purpose of numerical calculations, the temperature distribution at points (£*,*) has been
assumed as equal to the solution of a simple problem under the conditions

or oT a-l
) P A e (o S N i, S S ey Y ¢

where Bi is Biot’s number (3rd boundary condition) and Ty is the temperature of the liquid that
surrounds the layer. If Bi — oo the surface { = 1 is subject to the boundary condition of the first
type. The following values have been assumed for the calculations: the mesh in {-direction is divided
into 30 parts, time step A7 = 0.5 s, the layer thickness [ = 58 mm, the thermal conductivity A =
27.2 W/mK, and the heat transfer coefficient is @ = 20000 W/mK, The temperature measurement
points are located 2 mm from the edge (£* = 0.9655).

| |
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Fig. 6
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Figures 6, 7 and 8 show the pattern of heat transfer coefficient determined from the solution
of the inverse problem using the boundary condition of the first type (4) for linear approximation
(N =4). :

The results in Figs. 6, 7 and 8 are obtained wit linear (N = 4) square (N = 6), and cubic
(N = 8) approximations in time of function T'(¢,t). Stability of the method is maintained. Values
of spectral radii as functions of time step are shown in Fig. 9.

Tables 1-3 show the properties of the FEM with new basic functions in comparison with FEM
including classical ones.

38000
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—A—N\ = =0.97
34000 N=86 ¢£=0.9770
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32000 \ *—FEM
30000 \
28000
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Heat Transfer Coefficient in
[W/(m*m*K)]
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Fig. 7

38000

36000
c 34000 —A—N=8 r=08670
= \
% 32000 —O—Exact
B \
& & 30000 —&—FEM
2 \
0 ,,E 28000
» £ \
*3 < 26000
2 2
& 24000
[
® 22000 \
# A

20000 -—o——gl-—o—-‘-o——.o— e e

18000 A - }

0 1 1,5 2 2,5 3 35 4 45 5
Time in [s]

Fig. 8
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Table 1. Comparson of FEM with classical and new basic functions

az
Data: differential equation LT=0, L = — — —
L
with boundary-initial condition
FEM-method with classical base functions y FEM with new basic functions ¢

O0izj O:i# 7
w:@j’tj)={ (pi(éjvtj)z{

1i=j 1i=j

Ly, #0 Lo, =0

TE€.0)=XTw,6.0 T€.0)= Y700

Determination of coefficients of T(&,t) solution

Solution of variational equation or minimization

of variational functional Minimization of mean square defect of heat flux

o at common element boundaries
(if its form is known)

Properties of the methods

Integration over the elements Integration along element edges
Basic functions y do not depend on operator L Basic functions y depend on operator L of the
of the LT = 0 equation LT = 0 equation
Satisfaction of 1% type boundary condition Satisfaction of 1% type boundary condition
— accurate — accurate
- approximate (in mean square sense)

Band structure of the stiffness matrix

Table 2. Comparison of stability of inverse problem with using the heat polynomials for FEM and classic

FEM
Approximation of T'(£,t) function | Stability of the inverse problem
with regard to t FEM: classic | FEM: improved
linear - =
square = +
cubic = L
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Spectral radius of stability matrix
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Table 3. Approximation order of T'(&,t) solution in a finite element with heat polynomials approximation

and the classic one

FEM: improved FEM: classic
Tt =Y vi§t) T | T(t) = (L1, 6,6, 8%, %, 62,8, ¢,..)T - {A}
Liphiods T
g g
t 4 -8 t 4~ t 4 ~&
g 3 g
t g t 2~§ k" e
g 3 & g
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5. GENERALIZATION OF THE USE OF HEAT POLYNOMIALS

Heat polynomials {v,(¢,t)} can be obtained by Taylor series expansion of function T(¢,t) into
using the relationship between the derivatives provided by the heat equation (8). Another way of
obtaining the heat polynomials consists in expanding of the generating function (12) into a power
series. The advantage of the first option is the possibility of determining the remainder of the Taylor
series that indicates the accuracy of the approximation. On the other hand, the generating function
enables the definition of the relationship between consecutive functions and their derivatives, which
is of considerable numerical meaning.

The Taylor expansion of T'(&,7,t) can be used to obtain the heat functions for two- and three-
dimensional problems, for which the generating function is defined by [4]

WiE,mt) =S e, P,q € R, ‘ (34)
W(Em( 1) = PEHPH e JHe, . pg,s € R. (35)
Functions (34) and (35) serve as a basis for defining explicit form of heat polynomials in other
coordinate systems. For solving two- and three-dimensional problems the error functional (29) must

be generalized to multidimensional cases.
Let us consider now a dimensionless equation of heat conduction,

oT
5 =AT,  (Emnochc /YRR B
with the following conditions

e initial conditions

T(f,’f], Ca 0) = To(Eﬂ% C)a

e boundary conditions, Fig. 10 ,

T(éa””(’t)laﬂl = f(t)a _'B_T i Q(t)a _QT— == BI(t) [T(g,n7<‘7t)|8ﬂ3 % Tf(t)]a
on |50,

00 = 90y U 00 U 093 .

Fig. 10
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The domain {2, Fig. 10, is divided into finite elements ©;, then solution of the heat conduction
equation in the element £2; may be presented in the following form,

N
TGO = Y TH Glle 5,68, (36)

=1

where base functions ¢;; satisfy Eq. (34). The unknown temperatures TZ in 7-nodes of the (2; element
are sought from the condition of minimization of the following functlonal

JUT —Mo i o 240 o T ¢ 2 dtd
{ })—;/Qj[g(f,n,é, )~ To(&,m, O] +,§/ /ml[ (€m,C,8) — F(B) deds

t+AL
/ / [ +q(t ] dtds
N

/HM/BQS{“*B’ b Ap (E’"’C’t)_Tf(t)]}z dtds

t+ AL
/ / 5(&,m,¢,t) — Te(€,n,¢, 1)) dtdD

t+At OT: oT
oo Oddyg sty
+3 /t /F jk e L sy (37)

Minimization of functional (37) leads to a system of equations that includes the temperatures
Tz (36) at the nodes of the finite elements. The functional (37) includes integration over an element
surface with regard to initial temperature, while in the case of boundary conditions and heat flux
the integration is made at the element boundaries.

6. CONCLUSIONS

The introduction of functional heat flux defect at common boundaries of elements in the process of
solution of the problem of heat flow provides stable solution of the inverse problem, in both cases
of square and cubic approximations of the solution T(¢, t) with regard to the variable ¢.

The order of approximation of the solution T(¢, t) with regard to £ is associated with the order
of approximation in the ¢-direction.

The results of the calculations prove a high effectiveness in the use of heat polynomials for the
purpose of solving the inverse heat conduction problems of heat flow.
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