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The errors of finite element approximations are analysed in a general frame, which is completely indepen-
dent from the way through which the approximate solution was obtained. It is found that the error always
admits decomposition in two terms, namely the equilibrium error and the compatibility error, which are
orthogonal. Each of these admits upper and lower bounds that can be computed in a post-processing
scheme.

1. INTRODUCTION

Most a posteriori error evaluations were developed for the standard case of displacement elements.
As is well known, the errors then appear as equilibrium defects and the question is thus reduced to
measuring disequilibrium.

A first way consists in isolating local defects, which are of two types, namely interior and interface
defects. The problem is then to define a suitable norm. At this stage, it has to be noted that the
often cited combination of a L?-norm for interior defects and an interface L2-norm for interface
defects leads to too strong a norm, which fails to converge to zero where the mesh is refined, as it
can be seen on a lot of counterexamples. This drawback is partially solved by the Gago procedure [9]
where the two added norms are beforehand multiplied by a suited factor depending on the mesh
size. But this correction does not take due account of the fact that there is compensation between
both kinds of defects. As pointed in [2] and implicitly admitted by Diez et al. [5], disequilibrium
has in fact to be measured by its maximum work, that is to say, by a norm in the dual space.

A second classical way consists in generating a so-called “better” stress field and to compare
it to the initial one, so as to obtain their energetic distance. It is assumed that this distance
may be considered as a suitable error measure. However, if one excepts the case of Ladevéze’s
approach [10-12] in which the connected field is a statically admissible one, the quality of a stress
field is generally defined from heuristics only, so that the method is quite questionable.

Concerning equilibrium elements, it is clear that the errors are incompatibilities of the stress field.
The corresponding first approach has been reported by Zhong [15]. Recently this kind of approach
has also been presented in [13]. i

But now, what about finite elements that are nor of the displacement nor of the equilibrium
type? Such elements are numerous, including mixed and hybrid elements and also non-conforming
displacement elements that pass the patch test. Here, disequilibrium and incompatibility are both
present, so that the previous approaches do not apply.
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We therefore found useful to take the problem in a more general form, analysing the error of
any stress approximation, independently of the way by which it is obtained. In this frame, it is
possible to define a general decomposition of the error in an equilibrium error and a compatibility
error, which are orthogonal. Both errors admit a double expression, from which naturally follow
upper and lower bound approximations. The upper bound coincides with the Ladevéze estimator
for the equilibrium error and with the dual-Ladevéze estimator for the compatibility error. The
lower bound approach is related to norms in the dual space and, for the equilibrium error, it is in
perfect accordance with the views of Diez et al. Such a treatment of the compatibility error was, to
our knowledge, never proposed.

2. GENERAL NOTATIONS

Let us consider a bounded domain €, with boundary I'. To any displacement field u defined in € is
associated a strain field € by a differential operator 0,

£ = Ou. (1)
This operator verifies the following integration by part property,
/ oToudQ = / uwT'LTodl - / uT 9o dQ, (2)
Q Q

where the conjugate operator GT and a surface operator LT appear.
Stress-strain relations, known in elasticity as Hooke’s law, are of the form

o = He, (3)

where H is a bounded uniformly positive definite matrix.
Displacements are submitted to the condition that on a non-zero measure part I'y of the boundary,
their values are given,

u=1a on I'y. (4)

Finally, the equilibrium equations, in their strong form, are

To+f=0 inQ ' (5)
and
LTo=t on Iy =T-T. (6)

This set of equations of course requires some conditions on the different fields, which will be explicitly
given in the following.
3. THE STRESS SPACE

Let S be the space of square-integrable stress fields, equipped with the scalar product
(oy1)= / oTH 17dQ. (7
Q

It is a variant of the classical L2 space. The corresponding norm will be called energetic norm.
Among all possible stress fields, a special mention is due to stresses that derive from a displace-
ment field by the relation

o = Hou.
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In order to obtain a bounded energy, one must have
/(BU)THBU d? < o0. (8)
Q

This condition defines finite energy displacements, whose space will be noted V. A particular sub-
space V, C V is composed of those displacements that verify

u=0 on I'y. 9)
Such displacements will be called homogeneous. It now follows from Korn’s inequality that the
quantity

1
2

lullvy = ( /Q (8u)TH8udQ) (10)

is a suitable norm on Vp, and that Vj, equipped with this norm, is a complete space. Consequently,
its image in S,

Co = {o = Hou, u c Vo} = HoVp, | (11)

is one to one and Cj is a closed subspace of S. In the following, such stress fields deriving from
a homogeneous displacements will be called homogeneous compatible stress fields.

Let us now turn to the orthogonal complement of Cy. It is the subspace Ej of stress fields o
verifying

(0, Hov) = / oTovdQ =0, (12)
Q

for any displacement v € V4. This condition is the weak form of the equilibrium equations

o =0 in Q,

13
LT =0 on I'y. 13}
Consequently, Ey is the space of self-stresses. Cy being closed, one has

CO_LEO and EO_LC() . (14)

4. THE DISPLACEMENT APPROACH

The prescribed boundary value % of the displacement on I'; may be viewed as the trace on I'; of
a finite energy displacement field, which may also be noted % without any risk of confusion. The true
displacement field therefore lies in the linear manifold @+ Vj . This reduces the elastic problem to the
determination of a displacement field u € @ 4 Vj corresponding to stresses that are in equilibrium.
The condition for this is that, for each v € V;,

/Q (0u)T HOw dQ = /Q $sed 3 /F Ty dr. (15)

The solution of this variational problem exists and is unique, from Korn’s inequality. Stresses are
then computed by

o = Hou. (16)

This is the displacement approach.
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5. THE EQUILIBRIUM APPROACH

Here, equilibrium is supposed to hold a priori. In other words, any candidate for a solution has to
be a stress field o verifying

/ ol ovdQ = / fludQ + / tTydr, (17)
Q Q T2

for any v € V; . Now, it is clear that a particular solution & of this equation always exists, a trivial
example being the exact solution of the elastic problem. The general solution of equation (17) is
thus given by the linear manifold & + Ey. The equilibrium method consists to find an element of
this manifold that verifies the so-called compatibility condition

o€ Hou+ Cy, (18)

which ensures that o derives from a finite energy displacement verifying the boundary condition (3).
Equivalently,

oc— Hou e Cy,
and since Cj is the orthogonal complement of Ej, this is to say that for each self-stress field 7,
(60 — Hou,T) = 0.

Explicitly, this condition writes
/ oTH 'rdQ - / (0a)Trd =0
Q Q
and integration by parts of the second term leads to
- / (0u)T7dQ = - / a'LTrdr — / alLTrdr + / a'oTodQ, = — / a’LTrdr,
Q I Ty Q '

since 7 is a self-stress field. The final result is

/ oTH '7dQ - / al LT7dl = 0, (19)
Q Ey

which is the well-known complementary energy principle.

At this stage, one may conclude by the following characterisation of the exact solution of the
elastic problem. It is the only stress field that simultaneously lies in the two manifolds Hdu + Cy
and ¢ + Ey .

6. THE ERROR OF AN ARBITRARY STRESS FIELD

6.1. A decomposition of the error

Let us now consider an arbitrary stress field 8 € S. If o is the true stress field, i.e., the solution of
the elastic problem, their difference

n=0-o (20)

may be called the stress error.
But we know that any stress field may be decomposed in two terms, one being in Cp, and the
other in Ey. We therefore write

n=nc+ne (21)
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with
nc € Co, nE € Ey.
It is clear that

lInll? = llncli? + llng|1?. (22)

To interpret this decomposition, note first that for any stress field 7, the norm may be computed
by

(1,0
Il = sup ”’ ”)

In the present case, however, the scanning of S may be limited, because

(mc,p) =0 if p€ Ey,
(ng,p) =0 if peCy,

so that
(770, p) (n,p)
Inc|l = sup - o
lIncl veco ol vecy |l )
p#0 520
and
i A e TEA0) o )

pEEQ ”,0” PEEy ”P”
p#0 p#0

6.2. The equilibrium error

Let us first examine n¢. A displacement field v € Vj is associated with any p € Cp, such that
p=Hov. So,

(n, Hov) = / 0T v dQ — / ol ov dQ.
Q Q

But from equilibrium,

/ Toaa - / fTud0+ / Ty dr,
0 Q 'y

so that
. Bo) = / 676y dQ — / tiaan d Todb ~ de(y). (24)
Q 0 'y

We will call this linear functional the disequilibrium functional because it vanishes if and only if 0
is in equilibrium with the loads. Finally, one obtains

des
Il = s ¢ “( “) _ deslyy (25)
0

that is the norm of the disequilibrium functional in the dual Vi of Vy . For this reason, ¢ may be
interpreted as the equilibrium error.
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An equivalent expression of ||n¢|| may be obtained by making use of the Riesz representation
theorem, which says that for any bounded linear functional F'(v) on a Hilbert space R, there exists
a unique element w € R such that

(U),I/)R =F(V)7 (26)
for every v € R and
lwllr = IF|r - (27)

In the present case, this is to say that there exists a homogeneous displacement field we € V
such that for every v € Vp

(we, )y, = /Q(ch)THBV dQ = des(v) (28)
and

Incll = lldesllvg = llwellvs - (29)

This property, which was mentioned in [5], reduces the evaluation of the equilibrium error to
a new variational problem.

6.3. The compatibility error
Turning now to the second term 7g , note that the true solution is of the form
o= Hou+ p, p € Cy,

so that for each 7 € Ey,

(o,7) =(HOG, T) = / a' LT 7 dr.
Ex

One has thus
(m,7) =(0,7) — (0,7) = / 0TH 17dQ - / ol LT dT = inc(7). (30)
Q I

This linear functional will be called the incompatibility functional because it vanishes if and only if
0 verifies compatibility. The result is thus

inc(T) :
Inell = s llincllz , (31)
T#0

that is the norm of the incompatibility functional in the dual Ej of Ey. It is thus legitimate to
interpret g as the compatibility error.

A variational definition of ng is also possible. In fact, it is the stress field verifying for every
T € Ey,

(ng,T) = inc(T). (32)
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6.4. Comments on these results

It is thus found that in the general case, the stress error is composed of an equilibrium error 7¢
which is a homogeneous compatible field and a compatibility error ng which is a self-stress field. In
the finite element frame, if strictly compatible elements are used, the compatibility error vanishes
and 7n¢ is the only term to be investigated. Conversely, with equilibrium elements, des(v) identically
vanishes, and the only error is 7z . But a lot of finite element models are nor of displacement nor of
equilibrium type. It is the case of mixed and hybrid models, of non-conforming elements passing the
patch test, and so on. With such elements, both errors coezist, a fact that is generally overlooked,
as most error measures are related on equilibrium only.

7. THE ERRORS AS DISTANCES TO SOME MANIFOLDS

A useful geometrical interpretation may be given of the two components of the error.

7.1. Equilibrium error

Any solution of the equilibrium equations is of the form
p=0c+T1

where o is the true solution and 7 € Ey. One has thus
0—p=0—0c—T=n—T=nc+NE—T

with n¢ € Cp and (ng — 7) € Ep, so that
16 = plI* = lIncll® + llne — 7II* > lIncll?,

the equality holding when 7 = ng, that is, for p = 0 + g .
As it is clear that o + Eg = ¢ + Ey, where & is the above mentioned particular solution of the
equilibrium equations, one obtains

o= _iat_ 6 = ol (33)

So, the equilibrium error of a field 0 is its distance to the linear manifold of stress fields that are
in equilibrium.

7.2. Compatibility error

A similar analysis holds for the compatibility error. It starts from the fact that any compatible
stress field is of the form

A=o0+ Hov
where o is the true solution and v € Vj. From this follows
0—A\=0—0c—-—HOv=n—Hov=ng+nc— Hov
with ng € Ep and (n¢ — HOv) € Cy, so that
10 = XI* = [Inel® + lnc — Hov|® > |ne|?,

the equality holding if HOv = ¢, that is, A =0 +n¢ .
Owing to the fact that o + Cy = HOu + Cp, where @ is the particular displacement field that
complies with the boundary conditions on I'; , one obtains

Insll = , inf  [l6 — Hov]. (34)

The compatibility error of a field 0 is thus its distance to the linear manifold of compatible stress

fields.
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8. UPPER AND LOWER BOUNDS OF THE ERRORS
8.1. Necessity of approximating the errors

One can hardly imagine to exactly computing the errors nc and ng because this would imply the
ezact solution of a problem which is at least even difficult as the initial problem, for which an
approximate solution was the only possible way. The error evaluation shall thus also be conceived
as an approximate one. But precisely, the preceding results implicitly contain a suited methodology
to obtain upper and lower bounds of the errors.

8.2. Lower bounds of the equilibrium error

It directly follows from (25) that for any non zero homogeneous displacement v, one has

[[des(v)|

eeal < lincll 35
ol < llel (35)

The left hand side thus constitutes a lower bound of the equilibrium error. This interesting conclusion
has however to be tempered by the following remark. Let us suppose that the approximate stress
field @ is obtained from a Rayleigh-Ritz approximation of the displacement type. This is to say that
a subspace Vio C Vj has been chosen, and the approximate solution is a displacement up, € ug+ Vho
that verifies

/ (Bun)T HOw, dQ = / o d0 + / Ty, dT
Q Q | )
for every vy € Vi . The stress field is now

0= Houy.

It is clear that under these conditions,

des(vp) = 0,

for any v, € Vio . So, to obtain a nonzero lower bound, it is necessary to introduce new homogeneous
displacement fields that are not elements of Vio. Such fields may be obtained by h-type or p-type
enrichment.

Choosing test displacement fields with a local support leads to local error measures which may
be very instructive in what concerns the error distribution.

A refined version of the method consists to choose some subspace Wy C Vp and to determine
displacements wy, € Who such that

(wh, vn)v = des(vp) (36)

for every v, € Wyo. It is in fact a Rayleigh-Ritz approximation of the displacement we defined
by (28). The lower bound is then |jwp]lv, . This procedure was proposed by Diez, Egozcue and
Huerta [5], on local finite element refinements. But obtaining a lower bound of the global error from
local ones is somewhat difficult because with overlapping patches, coupling terms appear and with
non-overlapping patches, too low a global error is obtained.
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8.3. Upper bounds of the equilibrium error

As the equilibrium error of a field 6 is from (33) the distance between this field and the equilibrated
manifold & + Ep, it is clear that any equilibrated stress field T verifies

lIncll <116 — | (37)

and thus leads to an upper bound of the equilibrium error. As used to control the quality of dis-
placement formulations, this property was the basis of the so-called dual analysis methods. Recall
that in the conventional dual analysis, as defined and used by Fraeijs de Veubeke and his co-
workers [1, 4, 6-8, 14], an equilibrium model of the same structure is obtained by a Rayleigh- Ritz
process and then compared to the displacement solution. In counterpart to the fact that a sec-
ond analysis is required at each step, both € and 7 converge to the true solution when the mesh
is refined, so that the upper bound (37) effectively converges to zero. A non- conventional dual
analysis was developed by Ladevéze [10-12], in which an equilibrated stress field is generated from
the displacement analysis results, through a post-processing scheme. The upper bound property is
maintained, but it is no more guaranteed that the equilibrated fields converge to the true solution,
so that the obtained error measure does not necessarily converge to zero when the mesh is refined.
In other words, the non-conventional dual analysis certainly detects bad meshes, but it is unable to
see that convergence actually occurs.

What is obtained here is the fact that for any stress field, conventional and non- conventional
dual analysis continues to hold and lead to an evaluation of the equilibrium part of the error.

8.4. Lower bounds of the compatibility error

Concerning the compatibility error, lower bounds may be obtained from Eq. (33). To any self-stress
field T is associated a lower bound of the form

|inc(7)]
Il

Here also, in the case where 0 is obtained from a Rayleigh-Ritz scheme of the equilibrium type, with
stress variations in some subspace Ep, C Ep, it is necessary, in order to obtain nontrivial bounds,
to introduce new self-stress fields which are not elements of Ej, .

Local self-stress fields will lead to local error measures. In the same way as for the equilibrium
error, the best choice of a lower bound from a given subspace Fj, C Ey is obtained by solving the
variational problem which consists to find pj, € F},, such that

< [Imell. (38)

(pn » Th) = inc(7h) (39)

for every 7, € Fj, . The lower bound is then ||pa||. It is the dual form of the method of Diez et al.,
and the same comments completely hold.

8.5. Upper bounds of the compatibility error

The compatibility error of a field 6 is from (34) its distance to the linear manifold of compatible
stress fields [13]. Therefore, any compatible displacement field v € @ + V; leads to the inequality

Inell < 116 — Hov|. (40)

This opens the way of dual analysis methods, the auxiliary field being now a compatible one.
Both types, conventional and unconventional, are possible. The latter one could be named a dual
Ladevéze method. Our discussion concerning the equilibrium error remains valid by symmetry and
will not be repeated.
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8.6. Combining upper and lower bounds of the errors

Upper and lower bounds of the errors have distinct properties that make them complementary.
Upper bounds are always on the safe side and it is clear that unconventional dual analyses constitute
a good way to obtain a global error measurement. Assuming for instance that a great error is found,
a mesh refinement is necessary. But in most cases, the errors are not uniformly distributed, and the
refinements may be restricted in some particular zones. Here, lower bound techniques may be useful,
as they are particularly suited to give local error measures. In contrary, obtaining global errors from
a lower bound technique is not easy, as it requires the solution of a greater problem than the initial
one, a difficulty that can be circumvented only by abandoning the lower bound property [5].

It thus seems that a proper combination of upper and lower bound techniques could be a very
effective tool in an adaptive mesh procedure.

9. CONCLUSIONS

Any stress field, whatever is the way to obtain it, can be affected by two and only two types of
errors, namely, the equilibrium error and the compatibility error. Displacement models only lead to
an equilibrium error, and equilibrium models, only to a compatibility error. But mixed elements,
hybrid elements and also the numerous non-conforming displacement elements that pass the patch
test exhibit both errors. This fact seems to have been generally overlooked, perhaps from the fact
that a general analysis such as the preceding one was not available. .

For each type of error, upper and lower bounds can be constructed, and seem to be complementary
as the first one is a direct way to obtain a global error, and the second one, best suited to local
error evaluations.

Note finally that our analysis includes older results, such as the conventional dual analysis, the
Ladevéze method and the results of Diez et al., and gives their dual versions for the compatibility
€rror.
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