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Meshfree methods have been developed based on Galerkin type weak formulation and strong formulation
with collocation. Galerkin type formulation in conjunction with the compactly supported approxima-
tion functions and polynomial reproducibility yields algebraic convergence, while strong form collocation
method with nonlocal approximation such as radial basis functions offers exponential convergence. In this
work, we discuss rank instability resulting from the nodal integration of Galerkin type meshfree method
as well as the ill-conditioning type instability in the radial basis collocation method. We present the recent
advances in resolving these difficulties in meshfree methods, and demonstrate how meshfree methods can
be applied to problems difficult to be modeled by the conventional finite element methods due to their
intrinsic regularity constraints.
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1. INTRODUCTION

In the past 15 years, meshfree methods have emerged into a new class of computational methods
that have been applied to engineering and scientific problems with some success. Meshfree methods
all share a common feature: the approximation of unknown in the partial differential equation is
constructed based on scattered points without mesh connectivity. While no mesh is needed in the
construction of approximation in meshfree methods, domain integration presents some difficulties
if the discrete equation is formulated based on weak formulation, such as the element-free Galerkin
(EFG) method [2, 3] and the reproducing kernel particle method (RKPM) [5, 37]. Employing the
conventional Gauss quadrature rules in the Galerkin meshfree method does not pass the patch
tests, and high order quadrature rule is needed for sufficient accuracy. Nodal integration, on the
other hand, leads to rank instability and significant loss of accuracy in the numerical solution.
Rate of convergence in the Galerkin methods is determined by the order of completeness in the

approximation functions as well as the order of accuracy in domain integration. Although nodal
integration is a natural choice for Galerkin meshfree method due to the absence of the structured
mesh, and it is particularly attractive for modeling problems with extremely large deformation
where state and field variables can be stored at the nodal points, the method suffers from the loss
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of stability and accuracy. A stabilized conforming nodal integration (SCNI) [13, 14] with gradient
smoothing that satisfies first order integration constraint (passing linear patch test) and suppresses
zero energy modes of the direct nodal integration has been proposed. The extension of SCNI to
achieve higher rate of convergence has also been introduced [18]. The recent study shows that
SCNI eliminates rank instability in the direct nodal integration but exhibits low frequency modes
that could be excited under certain conditions. A modified SCNI with enhanced stability has been
proposed [40, 41]. The extension of nodally integrated Galerkin meshfree methods to plates, shells,
and large deformation problems have also been introduced in the literatures [6, 7, 14, 17, 47–49].
Alternatively, collocation on strong forms has been proposed in meshfree method, such as the

radial basis collocation methods (RBCM) [20, 26, 27, 32, 45] and the reproducing kernel colloca-
tion method (RKCM) [28, 29]. From convergence standpoint, the compactly supported reproducing
kernel approximations with monomial reproducibility render an algebraic convergence in RKCM,
while the nonlocal RBFs with certain regularity offer exponential convergence in RBCM. Never-
theless, the linear system of RBCM is typically more ill-conditioned compared to those based on
compactly supported approximations. The work in [20] shows that one can construct a localized
RBF using a partition of unity function, such as the reproducing kernel enhanced radial basis func-
tion, to yield a local approximation while maintaining the exponential convergence in RBCM. This
localized RBF, combined with the subdomain collocation method, has been applied to problems
with local features, such as problems with heterogeneity or cracks that are difficult to be solved by
RBCM [21, 50].
This paper provides an overview of the recent advances in Galerkin and collocation meshfree

methods with particular emphasis on the issues mentioned above. The manuscript is organized as
follows. Section 2 presents the Galerkin type meshfree method, with RKPM taken as an example,
and shows its convergence properties. Domain integration of RKPM using SCNI is introduced, and
the enhancement of SCNI to suppress spurious modes is discussed. Section 3 introduces meshfree
method based on strong form collocation, with specific emphasis on the radial basis collocation
method (RBCM) and a localized radial basis collocation method (L-RBCM) for enhanced condi-
tioning. The convergence and stability properties of RBCM are discussed, and methods for stabil-
ity improvement are presented. Extension of RBCM and L-RBCM to heterogeneous materials and
fracture mechanics by a subdomain collocation is introduced. Section 4 outlines the application
of RKPM to large deformation problems under the frameworks of Lagrangian RKPM and semi-
Lagrangian RKPM, and demonstrates the performance of these methods in a class of problems
that cannot be effectively modeled by the conventional finite element methods. Summary of the
presented works and remarks on the future directions are given in Sec. 5.

2. STABILIZED GALERKIN MESHFREE METHOD

2.1. Reproducing Kernel (RK) approximation

Consider the domain of interest Ω = Ω ∪ ∂Ω be discretized by a set of points S ={
x1,x2, · · · ,xNp|xI ∈ Ω

}
, and let the approximation of a function u, denoted by uh, using in-

formation at discrete points in set S, be expressed in the following form:

uh(x) =

Np∑

I=1

ΨI(x)dI , (1)

where ΨI(x) is the shape function of node I positioned at xI , and dI is the coefficient to be sought.
In RK approximation, the construction of shape functions is based entirely on point data. The RK
shape functions are constructed as follows [5, 37]:

ΨI(x) = C(x;x− xI)ϕa(x− xI), (2)



Recent developments in stabilized Galerkin and collocation meshfree methods 5

where ϕa(x− xI) is the kernel function with compact support measured by the support dimension a,
and C(x;x− xI) is the correction function composed of monomial bases:

C(x;x− xI) =

p∑

i+j+k=0

bijk(x)(x1 − x1I)
i(x2 − x2I)

j(x3 − x3I)
k, p ≥ 0, (3)

where p represents the degree of monomial bases, and bijk(x) are coefficients obtained by the
following reproducing conditions:

Np∑

I=1

ΨI(x)x
i
1Ix

j
2Ix

k
3I = xi1x

j
2x
k
3, i+ j + k = 0, 1, . . . , p. (4)

Obtaining bijk(x) from (4) yields the following RK shape function:

ΨI(x) = HT(0)M−1(x)H(x− xI)ϕa(x− xI), (5)

M(x) =

Np∑

I=1

H(x− xI)H
T(x− xI)ϕa(x− xI), (6)

HT(x− xI) = [1, x1 − x1I , x2 − x2I , . . . , (x3 − x3I)
p]. (7)

In RK approximation, the kernel function ϕa has a compact support a and it determines the
continuity of the approximation, for example, the cubic B-spline function has C2 continuity. The
degree of monomial basis functions p in the correction function C(x;x− xI) controls the order of
completeness in the approximation, which is related to the order of consistency when introducing
RK approximation to solve partial differential equations. For the moment matrixM to be nonsingu-
lar, the compact support of the kernel function has to be sufficiently large to keep the reproducing
conditions in (4) linearly independent [15]. A typical RK discretization using circular supports is
shown in Fig. 1a, where the support of node I is shaded in grey. The corresponding shape function
over the node’s compact support is shown in Fig. 1b.

a) b)

Fig. 1. a) Non-conforming RKPM discretization (support of node I shaded in grey), and b) RKPM shape
function for node I .

The reproducing kernel particle method (RKPM) [37] introduces RK approximation for solving
PDEs under the Galerkin framework. For demonstration, consider here a Poisson problem with
Dirichlet boundary condition:

∇2u+Q = 0 in Ω; u = g on ∂Ω. (8)
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The corresponding Galerkin approximation is to find uh ∈ H1
0 , ∀vh ∈ H1

g ,
∫

Ω

∇vh · ∇uhdΩ =

∫

Ω

vhQdΩ, (9)

where uh and vh are approximations of u and v, respectively. The kinematically admissible finite
dimensional space H1

g can be obtained by coupling RK with finite element approximation [30],
by transforming from generalized coordinate to nodal coordinate [5, 8, 25], or by constructing
RK approximation with Kronecker delta properties [8, 15, 31]. Other methods to impose Dirichlet
boundary conditions include the Lagrange multiplier method [2], the penalty method [52], and
Nitsche’s method [39].
The convergence of RKPM with RK approximation of degree p has been shown [15, 53] to be:
∥∥∥u− uh

∥∥∥
ℓ,Ω

≤ Cap+1−ℓ |u|p+1,Ω , ℓ ≥ 0, (10)

where a is the maximal support dimension of RK shape functions and C is independent of a and
p. This algebraic convergence behaviour is very similar to that of the finite element approximation
considering the proportionality of the support dimension a and the nodal distance h.

2.2. Domain integration in Galerkin meshfree method

Domain integration of weak form poses considerable complexity in Galerkin meshfree method.
Employment of Gauss quadrature rules yields integration errors when background grids do not
coincide with the shape function supports [23]. Direct nodal integration, on the other hand, results
in rank deficiency and loss of accuracy. The above mentioned two methods do not pass linear patch
test for non-uniform point distribution. A stabilized conforming nodal integration (SCNI) [13] has
been introduced to ensure linear patch test and to remedy rank deficiency of direct nodal integration.
In SCNI, the gradient evaluated at the nodal point xL is calculated as

∇uh(xL) =
1

wL

∫

ΩL

∇uhdΩ =
1

wL

∫

∂ΩL

uhndΓ , wL =

∫

ΩL

dΩ. (11)

Here ΩL is the nodal representative domain which can be obtained from triangulation or Voronoi
cell of a set of discrete points, and n is the surface normal of ∂ΩL as shown in Fig. 2.

Fig. 2. Nodal representative domain.

Substituting RK approximation into (11), we have

∇uh(xL) =
N∑

I=1

BI(xL)dI , (12)
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where

BI(xL) =
1

wL

∫

∂ΩL

nΨIdΓ . (13)

Introducing the smoothed gradient of (11) into (9) and integrating the weak form by nodal inte-
gration yields the following discrete equation:

Np∑

L=1

∇vh(xL) · ∇uh(xL)wL =

Np∑

L=1

vh(xL)Q(xL)wL. (14)

For problems with Neumann boundaries, a boundary integral on the Neumann boundary consistent
with the boundary integral in (13) is employed for passing patch test; see [13] for details. A bound-
ary value problem in Fig. 3 is solved by RKPM with first order RK approximation and with domain
integrated by direct nodal integration, five-point Gauss quadrature rule, and SCNI. A much en-
hanced stability and convergence in SCNI compared to the direct nodal integration is observed. In
fact, SCNI results are slightly better than that obtained by fifth-order Gauss quadrature.

Fig. 3. Comparison of RKPM solution using various integration methods.

It has been shown that SCNI for Galerkin weak form passes linear patch test, and it eliminates
zero energy modes resulting from the direct nodal integration of Galerkin weak form [13, 14]. To
achieve higher order accuracy, a correction to SCNI has been proposed [18], where the left hand
side of (9) is re-written as:

∫

Ω

∇vh(x) · ∇uh(x)dΩ =

N∑

L=1

∇vh(xL) · ∇uh(xL)wL

+

N∑

L=1

∫

ΩL

(
∇vh(x)−∇vh(xL)

)
·
(
∇uh(x)−∇uh(xL)

)
dΩ

︸ ︷︷ ︸
correction term

. (15)

The quadratures of the correction term and the right hand side of (9) have been discussed in [18].
This approach has also been used for suppressing nonzero energy modes in SCNI, called the modified
SCNI (M-SCNI), using a variant of (15) as [41]:
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∫

Ω

∇vh(x) · ∇uh(x)dΩ ≈
N∑

L=1

{
∇vh(xL) · ∇uh(xL)wL

+
∑

C∈TL

α
(
∇vh(xC)−∇vh(xL)

)
·
(
∇uh(xC)−∇uh(xL)

)
wC

}
, (16)

where TL is a set of subcells associated with the Voronoi cell of node L, wC is the corresponding area
(or volume) of each subcell as shown in Fig. 4, and α is the stabilization parameter. For elasticity,
a similar approach is shown in [41]. This approach can be easily applied to large deformation
problems, where the nodally smoothed deformation gradient is computed using Eqs. (11)–(13).
The first nonzero eigenmodes of the stiffness in two- dimensional elasticity integrated using SCNI
and M-SCNI are compared in Fig. 5.

Fig. 4. Subcells of Voronoi cell.

a) Eigenvalue = 0.0211 b) Eigenvalue = 0.0356

Fig. 5. First nonzero eigenmodes of RKPM in 2D elasticity generated using (a) SCNI and (b) M-SCNI.

Other stabilization methods proposed for Galerkin meshfree method include adding a residual of
the equilibrium equation to the nodally integrated potential energy functional [1], the stress point
method by taking derivatives away from the nodal points [42], and an approach based on iterative
correction of nodal integration for patch test in conjunction with least-squares type stabilization [4].

3. STRONG FORM COLLOCATION METHODS

3.1. Weighted strong form collocation method

An alternative approach to address domain integration issue in meshfree method is by collocation
of strong forms. For demonstration, consider a scalar boundary value problem:
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Lu(x) = f(x) ∀x ∈ Ω,
Bhu(x) = h(x) ∀x ∈ ∂Ωh,

Bgu(x) = g(x) ∀x ∈ ∂Ωg,

(17)

where Ω is the problem domain, ∂Ωh is the Neumann boundary, ∂Ωg is the Dirichlet boundary,
∂Ωh∪∂Ωg = ∂Ω, L is the differential operator in Ω, Bh is the differential operator on ∂Ωh, and Bg

is the operator on ∂Ωg. Introducing approximation of uh(x) =

NS∑

I=1

gI(x)dI into (17), where NS is

called the number of source points in the radial basis community (which carries the same meaning
of the number of nodal points), and enforcing the residuals to be zero at the NC collocation points

{ξJ}NC

J=1 ∈ Ω, we have

Ns∑

I=1

LgI(ξJ)dI = f(ξJ) ∀ξJ ∈ Ω,

Ns∑

I=1

BhgI(ξJ)dI = h(ξJ) ∀ξJ ∈ ∂Ωh,

Ns∑

I=1

BggI(ξJ)dI = g(ξJ) ∀ξJ ∈ ∂Ωg,

(18)

where gI(x) is the approximation function. Note that Eq. (18) is an overdetermined system if
NC > NS , and a least-squares method can be used for the solution. The radial basis functions
(RBF) are good choice of approximation for the collocation method. The few commonly used
radial basis functions are listed below:

Multiquadrics (MQ): gI(x) = (r2I + c2)n−
3

2 , n ≤ 1, (19)

Gaussian: gI(x) = exp

(
−r

2
I

c2

)
, (20)

where rI = ‖x− xI‖, and c is called the shape parameter that controls the localization of the
function. There exists an exponential convergence rate of RBF given by Madych [38]:

∣∣∣u(x)− uh(x)
∣∣∣ ≈ O

(
η
c/δ
0

)
‖u‖t , (21)

where 0 < η0 < 1 is a real number, c is the shape parameter, and δ = sup
x∈Ω

min
xI∈S

‖x− xI‖,

S = [x1,x2, · · · xNs |xI ∈ Ω], and ‖ ‖t is the induced from some properties of Fourier transformation.
The accuracy and rate of convergence of MQ-RBF approximation are determined by the number
of basis functions NS (the number of source points) and the shape parameter c. The application of
RBF in collocation method for PDEs is natural since RBFs are infinitely differentiable, and taking
derivatives of gI(x) is straightforward.
The collocation method in (18) can be shown to be equivalent to the following least-squares

method [27]: To seek uh ∈ V , V = span{g1, g2, · · · , gNs}, such that

E(uh) = min
v∈V

E(v),

E(v) =
1

2

∧∫

Ω

(Lv − f)2dΩ +
1

2

∧∫

∂Ωh

(Bhv − h)2dΓ +
1

2

∧∫

∂Ωg

(Bgv − g)2dΓ .
(22)
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Here

∧∫
denotes the quadrature version of

∫
. For equivalence between (18) and (22), the quadrature

points of numerical integration in (22) should coincide with the collocation points in (18). It has been
pointed out by Hu and Chen et al. [27] that the statement in (18), and equivalently minimization
of (22), yields unbalanced errors between domain and boundary collocation equations, and they
proposed the following weighted least-squares method:

E∗(uh) = min
v∈V

E∗(v),

E∗(v) =
1

2

∧∫

Ω

(Lv − f)2dΩ +
αh
2

∧∫

∂Ωh

(Bhv − h)2dΓ +
αg
2

∧∫

∂Ωg

(Bgv − g)2dΓ ,
(23)

where αh and αg are the weights for the Neumann boundary ∂Ωh and Dirichlet boundary ∂Ωg,
respectively. For balanced errors in the domain and on the boundaries, it was proposed [27] that
the weights be selected as

√
αh ≈ O (1) ,

√
αg ≈ O (κNS) , (24)

where κ is the maximum coefficient involved in the differential operator L and the boundary opera-
tor Bh. The weighted collocation formulation equivalent to the weighted least-squares formulation
in (23) is

Ns∑

I=1

LgI(ξJ)dI = f(ξJ) ∀ξJ ∈ Ω,

√
αh

Ns∑

I=1

BhgI(ξJ)dI =
√
αhh(ξJ) ∀ξJ ∈ ∂Ωh,

√
αg

Ns∑

I=1

BggI(ξJ)dI =
√
αgg(ξJ) ∀ξJ ∈ ∂Ωg.

(25)

There exists an optimal solution of the above weighted collocation method [27]:

∥∥∥u− uh
∥∥∥
B
≤
(
C1Ns + C2

√
αhNS + C3

√
αg
)
‖u− v‖1,Ω ≤ Cη

c/δ
1 ‖u‖t , (26)

where 0 < η0 < η1 < 1, and

‖v‖B =

(
‖Lv‖20,Ω + ‖v‖21,Ω + αh

∥∥∥Bhv
∥∥∥
2

0,∂Ωh
+ αg ‖Bgv‖20,∂Ωg

)1/2

. (27)

A Poisson problem ∆u(x, y) = (x2 + y2)exy in Ω = (0, 1)×(0, 1) with boundary condition u(x, y) =
exy on ∂Ω is solved by a direct collocation method (DCM) in (18) and the weighted direct collocation
method (W-DCM) in (25) and (24), respectively, using RBFs. It is shown that the large errors on
the boundaries in DCM have been corrected by W-DCM as shown in Fig. 6.
An infinite plate with a circular hole subjected to a uniform horizontal tension σ0 = 100 N is

studied next. A quarter symmetry model with domain Ω ∈ [0, 4] × [0, 4] is discretized by radial
basis collocation method as shown in Fig. 7a and 7b, where prescribed boundary displacements on
Γ3 and Γ4 based on analytical solution in [46] and symmetric boundary conditions on Γ2 and Γ5 are
introduced in the model. The plane stress condition is assumed with elastic properties E = 104 Pa
and v = 0.3. Four discretizations with 7 × 7, 9 × 9, 11 × 11, and 13 × 13 source points are used
in the following convergence studies. The number of collocation points is approximately twice of
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Fig. 6. The error distribution of solution obtained using DCM and W-DCM in a Poisson problem.

a) b) c)

Fig. 7. a) Quarter model of an infinite plate with a circulare hole, b) discretization of the quarter model,
and c) stress contour of σ11 obtain by W-DCM.

source points, where 13 × 13, 17 × 17, and 21 × 21, and 25 × 25 respectively, are used for the
four discretizations. Based on (24), weights

√
αg = 106 and

√
αh = 1 are selected for W-DCM. The

contour of σ11 obtained by W-DCM is shown in Fig. 7c, and the convergence of stress concentration
in maximum relative error

∣∣σh11 − σ11
∣∣ /σ11 is given in Table 1. The convergence of L2 norm and

H1 seminorm obtained by DCM and W-DCM are compared in Fig. 8. Results show a much faster
convergence in W-DCM.

Table 1. Convergence of stress concentration.

Discretization 7×7 9×9 11×11 13×13
Relative error of maximum stress 19.45% 6.27% 1.28% 0.31%

Fig. 8. Convergence of L2 error norms H1 error norms.
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3.2. Localized Radial Basis Collocation Method (L-RBCM) for problems
with local features

A commonly used approximation function in the strong form collocation method is the RBF,
and the approach is called the radial basis collocation method (RBCM). Standard RBF offers
exponential convergence, however the method suffers from the large condition numbers due to its
“nonlocal” approximation. The RK functions, on the other hand, provide polynomial reproducibility
in a “local” approximation, and the corresponding discrete systems are relatively well conditioned.
Nonetheless, RK functions produce only algebraic convergence. An approach has been proposed to
combine the advantages of RBF and RK functions to yield a local approximation that is better
conditioned than that of the RBF, while at the same time offers a higher rate of convergence than
that of RK [20]. This approach is shown below:

uh(x) =

NS∑

I=1

[
ΨI(x)

(
aI +

M∑

J=1

gJI (x)d
J
I

)]
, (28)

where ΨI(x) is the RK function with compact support, and g
J
I (x) is the RBF. Applying approxima-

tion in (28) to the weighted strong form collocation is called the localized radial basis collocation
method (L-RBCM) [20].
The above approximation utilizes the compactly supported partition of unity to “patch” the

global RBFs together. The error analysis shows that if the error of RK is sufficiently small, the
proposed method maintains the exponential convergence of RBF, while significantly improving the
conditioning of the discrete system and yielding a banded matrix [20] as discussed below.

1. Using the partition of unity properties of the RK localizing function, there exists the following
error bound [20]:

‖u− uhI ‖0,Ω ≤ βCη
c/δ
0 ‖u‖t, (29)

where β is the maximal number of covers for RK localizing function. Other parameters are the
same as what has been defined earlier.

2. The enhanced stability in the L-RBCM can be demonstrated by a perturbation analysis of the
strong form collocation equations in (25) expressed in the following linear system:

Fy = r. (30)

The stability of the above linear system can be measured by the condition number of F. The
work in [20] obtained the following estimation of the condition number of L-RBCM:

Cond(F) ≈ O
(
a−3d/2

)
, (31)

where d is the space dimension. In two-dimensional elasticity, we have the following comparison
of condition numbers using RBCM with pure RBF in (19), RKPM with pure RK in (5), and
L-RBCM with localized RBF in (28) [20]:

RBCM :

RKPM :

L-RBCM :

Cond(F) ≈ O(h−8),

Cond(F) ≈ O(h−2),

Cond(F) ≈ O(h−3).

(32)

The L-RBCM approach offers a significant improvement on stability over RBCM. Although
the discrete system of L-RBCM is slightly less well-conditioned than that of RKPM, it offers a
higher convergence rate similar to that in RBCM.
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The L-RBCM approach, combined with the subdomain collocation method, has been applied to
problems with local features, such as problems with heterogeneity (weak discontinuity) or cracks
(strong discontinuity). We describe the main ideas in the followings.
Take heterogeneous elasticity as an example as shown in Fig. 9, the following subdomain radial

basis collocation method has been introduced [21]:





L+u+ = f+ in Ω+,

B+
g u

+ = g+ on ∂Ω+ ∩ ∂Ωg,

B+
h u

+ = h+ on ∂Ω+ ∩ ∂Ωh,

(33)





L−u− = f− in Ω−,

B−
g u

− = g− on ∂Ω− ∩ ∂Ωg,

B−

h u
− = h− on ∂Ω− ∩ ∂Ωh,

(34)

{
u+ − u− = 0

B+
h u

+ +B−

h u
− = 0

on Γ. (35)

Fig. 9. Two subdomains of a problem with heterogeneity.

The solution in each subdomain is approximated by separate sets of basis functions:

uhi (x) =





uh+i (x) = g+1 (x)a
+
i1 + · · ·+ g+

N+

S

(x)a+
iN+

S

, x ∈ Ω
+
,

uh−i (x) = g−1 (x)a
−

i1 + · · ·+ g−
N−

S

(x)a−
iN−

S

, x ∈ Ω−
.

(36)

Here, Dirichlet and Neumann types of interface conditions are introduced on the interface in (35)
for optimal convergence [21]. For elasticity, (35) refers to as the displacement continuity and traction
equilibrium. Localized radial basis functions have been introduced in this subdomain collocation
method for enhanced accuracy [21]. An inclusion problem shown in Fig. 10 is solved by RBCM,

Fig. 10. Plate with circular inclusion subjected to horizontal traction.
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the subdomain RBCM (SD-RBCM), and subdomain collocation method with localized radial basis
functions (SD-LRBCM). Total of 330 source points and 1320 collocation points are used in a quarter
model. The results in Fig. 11 show that RBCM completely missed the materials interface due to
its nonlocal approximation, while both SD-RBCM and SD-LRBCM offer much enhanced accuracy.

Fig. 11. Displacement and stress solutions obtained by RBCM, SD-RBCM, and SD-LRBCM.

This SD-RBCM approach has also been applied to fracture mechanics, in which the domain is
sub-divided into a near-tip and far-field subdomains as shown in Fig. 12. The optimal dimension for
the near-tip subdomain has been derived based on balanced errors at the triple junction [21]. Inter-
face conditions in Eq. (35) are introduced on the interfaces of subdomains. Figure 13 demonstrates
a tensile specimen with edge crack analyzed by RBCM, RBCM with visibility criteria (RBCM-VC),
and the proposed SD-RBCM. The numbers of source points in the subdomains for SD-RBCM are
N1
S = 26, N2

S = N3
S = 150, and the corresponding numbers of collocation points are Nα

C = 4Nα
S ,

Fig. 12. Edge crack plate subjected to tension analyzed by different collocation methods.

Fig. 13. Domain partitioning in crack problem.
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α = 1, 2, 3, respectively. A finite element solution with a very refined discretization of 22500 nodes
is used as a reference solution. The numerical results showing a superior accuracy in SD-RBCM
compared to other methods are given in Fig. 14.

Fig. 14. Edge crack in a specimen subjected to tension.

Finally, a strong form collocation method using reproducing kernel approximation, called the
reproducing kernel collocation method (RKCM), has been proposed to enhance the stability of
RBCM. The error estimate provided in [28] shows that the polynomial degree of greater than one
is needed in RKCM for convergence, which is different from the Galerkin type meshfree method,
such as RKPM. A stability analysis of RKCM on the conditioning of the discrete system has been
derived [29]. The stability analyses, validated with numerical tests, show that RKCM yields a linear
system with conditioning similar to the very well-conditioned finite element discrete system.

4. LARGE DEFORMATION PROBLEMS AND OTHER APPLICATIONS

The stabilized RKPM has been applied to various large deformation and fragment-impact problems.
To describe the basic formulation of RKPM for large deformation problems, a material motion
xI = φ(XI , t) is considered, where X is the material coordinate, x is the spatial coordinate, t is
time, and φ is the mapping function between X and x. The Lagrangian and semi-Lagrangian
RKPM frameworks are outlined as follows.

1. Lagrangian RKPM formulation [5, 7, 14].
In Lagrangian RKPM, the kernel function and basis functions are expressed in terms of material
coordinate defined in the undeformed configuration, and the support of kernel function covers
the same set of material points throughout deformation as shown in Fig. 15. The Lagrangian RK
approximation is then introduced in the total Lagrangian formulation of conservation equations
as shown in Table 2 to form the discrete equations of Lagrangian RKPM. The SCNI domain
integration is performed in the undeformed configuration with the smoothing of deformation
gradient at nodal point shown as follows [14]:

F
h
ij(XL) =

1

AL

∫

ΩL

F hijdΩ =
1

AL

∫

ΩL

∂uhi
∂Xj

dΩ + δij ≡ eij(XL) + δij , AL =

∫

ΩL

dΩ, (37)

eij(XL) =
∑

I

b
L
jIdiI , b

L
iI =

1

AL

∫

ΓL

ΨXI NidΓ , (38)

where ΨXI is the Lagrangian RK shape function given in Table 3, and Ni is the surface normal
of the nodal representative domain defined in the undeformed configuration. Lagrangian RKPM
formulation works well for small to medium level deformation.
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Fig. 15. Comparison of Lagrangian and semi-Lagrangian kernels.

Table 2. Total and Updated Lagrangian formulation of conservation equations.

Total Lagrangian Updated Lagrangian

Equation of Motion

∫

ΩX

δuiρ
0üidΩ +

∫

ΩX

δFijPjidΩ

=

∫

ΩX

δuib
0
i dΩ +

∫

Γh

X

δuih
0
i dΓ

∫

Ωx

δuiρüidΩ +

∫

Ωx

δu(i,j)τijdΩ

=

∫

Ωx

δuibidΩ +

∫

Γh
x

δuihidΓ

Displacements
ui = xi −Xi : material displacement,

üi =
D2ui
Dt2

: material acceleration

Strains/deformation Fij = ∂xi/∂Xj u(i,j) = (∂ui/∂xj + ∂uj/∂xi)/2

Stresses Pij : first Piola-Kirchhoff stress τij : Cauchy stress

Other variables ρ0: initial density
b0i : body force defined in the un-
deformed domain ΩX

h0i : surface traction mapped onto
the undeformed traction boun-
dary Γ hX

ρ: density at the current state
bi: body force defined in the defor-
med domain Ωx

hi: surface traction defined on the
deformed traction boundary Γ hx

Domains & boundaries ΩX : undeformed domain
Γ hX : undeformed traction boundary

Ωx: deformed domain
Γ hx : deformed traction boundary

2. Semi-Lagrangian RKPM formulation [19, 22, 24].
Lagrangian RKPM breaks down in fragment-impact type problems where deformation gradient
becomes non-positive definite, and semi-Lagrangian RKPM has been proposed for problems
with extremely large deformation, damage, and fragmentation [19, 22, 24]. Contrary to the
Lagrangian formulation, the kernel function and basis functions in semi-Lagrangian RK are
expressed in terms of spatial coordinate defined in the deformed configuration as shown in
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Table 3. Lagrangian and Semi-Lagrangian RK approximation.

Lagrangian Semi-Lagrangian

RK approxima-
tion

uhi (X, t) =

NP∑

I=1

ΨXI (X)diI(t) uhi (x, t) =

NP∑

I=1

ΨxI (x)diI(t)

Approximation
function

ΨXI (X) = HT (0)M−1(X)

·H(X−XI)ϕ
X
a (X−XI)

ΨxI (x) = HT (0)M−1(x)

·H(x− xI)ϕ
x
a(x− xI)

xI = φ (XI , t),
φ: mapping function

Kernel function ϕXa (z), z = ‖X−XI‖ /aI ϕxa(z), z = ‖x− x (XI , t)‖ /aI

Basis functions
HT (X−XI)
= [1 X1−X1I X2−X2I · · · (X3−X3I)

n]

HT (x− xI)
= [1 x1−x1I x2−x2I · · · (x3−x3I)n]

Moment matrix

M(X)

=
NP∑

I=1

H(X−XI)H
T (X−XI)ϕ

X
a (X−XI)

M(x)

=
NP∑

I=1

H(x− xI)HT (x− xI)ϕxa(x− xI)

Table 3. The support of kernel function could cover different set of material points throughout
the deformation process as shown in Fig. 15. Let the velocity vi be approximated by semi-
Lagrangian RK shape functions:

vhi (x, t) =

NP∑

I=1

ΨxI (x)viI(t), (39)

where ΨxI is the semi-Lagrangian RK shape function given in Table 3. The corresponding semi-
Lagrangian approximation of acceleration is given as

ühi (x, t) = v̇hi (x, t) =

NP∑

I=1

(ΨxI (x)v̇iI(t) + Ψx
∗

I hx)viI(t)), (40)

where Ψx
∗

I (x) is the correction due to the time rate of the semi-Lagrangian kernel ϕ̇xa, see [19]
for details. The semi-Lagrangian RK functions in Table 3 are then introduced into the Updated
Lagrangian forms of conservation equations in Table 2 to construct the discrete equations of
semi-Lagrangian RKPM. The temporal stability analysis of Lagrangian and semi-Lagrangian
RKPM equations of motion has been conducted in [19] for explicit time integration.

We first introduce Lagrangian RKPM to model a Taylor bar impact problem stated in Fig. 16.
The problem definition can be found in [5], and the results of Lagrangian RKPM [5] and three-

a) geometry b) discretization

Fig. 16. Taylor bar impact problem definition.
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dimensional semi-Lagrangian RKPM with 29,788 nodes are shown in Fig. 17 and Table 4. Next,
we introduce the semi-Lagrangian RKPM to model the process of a bullet penetrating through
a concrete plate given in [44]. In this simulation, a micro-crack informed damage model [43] has been
used in conjunction with the stabilization methods discussed in Secs. 2 and 4. A semi-Lagrangian
RKPM model with the projectile and panel discretized using 1,163 nodes and 190,000 nodes,
respectively, is used. The numerical and experimental damage patterns of the exit face [44] are
compared in Fig. 18, and good agreement is observed.

Fig. 17. Progress deformation of semi-Lagrangian RKPM computation.

Table 4. Comparison of deformed geometries for Taylor bar impact problem.

Lagrangian RKPM∗ Semi-Lagrangian RKPM Experiment

Height (cm) 1.645 1.642 1.651

Radius (cm) 0.837 0.819 NA

Fig. 18. Experimental and numerical damage patterns on the exit face of a concrete plate penetrated
by a bullet.

Other attractive features in the presented RKPM meshfree methods include their flexibility in
adaptive refinement [51] and in solving PDEs with higher order differentiation such as plates and
shells [17, 47–49], contact problems due to the ability to describe contact surface with smooth func-
tions [11], incompressible problems using node based projection method with optimal constraint
ratio [6, 9, 10], localization problems with embedded gradient regularization in the meshfree ap-
proximation [12, 16], and shape optimization owing to the “meshfree” discretization [34, 35]. Radial
basis functions in RBCM are also particularly effective in solving problems with high dimension [18].

5. CONCLUSION

Meshfree methods based on: 1) Galerkin type weak formulation with nodal integration such as
RKPM and its stabilized counterparts and 2) strong formulation with collocation such as RBCM
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and its variants have been presented. Approximation methods which do not require an underlined
mesh connectivity structure, such as the reproducing kernel approximation, radial basis approxi-
mation, and localized radial basis approximation have been introduced to construct the finite di-
mensional spaces for meshfree methods, and their convergence properties have been discussed and
compared in this work. Special attention has been devoted to the spatial instability resulting from
rank deficiency of the nodally integrated Galerkin meshfree method as well as the ill-conditioning
of strong form collocation method when global approximation functions such as the radial basis
functions are used.
It is shown that with the proper treatment of the rank instability using stabilization meth-

ods such as SCNI and modified SCNI in the nodally integrated Galerkin meshfree method, the
resulting numerical technique offers high accuracy and can be applied to problems where FEM
is ineffective due to its regularity constraints. Fragment-impact problems presented in this paper
are such examples. Meshfree methods based on strong form collocation, such as RBCM, are an
attractive alternative due to their simplicity in implementation and the exponential convergence
property. This class of meshfree methods, however, is suffering from its dense matrix and the associ-
ated ill-conditioning when performing model refinement. The nonlocality in the RBFs also weakens
its applicability to problems with local features, for example, modelling of heterogeneous media
and fractures. The recent advancements in the localized version of RBCM, namely, L-RBCM and
RKCM, have shown to successfully remedy the above stated difficulties.
Mathematical analyses of meshfree methods for the above- mentioned challenging problems have

not been well established and deserve special attention. Identification of problems where meshfree
methods are particularly effective is also essential for the future advancement of this new class of
computational methods.
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