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A new prediction technique, based on the indirect Trefftz method, has been developed for the steady-
state dynamic analysis of coupled vibro-acoustic systems. In contrast with the finite element method, in
which the dynamic field variables within each element are expanded in terms of local, non-exact shape
functions, the dynamic field variables are expressed as global wave function expansions, which exactly
satisfy the governing dynamic equations. The contributions of the wave functions to the coupled vibro-
acoustic response result from a weighted residual formulation of the boundary conditions.

This paper discusses the basic principles and convergence properties of the new prediction technique
and illustrates its performance for some two-dimensional validation examples. A comparison with the
finite element method indicates that the new prediction method has a substantially higher convergence
rate. This makes the method suitable for accurate coupled vibro-acoustic predictions up to much higher
frequencies than the finite element method.

1. INTRODUCTION

At present, the finite element and boundary element method are the most commonly used numerical
prediction techniques for solving steady-state dynamic problems, defined in structural and acoustic
continuum domains. An important implication of the conventional element concept, using non-
exact shape functions, is that the involved large model sizes practically restrict the applicability
of these deterministic prediction techniques to the low-frequency range. Above a certain frequency
limit, these methods would require, even with the nowadays-available high-performance computer
resources, a prohibitively large amount of computational effort and memory resources to get an
acceptable level of prediction accuracy.

For coupled vibro-acoustic problems, the conflict between computational effort and accuracy is
even more pronounced than for uncoupled structural or uncoupled acoustic problems. First of all, the
size of coupled prediction models is substantially larger, since a structural and an acoustic problem
must be solved simultaneously to incorporate the acoustic pressure loading on the elastic struc-
ture and the continuity of the normal fluid and structural displacements along the fluid-structure
coupling interface. Secondly, the numerical solution procedure for coupled vibro-acoustic models is
less efficient than for uncoupled structural or uncoupled acoustic models, since coupled models, at
least in their most commonly used acoustic pressure/structural displacement formulation [1], are no
longer symmetric. Finally, the efficiency of the modal expansion method in reducing the model size
is significantly reduced for coupled vibro-acoustic problems. The most appropriate mode selection
for a modal expansion is the use of the modes of the coupled system. However, since coupled models
are no longer symmetric, the calculation of coupled modes requires a non-symmetric eigenvalue
calculation, which is very time consuming and which makes it a practically impossible procedure for
many real-life vibro-acoustic problems. The most commonly used alternative is a modal expansion
in terms of uncoupled structural and uncoupled acoustic modes, which result from computation-
ally efficient symmetric eigenvalue problems. However, the fact that uncoupled acoustic modes have
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a zero displacement component, normal to the fluid-structure coupling interface, implies that a large
number of high-order uncoupled acoustic modes is required to accurately represent the normal dis-
placement continuity along the fluid-structure interface. Hence, the benefit of a computationally
efficient construction of the modal base is significantly reduced by the smaller model size reduction,
obtained with an uncoupled modal base.

As a result, there exists still a substantial discrepancy between the limited frequency range, in
which conventional element based models can provide accurate coupled vibro-acoustic predictions,
and the significantly larger frequency range, in which accurate, deterministic predictions are needed
for many industrial engineering problems.

In view of narrowing this currently existing frequency discrepancy, a new deterministic prediction
technique has been developed [2], which is based on the indirect Trefftz method [5, 8].

The steady-state dynamic field variables in the entire — or at least in large subdomains of the
— acoustic and structural domains of a coupled vibro-acoustic system are approximated in terms of
a set of acoustic and structural wave functions, which are exact solutions of the homogeneous parts
of the governing dynamic equations, and some particular solution functions of the inhomogeneous
equations. In this way, the governing dynamic equations are exactly satisfied, irrespective of the
contributions of the wave functions to the field variable expansions.

Since the proposed field variable expansions are exact solutions of the governing dynamic equa-
tions, the contributions of the wave functions to the field variable expansions are merely determined
by the acoustic and structural boundary conditions. Since only finite sized prediction models are
amenable to numerical implementation, the boundary conditions can only be satisfied in an approx-
imate way. Therefore, the wave function contributions result from a weighted residual formulation
of the boundary conditions.

A key issue in the use of the indirect Trefftz method is the definition of a T-complete function
set, which ensures the convergence of the subsequent field variable expansions towards the exact so-
lutions. Several T-complete function sets have already been defined for solving steady-state acoustic
problems [3, 7] and steady-state dynamic plate bending problems [6]. Although the theoretical con-
vergence for these function sets has been proven, their practical convergence is, however, seriously
disturbed or even prevented, due to the ill-conditioning of the involved model matrices. The inno-
vative character of the new prediction technique consists mainly of using a new class of T-complete
wave functions, which allow the use of the indirect Trefftz method for coupled vibro-acoustic pre-
diction models, whose poor condition is no longer preventing the numerical results from converging
towards the exact solution.

This paper presents the basic principles of the new prediction technique and applies it for the
vibro-acoustic modelling of some two-dimensional validation examples. It follows from these appli-
cations that a high accuracy is obtained from substantially smaller models, compared to the finite
element method, since an approximation is induced only in the representation of the boundary
conditions. Moreover, a comparison between the new technique and the conventional finite element
method reveals the beneficial convergence rate of the new technique, in that it provides accurate
prediction results with a substantially smaller computational effort. In this way, the new technique
can be applied up to much higher frequencies than the conventional finite element method.

2. BASIC PRINCIPLES
2.1. Problem definition

Consider the two-dimensional interior coupled vibro-acoustic problem, shown in Fig. 1. The cavity
boundary surface , of an acoustic cavity with domain V consists of four parts. On parts 2,
Q, and Qz , prescribed pressure, normal velocity and normal impedance distributions are imposed,
respectively, while part 2 consists of a flat, flexible plate with clamped boundaries (2, = Q, U
Q, UQzUQy). The cavity is filled with a fluid with an ambient density pp and speed of sound c. In
one direction, the plate has a finite length L, while it is infinitely extended in the other direction.
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The thickness of the plate is ¢. The plate material has the density p, , the Poisson coefficient v, the
elastic modulus £ and the material loss factor 7. The acoustic cavity is comprised in an enclosing
rectangular domain of size Ly X Ly, . An external normal line force F is applied at position rr(z/) on
the plate. The dynamic force excitation has a harmonic time dependence with circular frequency w.

Fig. 1. Two-dimensional interior coupled vibro-acoustic system

The steady-state acoustic pressure p at any position r(z,y) in the cavity domain V is governed
by the homogeneous Helmholtz equation,

Vip(r) + k*p(r) =0, reV, ' (1)

where k(= w/c) is the acoustic wavenumber.
By defining a one-dimensional plate co-ordinate system z’ with origin at position ro(zo, o), as
shown in Fig. 1, the geometry of the flat plate may be described by the position vector,

rs(z,y) = rs(zo + 2’ cos e, yo + 2’ sina) = ry(z'). (2)

The steady-state normal plate displacement w, with positive orientation away from the acoustic
cavity, is governed by the inhomogeneous Kirchhoff equation for plate bending motion,

F p(zo+z'cosa, yo + 2’ sina
- Hu(e!) = Lo, o) + 2 Y 5 (3

where the structural bending wavenumber k, and the plate bending stiffness D are

[ pstw? Et3(1+jn
kb == ¥ psD and = T(g_——]/—2)) . (4)

The acoustic boundary conditions for this interior coupled vibro-acoustic problem are

p(r) = p(r), ref, (5)
j_9p(r) _

0 Ba LR e R, ‘ 0
j_0p(r) _ p(r)

T Ry ki, (7)

-1 ooty =Jwislr), ren,, (8)
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where p, U, and Z are prescribed pressure, normal velocity and normal impedance functions, re-
spectively.
The structural clamped boundary conditions are
dw(0)  dw(L)
de. . - da
Note that the restriction to discrete line excitations induces no loss of generality, since general
distributed excitations may be regarded as superpositions of discrete line excitations. Note also that

clamped plate boundary conditions are selected here for brevity, although any type of structural
boundary conditions could be considered.

w(0) = w(L) = =0. 9)

2.2. Field variable expansions

The steady-state cavity pressure p is approximated as a solution expansion p,

p(z,y) Zpa = [@4]{pa}- (10)

Each function in the (1 X n4) vector [®,] is an acoustic wave function, which satisfies the Helmholtz
equation (1),

q)a(x,'y) = e—j(kza(m—fwa-Lm)"'kya(y—fyaLy)) (11)
with
k2, Bkl B (12)

In order to ensure that the amplitudes of the wave functions are not larger than 1 within the
acoustic domain, which is beneficial for the numerical condition of the resulting model, the scaling
factors fzq and fy, are defined as follows,

g et ¢ e o
fa= { 0, if Im(ky) <0, ) (13)

The contributions of the acoustic wave functions to the solution expansion are comprised in the
(ng x 1) vector {pa}.
The steady-state fluid velocity vector ¥ is approximated as

2

Lol rfveghs el Gopi§ soif i8 o

v———pOwV bt Gl ieroy ([01[®al{pa}) = i ([Bal{Pa}) (14)
Ay

where [9] is a (2 x 1) vector of gradient operators and where [B,] is a (2 X n,) matrix of gradient
components of the acoustic wave functions.
The steady-state normal plate displacement w is approximated as a solution expansion w,

w(z') = (s Zws +Zpaw ) + 0r(a') = [¥s{ws} + [Wa]{pa} + dF - (15)

The 4 structural wave functions in the (1 x 4) vector [¥,] are 4 linearly independent solutions of
the homogeneous part of the dynamic plate equation (3),

U, (z') = e IRl =fl)  s=1...4 (16)
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Scaling factor fs equals 1; the three others are zero. The contributions of the structural wave
functions to the solution expansion are comprised in the (4 x 1) vector {w;}.

Function wr is a particular solution function for the mechanical force term in the right-hand
side of Eq. (3). Several mathematical expressions may serve as particular solution. It is advanta-
geous, however, to select an expression, which is already close to the physical response of the plate.
Therefore, the displacement of an infinite plate, excited by a normal line force F is selected 4],

i £ ( —jks|e’ —alp| _ ;o —ks|a' -3 |)
Wr(z) = e Fl — je L) 17
Each function 1,(z') in the (1 x n,) matrix [d,] is a particular solution function for the part of the
cavity pressure loading term in the inhomogeneous right-hand side of Eq. (3), resulting from one of
the acoustic wave functions ®,. The displacement of an infinite plate, excited by this distributed
pressure, may be used as particular solution function,

-7 L : / !
We(z) = 4D?<:3 [/0 @, (2o + € cosa, yp + Esina) <e“’kb|x €l _ je—Fole ‘El) d{] i (18)
b

However, due to the flat shape of the considered plate, an expression may be defined, which is
a particular solution function and which is proportional to the pressure loading function,
e~ J(kza(zo+a' cos @)+kya(yo+a' sina))

D [(kzq cos @ + kyq sina)t — kit

W,{z) = (19)

Although the latter expression has no direct physical meaning, it is preferred to expression (18),
since it is less computationally demanding. Note that the latter expression can only be used for
those acoustic wave functions, whose acoustic wavenumber components k,, and kyq are such that
the denominator in Eq. (19) is non-zero.

2.3. Coupled vibro-acoustic wave model

Due to the particular choice of the field variable expansions (10) and (15), the governing dynamic
Egs. (1) and (3) are exactly satisfied, no matter what the values of the wave function contributions
Pa and w; are. These contributions are merely determined by the boundary conditions.

2.3.1. Structural boundary conditions

The four structural boundary conditions (9) are defined at discrete points of the structural domain
and can be used as such. Substitution of the expansions (10) and (15) yields the following matrix
form of the structural boundary conditions,

[0 4] { 2 Y =153 (20)

The (4 x 4) matrix [As;] results from the application of the differential operators, which are involved
with the structural boundary conditions in Eq. (9), on the structural wave functions in the (1 x 4)
vector [U(z')],

A, = | 400
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The (4 x ng) coupling matrix [Cj,] results from the application of these differential operators on
the particular solution functions in the (1 X nq) vector [tq(z')],

e (0) |
wa(L)
(Cra)= | 2220 (22)
dia(L)

5 Bl asd

The (4 x 1) vector {fs} results from the particular solution function wp,

—r(0)
—wr(L)
{Fs} = 4 _d‘zl;fo) > (23)
dip(L)

\ i d.’L" J

( )

2.3.2. Acoustic boundary conditions

Depending on the wave function contributions p, and w; in the field variable expansions (10)
and (15), some approximation errors are induced in the representation of the acoustic boundary
conditions (5)-(8). In the proposed weighted residual formulation of these boundary conditions, the
involved residual error functions,

Ry(x) = 5(x) - 5(0), req,, o1
B2 ;z;agg) Z 5, (x), req,, (25)
Rz(r) = [)Z;w?% = Z((’;)) reQz, (26)
B [)j;w?% S oL Fon | (27)

are orthogonalized with respect to some weighting functions.

By using a weighting function p for the residual error functions R,, Rz and Ry and by using
a weighting function, which is proportional to the normal derivative of p, for the residual error
function Ry, the weighted residual formulation is expressed as

/ _—i@deQq-/ ﬁRde+/ ﬁRZdQ+/ pRsdQ = 0. (28)
QP Pow an Qo Qz

S

In a similar way as in the Galerkin weighting procedure, used in the finite element method, the
weighting function § is expanded in terms of the same set of acoustic wave functions @, used in
the pressure expansion (10),

Ba,y) =S Fabals,9) = [@al{Fa)- (29)
a=1

The substitution of the field variable expansions (10) and (15) and the weighting function ex-
pansion (29) into the weighted residual formulation (28) yields

{ﬁa}T [([Aaa] + [Caal) {Pa} + [Casl{ws} — {fa}] =0 (30)

where T denotes the transpose.
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The (ng X ng) matrix [Ag,] is

e J (g 1T 2} T & J (p T . % g
= [ o B0 [ BT m@a0 [ o0

(31)
where the (2 x 1) vector {n} contains the z- and y-component of the unit vector, normal to the

considered boundary surface.
The (ng X ng) matrix [Cye] is

R /Q joo[@a]"[i9a] D (32)
and the (n, X 4) matrix [Cys] is
(Cacl == | jui@a"[w,]a0. (33)

The (n, x 1) vector {f,} is .
{fa} = {fap} + {fav} + {fas} (34)

with the (n, x 1) vectors

B gy b /Q LB, (n}pan, (35)
{fav} = /Qv[q)a]Tﬁn dQ-; (36)
{e) /Q jo[@a] o 9. (37)

Since the weighted residual formulation should hold for any weighting function p, the expressions
between square brackets in Eq. (30) must be zero. This yields a set of n, algebraic equations in the
(4 4+ ny) unknown wave function contributions ws and p, ,

[ Coi? 255%:Cia ] { Z } =ik (38)

a

2.3.3. Model properties

The combination of the structural boundary conditions (20) and the weighted residual formula-
tion (38) of the acoustic boundary conditions yields the coupled vibro-acoustic wave model

{5} )

with

=g aon| = w={f} (0

Solving model (39) for the unknown wave function contributions w, and p, and back-substituting
the results into the expansions (10) and (15) yield the prediction of the steady-state dynamic
response of the coupled vibro-acoustic system.

Several model properties may be identified from the above matrix definitions.
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e Since the acoustic and structural wave functions ®, and ¥, are defined in, respectively, the entire
acoustic domain V and the entire structural domain 2, the model matrices are fully populated.

e Since the acoustic and structural wave functions ®, and ¥ are complex functions and since they
are implicitly dependent on frequency by virtue of the frequency dependence of their wavenumber
components, the model matrices are complez and frequency dependent and cannot be partitioned
into frequency independent submatrices.

e The model matrix [A] is not symmetric. However, it is proven in [2]| that the submatrix [Ag,]
is symmetric. Note that this submatrix would become the model matrix for the associated
uncoupled acoustic problem, having no elastic boundary surface §2; .

2.3.4. Convergence

Since equation (12) has an infinite number of real and complex solutions, the key question is whether
a set of acoustic wave functions can be selected from the infinite number of possible wave functions,
such that the subsequent pressure expansion (10) converges towards the exact solution. Note that,
for the considered two-dimensional case, no selection must be made regarding the structural wave
functions, since the dynamic plate equation (3) has only a finite number of homogeneous, linearly
independent solution functions, which are all comprised in the displacement expansion (15).

The acoustic wave functions ®, (see Eq. (11)) with the following wavenumber components are
proposed,

mim Mo
(B k:ya) = (L_z , £Vk2 — k;%,;) and (:I:, [k? — k;a j L_y> - (41)

with m; = 0, £1, £2, ... (i = 1,2). Recall that L; and L, are the dimensions of the (smallest)
rectangular domain, enclosing the acoustic domain V' (see Fig. 1).

It is proven in [2] that the acoustic domain V' being convex is a sufficient condition for the solution
expansions (10) and (15), using the proposed wave function selection (41), to converge, in the limit
for my, mg : 0 = 00, towards the exact coupled vibro-acoustic response. Moreover, the contributions
of each two acoustic wave functions, whose wavenumber components are based on the same m; but
with opposite signs, are identical. Hence, the function set for the acoustic expansion (10) may be
written as

m
bnpimsn (2

T

m x) B TS R (%Z/) oikza(z—fzaLs) (49)
y
with oy e 58 000 (=1, 2)

Although a firm mathematical proof is still under construction, the authors have not yet found
an example, counterproving the statement that any type of non-convex acoustic domain can be
decomposed into some subdomains and that a convergent pressure expansion for each subdomain
is obtained by using a wave function selection of type (41), in which L; and L, are the dimensions
of a rectangular domain, enclosing the subdomain. Note that, when the acoustic domain V must
be decomposed for convergence reasons, some additional boundary conditions must be included to
ensure the continuity of the pressure and normal fluid velocity along the common interfaces between
the various subdomains.

2.8.5. Condition

As it is the case for any type of Trefftz implementation [11], the coupled vibro-acoustic wave
model (39) has a poor numerical condition, in that the ratio between the largest and smallest
singular value of matrix [A] is large. However, in contrast with the other, currently available conver-
gent function sets [3, 7], the proposed function set (42) yields a system model, whose poor numerical
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condition is not preventing the prediction results from practically converging towards the exact so-
lutions. This may be seen, for instance, from a Picard test of the system model [9, 10]. The singular
value decomposition of matrix [A] takes the form

Ng+4
[4] = UIEIVT = ) {Uidoi{vi}" (43)

=1

where [X] is a diagonal matrix of singular values o; , where {U;} and {V;} are the i-th column vectors
of the orthonormal matrices [U] and [V] and where ¥ denotes the complex conjugate transpose. The
solution of the wave model (39) may then be written as

ng+4 H natd o
()3 00 -3 20 ”

When a matrix has a poor numerical condition, it has several very small singular values. As
may be seen from Eq. (44), the solution vector is then usually dominated by the terms, which
correspond with the very small singular values and yields useless, non-converging results. However,
if the coefficients 3;, associated with those very small singular values, are also very small, reliable,
converging results may be obtained. In a Picard test, the singular values o; are compared with their
associated coefficients 3;. When the latter are smaller or at least not very much larger than their
associated singular values, the problem is said to be mildly ill-conditioned, indicating that reliable
results may be obtained. This is the case for the proposed wave model, as will be illustrated in the
next section

3. NUMERICAL VALIDATION EXAMPLES
3.1. Validation example 1

The wave model (39) has been solved for the validation example, shown in Fig. 2. One part of the
boundary surface of an air-filled (py = 1.225 kg/m?, ¢ = 340 m/s) cavity (Ly = 1.5 m, Ly =1m)
consists of a flexible plate (E = 70 x 10° N/m?, p; = 2790 kg/m?3, v = 0.3, ¢ =0.002 m, n =0, L =
0.75 m, @ = 0) with clamped boundaries, while another part of the boundary surface is treated with
a layer of insulation material with normal impedance Z = poc(1 — 27). The remaining parts of the
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Z
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Fig. 2. Two-dimensional interior coupled vibro-acoustic system with a convex acoustic domain
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Fig. 3. Picard test

cavity boundary surface are perfectly rigid. The coupled vibro-acoustic system is excited by a unit
normal line force F' at 2/>=0.5 m with a harmonic time dependence at frequency w = 27 1000 Hz.

As already discussed in Section 2.3.5., a necessary condition for the ill-conditioned wave model
to practically converge is that it passes the Picard test. Figure 3 plots the amplitudes of the singular
values o; against the amplitudes of the coefficients §; for a wave model of the considered valida-
tion example with n, = 150 acoustic wave functions. Since the coefficients f; gradually decrease
with their associated singular values o;, convergence of the proposed prediction technique may be
expected.

Figure 4 plots the instantaneous normal structural displacement w against the fluid displacement
wg, normal to the fluid—structure coupling interface, obtained from a wave model with n,=660.
Figure 5 compares the cavity pressure with the normal velocity, multiplied by Z, along the boundary
surface with insulation treatment. These figures clearly indicate the accurate representation of
the displacement continuity condition (8), the clamped boundary conditions (9), and the normal
impedance boundary condition (7). Figures 6 and 7 show the real and imaginary parts of the cavity
pressure. The fact that the pressure contour lines on these figures are perpendicular to all rigid
parts of the cavity boundary surface, indicates that the rigid walled boundary condition of type (6)
is accurately represented.

Since the solutions expansions (10) and (15) inherently satisfy the governing dynamic equations,
and since all boundary conditions of the considered problem are accurately represented, this valida-
tion example illustrates that the proposed prediction technique is practically converging and enables
an accurate approximation of the exact solution.

Another indication of the practical convergence of the new prediction technique is given by the
convergence curve, which plots the relative prediction error Ay on a field variable ¢ against the
size of the wave model, i.e. the number of degrees of freedom n, + 4. The prediction error may be
defined as

llooll

where ¢ is the predicted field variable value and ¢ is its exact value. Since the exact solution is not
known, the prediction error is evaluated, using the prediction result from a very large wave model as
Voo - If the wave model converges to the exact solution, the prediction error should tend to zero for
increasing model sizes. Figure 8 plots the convergence curves for the normal plate displacement at
2'=0.25m and for the cavity pressure at (z,y) =(0.5 m, 0.5 m) at 200 Hz and 500 Hz for the case of an
infinitely large impedance Z at the cavity boundary surface z = 0, which means that this boundary
surface is perfectly rigid. These curves confirm the convergence of the proposed wave model.
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Fig. 4. Real part of the normal plate displacement w (solid) and the normal fluid displacement w, (+)
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Fig. 5. Pressure (solid) versus normal fluid velocity, multiplied by Z (+), along the cavity insulation layer
at 1000 Hz
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Fig. 8. Structural (upper part) and acoustic (lower part) convergence curves at 200 Hz (+) and 500 Hz ()

3.2. Validation example 2

Figure 9 shows an interior coupled vibro-acoustic problem, which is identical to the previous ex-
ample, except that the cavity boundary surface is nowhere treated with an insulation layer and
that two rigid bulkheads are positioned in the cavity domain. The bulkheads are assumed to be
infinitesimally thin and their heights are 0.5 x L, .

The non-convex acoustic domain is decomposed into 3 convex subdomains and the pressure
fields p1, p2 and p3 in these subdomains are expanded in terms of acoustic wave function sets (42),
associated with the enclosing rectangular domains with dimensions Lg1 X Ly , Ly X Ly and Lg3 X Ly,
respectively (see Fig. 9). The case is considered of an air-filled cavity and an aluminium plate with
the same geometrical and material properties as in the previous validation example. The plate is
excited by a unit line force F' at location 2> = 0.5 m with a frequency w = 27 200 Hz.

A wave model is built with 4 structural and 540 acoustic wave functions (n,; = 180, ngo = 210,
nqe3 = 150). Figure 10 plots the resulting real part of the normal plate displacement against the real
part of the normal fluid displacement along the fluid-structure coupling interface and illustrates

0 3 yw)
45° x | 45°
N
N
l—f‘ o, i
1 (=]
A I
1 &y p(xy) PR | 2
; 1 2 3 R
7 =
y 5
X N
: i S I P I [ AT I,
Ly & Ly Ly

Fig. 9. two-dimensional interior coupled vibro-acoustic system with a non-convex acoustic domain
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Fig. 10. real part of the normal plate displacement w (solid) and the normal fluid displacement w, (+)
along the fluid-structure coupling interface at 200 Hz
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Fig. 11. Contour plot of the real part of the cavity pressure at 200 Hz

the accurate representation of the clamped plate boundary conditions (9) and the displacement
continuity condition (8) at the fluid-structure coupling interface. Figure 11 shows the contour plot
of the real part of the cavity pressure field. Since the contour lines are perpendicular to the rigid parts
of the cavity boundary surface and since they are continuous at the common interfaces between the
considered subdomains, this figure illustrates the accurate representation of the acoustic boundary

conditions.

Since the solution expansions inherently satisfy the governing dynamic equations, and since all
boundary conditions of the considered problem are accurately represented, it is illustrated again
that the proposed wave model provides an accurate approximation of the exact solution. Figure 12
provides another way for indicating the practical convergence by plotting the wave model size
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Fig. 12. Structural and acoustic convergence curves at 200 Hz

against the resulting relative prediction errors for the normal plate displacement predictions ()
at 2’ = 0.25 m and for the pressure predictions at locations in the three cavity subdomains, i.e.
(z,y) = (0.2m,0.2m) (+), (z,y) = (1m,0.5m) (o) and (z,y) = (1.3m,0.8m) (%).

4. COMPARISON WITH FEM
4.1. Properties

In comparison with the finite element method, the new prediction techmque has several advanta-
geous properties.

e Since the field variable expansions satisfy a priori the governing dynamic equations, approxi-
mation errors are only involved with the representation of the boundary conditions. This yields
substantially smaller models than corresponding FE models.

e Predictions of dynamic quantities such as structural stresses and strains or fluid velocities are
obtained from derivating the prediction results of the primary field variables, i.e. the structural
displacement components or the acoustic pressure. In the FE method, the latter are usually
expressed in terms of polynomial expansions, which are complete up to a certain order. Hence,
the derived secondary variables are also expressed in terms of polynomial expansions, which are
however only complete up to a lower order. As a result, the lower-order (polynomial) expansions
of the derived secondary variables represent a smaller spatial variation and are less accurate than
the expansions of the corresponding primary variables. In the proposed prediction technique,
however, the spatial gradients of the wave functions are wave functions, which have the same
spatial variation as the ones, used in the primary field variable expansions. This is advantageous
for the convergence rate, especmlly in the case of coupled vibro-acoustic problems, for which the
effect of the fluid on the structure is pressure controlled, but for which the effect of the structure
on the fluid is velocity controlled.

e A model refinement is easily obtained. Firstly, the accuracy of a model can be easily checked,
since only the approximation errors on the boundary conditions must be verified. Secondly,
increasing the number of degrees of freedom, i.e. the number of wave functions in the field variable
expansions, requires only the calculation of the additional matrix coefficients, associated with
the additional wave functions, while the original model coefficients remain unchanged. For FE
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models, increasing the number of degrees of freedom requires the calculation of a completely new
model, at least when a global refinement of the element discretization is needed.

The new prediction technique has also some drawbacks, compared with the FE method.

e Since the wave functions are complex functions, defined within the entire continuum domain or
at least within large subdomains, the wave model matrices are fully populated and complex.

e Due to the implicit frequency dependence of the wave functions, the wave model matrices cannot
be decomposed into frequency independent submatrices, which implies that a wave model must
be recalculated for each frequency of interest and that natural frequencies and mode shapes
cannot be obtained from a standard eigenvalue calculation.

e Due to the global and oscillatory nature of the wave functions and due to the poor condition of
a wave model, the involved numerical integrations are computationally more demanding.

e The FE method is a widely applicable technique, since the convergence of a FE model is obtained
with simple element shape functions, whereas the convergence of a wave model requires the
definition of a complete wave function set and appropriate particular solution functions.

4.2. Computational efficiency

The new prediction technique yields accurate prediction results with substantially smaller models
than the finite element method, since an approximation error is induced only on the representation
of the boundary conditions. However, as indicated in the above property comparison, the beneficial
effect of a smaller model size on the computational effort is partly annihilated by the fact that wave
models are fully populated and cannot be decomposed into frequency-independent submatrices.
Therefore, it is more appropriate for convergence comparisons to plot the relative prediction errors,
as defined in (45), against the corresponding CPU times, instead of the number of unconstrained
degrees of freedom.

For the validation example in Section 3.1, the results from the proposed prediction technique are
compared with the results from corresponding FE models. The latter results are obtained from the
MSC/NASTRAN software. A two-dimensional element discretization is obtained from one three-
dimensional layer of 8-noded hexahedral fluid elements and 4-noded quadrilateral shell elements,
in which the invariance in the third dimension is modelled with appropriate multiple point con-
straints. Table 1 lists the number of structural and acoustic elements of each FE model and their
corresponding unconstrained degrees of freedom.

Table 1. Properties of the FE models

# str. elem. # ac. elem. dof
model 1 36 3456 3647
model 2 54 7776 8063
model 3 108 31104 31679
model 4 135 48600 49319

Figure 13 shows these convergence curves for the normal plate displacement at z’ = L,//3 and
for the cavity pressure at (z,y) = (Lg/3,Ly/2) for two excitation frequencies, i.e. 200 Hz and
500 Hz. The CPU times in this figure denote the times, needed for the direct response calculations
at one frequency. The CPU times, plotted for the wave models, include both the times, needed
for constructing the models as well as for solving the resulting matrix equations. Since FE mod-
els consist of frequency-independent submatrices, these submatrices must only be calculated once
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Fig. 13. Structural (left part) and acoustic (right part) convergence curves at 200 Hz (++) and 500 Hz (v7)
(solid: wave based prediction technique, dashed: FEM)

and the construction of the models at each frequency requires only a simple submatrix assem-
bly. As a result, the computational effort for constructing the models is negligible, compared with
the efforts for solving the (large) models, at least when the dynamic response is calculated in a
large frequency range. Therefore, the CPU times, plotted for the FE models, comprise only the
direct solution times. All calculations are performed on a HP-C180 workstation (SPECfp95=18.7,
SPECint95=11.8).

This figure illustrates the beneficial convergence rate of the new prediction technique. In com-
parison with the finite element method, the new prediction technique provides accurate predictions
of the coupled vibro-acoustic response with a substantially smaller computational effort. Note also
that the beneficial convergence rate will most likely become even more apparent, when the predic-
tion technique is implemented in a more efficient software environment, instead of the currently
used MATLAB environment.

5. CONCLUSIONS

A new prediction technique for coupled vibro-acoustic analysis has been developed. The technique is
based on the indirect Trefftz method and approximates the structural and acoustic field variables of
a coupled vibro-acoustic system in terms of solution expansions, which exactly satisfy the governing
dynamic equations. The contribution factors in these expansions are obtained from a weighted
residual formulation of the boundary conditions.

As it is the case for any type of Trefftz implementation, the system models of the wave based
prediction technique have a poor numerical condition. However, a particular type of solution expan-
sion has been found, which yields a system model, whose poor numerical condition is not preventing
the prediction results from converging towards the exact solutions.

A comparison with the finite element method indicates that accurate prediction results may be
obtained with a substantially smaller computational effort. Due to this beneficial convergence rate,
the proposed prediction technique may be a suitable method for obtaining accurate coupled vibro-
acoustic predictions up to much higher frequencies than the conventional finite element method.
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