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A unified approach for the treatment of the non-linear dynamics of multibody systems (MBS) composed of
both rigid and elastic bodies is proposed. Large displacements and rotations, large strains and non-linear
elastic material response are considered for the elastic bodies.

The proposed formulation exploits three key ingredients: the use of a dependent set of inertial coordi-
nates of selected points of the system; the use of a basic constraint library enforced through the penalty
method; the use of the energy-momentum method to integrate the equations.

The proposed algorithm is set in the framework of a non-conventional finite element formulation,
which combine naturally the displacement-based discretisation of the deformable bodies with rigid body
mechanics. Two key performance features are achieved. The exact conservation of total momentum and
total energy in conservative systems is ensured. The major drawback of the penalty method, namely
numerical ill-conditioning that leads to stiff equation systems, is overcome.

1. INTRODUCTION

A flexible multibody system is understood as a collection of rigid and deformable bodies acted by
different types of loads and linked by different types of joints. These joints can be passive (spherical,
cylindrical, prismatic) or active (springs, dampers, etc.).

These models are usually employed when the flexible parts may affect .substantially the global
dynamic behaviour of the whole system. They are quite common in aerospace and automotive
applications.

Rigid bodies are modelled as discrete elements parametrised by a finite set of coordinates, and
deformable bodies are represented by continuum media. These deformable bodies are assumed to
experience large displacements and strains, and made of materials with hyperlastic behaviour.

The continuum bodies are discretised using the Finite Element Method (F.E.M.) and assembled
with the discrete rigid bodies to establish the global system of equations, which is then integrated
in time. This formulation sets the basis of a non-conventional finite element technique, with perfect
coupling between the dynamic effects of both rigid and deformable parts.

The main goal of the proposed approach is to define a simple and efficient method to treat
such systems in long-term simulations, where the total integration time is considerably larger than
the longest period of the movement, which typically corresponds to the large-amplitude rigid body
motions. In order to accomplish this objective, three key ingredients are employed.

Firstly, the system is parametrised using inertial Cartesian coordinates of selected points: at least
four points from each rigid body (in order to build a constant mass matrix) and all nodal points
from the deformable bodies. This selection leads to a dependent set of coordinates related through
constraint equations.
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Secondly, the constraints are enforced using the penalty method. This approach, combined with
the specific parametrisation described above, sets the basis for a simple and systematic dynamic
formulation based on a single global system of ordinary differential equations.

Because the numerical ill-conditioning introduced in the equations by the penalty method
strongly determines the type of time-stepping scheme to be employed, the third and last ingre-
dient of the approach consists in using a energy-momentum method of integration, which can be
rigorously designed in the context of general Hamiltonian systems with symmetry. It shows an excel-
lent overall performance in terms of robustness and accuracy. Additionally, the energy-momentum
method provides high confidence in the results successfully obtained in long-term simulations, since
basic physical magnitudes, such as energy and momentum, are exactly conserved.

It is important to remark that the interest in the energy-momentum method is not restricted
to conservative systems. The application of an energy-momentum method to dissipative systems
assures that the observed energy dissipation introduced by the underlying physical model is not
corrupted by the numerical model.

2. MULTIBODY SYSTEMS COMPOSED BY RIGID BODIES

Consider a collection rigid bodies Br and denote by @ the spatial coordinates, expressed in an
inertial Cartesian reference system, of an arbitrary point of any of the bodies.
The general weak form of the equations of motion takes the form

szt -z pdV — | 62T -bpdV — bzt -tpdA=0 Véx eV (1)
Br Br OBRr

where V is the finite-dimensional space of the constraint-compatible variations of «, bg is the vector
of volumetric load and tgr the vector of concentrated loads applied on the boundary 0Bg of the
system.

Introducing a parametrisation £ = z(qg), Eq. (1) can be expressed in terms of the set of
coordinates qr € R™, taking the general form

dqk - (Mg -dr — Qr) =0 2)

where Mp, is the mass matrix and Qr(qr, Qr , t) the vector of generalised forces. The specific form
of each term in Eq. (2) depends on the selected parametrisation. If qr € R3N contains Cartesian
coordinates of N selected points and the inertial coordinates of an arbitrary point are written as
xz =C-qg, then f

Mg =/ CT.Cpdv,
Br

QR:CT'fR+ CT‘deV.
Br

7

If each body is defined by at least four points defining a non-zero volume, it can be shown [1] that
the mass matrix Mg is constant.

It is important to remark that the variations dqg in (2) are not independent. For instance, the
definition of a single rigid body by four points such that qr € R!2, requires six constant-distance
constraints, giving a total of six degrees of freedom. If the body is linked to other bodies, the number
of constraints increases. The conclusion is that this parametrisation, even for a single free rigid body,
always requires constraints relating the elements of the coordinate vector qg .

Enforcement of holonomic constraints of the type ® : R3" xR 3 (qr, t) — ®(qr,t) € R?
can be accomplished by several methods. Denoting by fs € R3N the constraint force vector, the
following expressions are obtained for different methods [1]:
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e Lagrange multipliers method
1 T
fq,:—E(DQ)) “A; D®=—;
e Penalty method
1
fo =—(D®)T (- ®); Vo= §<I>T-(a-<1>);
e Augmented Lagrangian

fo = —(D®)" - (- ®) + (DB)T - A*; HTEED WETRE T

It is important to notice that the penalty method introduces naturally the constraint force from
a potential Vi . This fact has relevance in the formulation of the energy-momentum method used
to integrate the equations of motion in time.

Introducing the constraint equations with the penalty method in Eq. (2), the following expression
is obtained for the weak formulation,

6qh - (Mr-dr— (D®)" (o ®)-Qr) =0  Voqre VN 3)
|\ O e
fo

R

where dqr € V3V are truly independent and can be eliminated.

3. DEFORMABLE BODIES AND GLOBAL RIGID-DEFORMABLE EQUATIONS

Consider a single deformable body Bg, with boundary 0Bg, under volumetric b and concentrated
tg loads, and with holonomic constraints ®g acting over a domain dpBg. The weak form of the
equations of motion can be expressed in terms of the virtual work of the inertia, internal, external
and constraint forces,

oz’ - :i'pdV—/ D(6z)T - FS pdVj

Bg,

~ &

Bg

~~

d 1-Iiner 6Hint

— | éxT - bgpdv — bzt - tpdA— sz - (D®g)(aPp)dA =0, (4)
\BE GBE o \a@BE

0 1—Iext d 1—Iconstr

7

with dz € V, where V is the infinite-dimensional space of all arbitrary variations of . In Eq. (4),
Bg, is the undeformed configuration, F' is the deformation gradient tensor and S is the second
Piola—Kirchhoff stress tensor. Constraints are enforced by the penalty method.

Continuum bodies are discretised using a standard displacement-based finite element interpola-
tion;” /

z=N-qf%. (5)

In the expression above N is the interpolation matrix, calculated from the shape functions, and
q% is a vector containing the inertial Cartesian coordinates of the nodes. For isoparametric elements,
positions and displacements are interpolated in the same way, to yield

dxz =N -iq%. (6)



316 J.C. Garcia Orden and J.M. Goicolea

Introducing the parametrisation given by relations (5), (6) in (4), the contribution of element Q°
has the form

(6q)" - </EPNT'NdVd%—/QEBSGdVo—QE>
(o =y 0

(9
Mg e

int

where M$, and £, are the elemental mass matrix and constraint force vector respectively.
If all nodal Cartesian coordinates are collected in vector qg € R", all elemental contribution are
assembled, and constraints ®p are applied, the following general expression is obtained,

6qy - (Mg -dp —fo, —fin —Qr) =0  Véqe € V", (7)

where M is the mass matrix, fp is the constraint force vector, and vector Qg contains the contri-
butions of the external forces.

Defining a global coordinate vector qrt e (q£ | qrg), an ordinary differential equation system
accounting for both rigid and deformable bodies can be written from Egs. (3) and (7) as

MR 0 q_R =4 fq;R f(pREl 0 _9_}}_
( 0 ME) (ﬁE)_(f¢g)+<f¢m)+<fint)+<QE) ®)
(R g IO AR b = SRR s &
M q £p Q

where fpp, are forces associated to constraints acting simultaneously over rigid and deformable
bodies.

4. ENERGY-MOMENTUM ALGORITHM

The system of equations (8) is highly non-linear and stiff because the high-frequency components
introduced by the large penalty parameters. This numerical ill-conditioning represents a serious
drawback for most of the traditional time-stepping schemes (linear multi-step methods, trapezoidal
rule, mid-point rule, etc). However, energy-momentum methods have remarkable robustness while
conserving by design the total energy and momentum in conservative systems.

The appropriate context for the design of such methods is the study of discrete Hamiltonian
systems with symmetry, where both the Hamiltonian function (physically, the total energy) and the
momentum mapping associated with the symplectic action of the rotation group SO(3) (physically,
the total momentum) are first integrals of the motion.

A discrete Hamiltonian system is introduced directly from the discrete derivative concept [4, 5].
This can be understood as an approximation of the continuous derivative at the mid-point, such
that energy and momentum are exactly conserved. As a result, the discrete conservation is enforced
by design in the method.

In practice, the general expression of the energy-momentum method is very similar to the mid-
point rule. This last method can be written as

M(Qn+1 — 4n) = At fn+% )

l( +')—___
2qn+1 qn) = 3 )

where (-),,. 1 represents evaluation at the mid-point. The key idea is that the energy-momentum
method substitutes f,, 1 by force f* such that energy and momentum are exactly conserved. The
specific expression of f* depends on the nature of the force: constraint (f3), internal force (f7;) of
a deformable body, external force (£Z), contact force (f7), etc.

Expressions for the constraint force vectors f§ and internal forces vectors fj; are presented next.
More details and expressions for external and contact forces can be found in [2, 3, 6].
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Constraints

Consider first a general holonomic constraint ® acting over several points with cartesian coordinate
vectors q. We call this type of constraint, where ® depends on vector q in an arbitrary way, a vector
constraint. It can be shown [3] that the constraint force f} in this case has the form

1
2

In this expression, « is the penalty parameter, 5n +1 is the average of the constraint, such that

wn-l—% @gf % [()n + (')n+1] )

and (D®); is the gradient of the constraint evaluated at g4 gef dn + B(Qn+1 — dn). The scalar
is calculated using the following iterative scheme, :

Br+1 = Br — DU (G;) U(Byx),

def
v(p) = (D‘I’)Lﬁ (An+1 = An) — Ppy1 + @y

If constraint @ is at most quadratic, it can be shown that 8 = % , and the iterative scheme given
by (9) is no longer necessary.
There are yet other types of constraints, the scalar constraints. These constraints act at most over

(9)

two points (1, 2), and depend only on the modulus of their relative distance r = lle2—21]| = ||7]].
It can be shown that in this case the constraint force is given by the closed expression
®2  —-®2 [ r 1 1
f; = ¥ 7274+1 27'1 n+2 : rn+l = —(')"n+1 -+ 1"”)_
Ta+1 ~Tn | ~Tasd 2 -2

Scalar constraints are extensively used for rigid body definition: each body is represented by four
points and six constant-distance constraints that fall in this category.

Internal forces of elastic bodies

We study the case of deformable bodies with hyperelastic behaviour, such that there exists an energy
density function (W) that verifies the following condition,
ow(C,X)
ocC - :

where S is the second Piola-Kirchhoff stress tensor, C' is the right Cauchy—Green strain tensor and
X are the material coordinates of the point where the stress and strain fields are calculated.

In order to accomplish exact energy and momentum conservation, the contribution of an element
¢ to the total internal force vector, should be [5]

S=2

(60" = [ Bouy(5% %
i
where:
£ Y def B +B +1,
Bn-}—% 2 "T"
AW — (D) .1 :AC
eyx def n+3
Tl W)+ — g g iy

For a Saint Venant-Kirchhoff material, the second Piola—Kirchhoff stress tensor S and the Green—
Lagrange strain tensor E are related through a constant fourth-order constitutive tensor C, such
that § = C: E. In this specific case, the approximation of the middle-point stress S* is particularly
simple [7],
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5. REPRESENTATIVE NUMERICAL APPLICATIONS

Compound spherical pendulum

This application shows the performance of the method applied to a system of discrete particles
under scalar and vector constraints.

The system is composed by two masses mg = mp = 1 kg constrained to move at constant
distance and aligned with a fixed point O (Fig. 1). The system is parametrised by a vector q that
contains the six Cartesian coordinates of the masses. Four independent constraints are defined. Two
of them scalar (constant distance constraints) and the other two are vectorial (alignment of the
masses with the origin).

Figure 2 shows the maximum time-step achieved by different methods for various penalty factors,
for a total integration time of T' = 60 s. The energy-momentum method presents the most robust

Fig
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Fig. 2. Compound pendulum. Maximum time step vs. penalty factor
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Fig. 5. Compound pendulum. Vertical angular momentum relative error (e,) at T = 2 s, penalty
factor a = 107

behaviour, with time-steps at least one order of magnitude higher than the HHT, midpoint rule and
trapezoidal rules. The results in Figs. 3, 4 and 5 measure the accuracy of the different methods in
terms of the relative error introduced in position, total energy and vertical component of the angular
momentum. Figure 3 shows that the energy-momentum method is about one order of magnitude
more precise in position than the other methods analysed. The asymptotic behaviour observed for
small time-steps is caused by the penalty method; eventually, the error would tend to zero when
the penalty factor tends to infinity. Figure 4 shows the dramatic difference in terms of energy
conservation between the energy-momentum method and all the others. Finally, Fig. 5 shows the
error introduced in the conservation of the vertical component of the angular momentum, where
the energy-momentum and the midpoint rule behave similarly.

Rigid body multibody system, a swing
The swing seat is modelled by a prismatic rigid body with dimensions (0.5 x 0.3 x 0.2) and mass

mp = 10 kg, linked at points C' and D to fixed points A and B by two chains AC=BD=15m
(Fig. 6). Each chain is formed by 15 equal links of length [ = 0.1 m and mass m, = 0.5 kg.
Each slave is modelled by a rigid truss. Points A, B, C and D as well as the contiguous links are
articulated through spherical hinges.

Initially, the swing is at rest in the vertical position, with point D at coordinates zp =
(1,—0.8,—0.381) m in the fixed coordinate system of Fig. 6, with origin in the middle of seg-
ment AB. With this initial constraint, the system is allowed to reach the equilibrium position under
self-weight, g = 9.8 m/s?. The system is released from this position and follows a free motion under
gravity.

The motion is integrated in time using the energy-momentum method, with a step-size h =
0.002 s over 10 s. The penalty parameter is set to a = 100, The trapezoidal and midpoint rules
and the Hilber, Hughes and Taylor (HHT) method have been tested also. Apart from the energy-
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momentum method, only the HHT with a damping parameter o, = —0.2, did successfully complete
the integration up to 10 s without severe stability problems. However, HHT stability is associated
with a substantial dissipation of energy. Figure 7 shows several snapshots of the movement.

Three-wheel vehicle

The main goal of this application is to analyse the dynamic behaviour of a simplified three-wheel
vehicle over an alternated set of obstacles (Figs. 8, 9). The two rear wheels are linked to the chassis
with McPherson struts, with a spring-damper assembly. and the flexible chassis is discretised in
20 elements. The wheels are not powered and there is no friction in any moving part. Details on the
dimensions, mass distribution and mechanical properties of the materials can be found in [3]. The
vehicle is launched against a double row of prismatic obstacles with a velocity of v = 2 m/s. Two
snapshots of the movement are shown in Fig. 10.

2 m 1m
—_—
==
1m
Fig. 8. Alternated obstacles. Fig. 9. Alternated obstacles. Initial configuration
Geometry of a single obstacle (no scale)

Fig. 10. Alternated obstacles, v = 2 m/s. Snapshots of the movement

Two simulations are performed in order to analyse the effect of the modulus of elasticity of the
chassis on the overall dynamic behaviour of the vehicle. Figure 11 shows the vertical movement of a
point located in the upper chassis, close to the center of mass, for two different moduli of elasticity of
the chassis material, E; = 2-107 Pa and Ey = 2-10® Pa. The stiffer chassis reaches the equilibrium
position in a shorter period of time, as the velocity of the stress waves is higher in this case and the
dissipation of energy through the dampers is faster.
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Fig. 11. Alternated obstacles. Vertical position of central upper chassis

6. CONCLUSIONS

In the context of flexible multibody systems, a method based on the penalty method and the
energy-momentum time-stepping algorithm is presented. The proposed method has the following
features:

e The system is parametrised with inertial Cartesian coordinates of selected points. This allows a
highly systematic geometrical definition of complex mechanical systems.

* A non-conventional finite element approach is developed, in the sense that formulations for both
deformable and rigid elements are fully coupled in order to obtain a single set of equations of
motion.

e Constraints are enforced with the penalty method, that provides a simple formulation based on
a strictly differential set of equations, instead of the algebraic-differential type generated by the
Lagrange multipliers method. Additionally, the penalty method allows to introduce a constraint
potential, a basic feature that greatly simplifies a energy-momentum time-stepping design.

e The proposed energy-momentum method overcomes numerical ill-conditioning introduced by
large penalty factors and stiff deformable bodies, allowing large time steps. Simultaneously, it
guarantees the algorithmic conservation of total energy and momentum, providing a high degree
of confidence on the results obtained in long-term simulations. It can be applied to constraints
of arbitrary order, and it has a remarkable simple closed form with constraints that are at most
quadratic or depend on the modulus of the relative distance between two points.
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