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Professor Jirousek has been a very important driving force in the modern development of Trefftz method,
contributing to its application in many different fields such as elasticity, shells and plates theory, Poisson
equation and transient heat analysis. This article is dedicated to him. The focus of the paper is to
incorporate Jirousek method into a very general framework of Trefftz method which has been introduced
by Herrera. Usually finite element methods are developed using splines, but a more general point of view
is obtained when they are formulated in spaces of fully discontinuous functions — i.e., spaces in which
the functions together with their derivatives may have jump discontinuities — and in the general context
of boundary value problems with prescribed jumps. Two broad classes of Trefftz methods are obtained:
direct (Trefftz—Jirousek) and indirect (Trefftz—Herrera) methods. In turn, each one of them can be divided
into overlapping and non-overlapping.

1. INTRODUCTION

This paper is dedicated to Professor Jirousek who has been a very important driving force in the
modern development of Trefftz method, contributing to its application in many different fields such
as plates and shells theories [41-45, 49, 54, 55, 70|, elasticity [48, 50, 71, 72], and transient heat
analysis [46]. Jirousek and his collaborators have carried out the developments which are necessary
for applying his approach in a reliable and adaptive manner [47, 51, 52]. In this respect, an important
feature is the possibility of applying h and p convergence (see [53, 56] for recent surveys).

Taking as a starting point a precise and quite general definition of the procedure originally
introduced by Trefftz [68], the method that has been developed by Jirousek together with a related
method due to Herrera [5-7, 19-29, 32, 33, 36-38, 67|, are revised in this framework and it is
shown that when Trefftz methods are conceptualized in this manner they include many of the basic
problems considered in numerical methods for partial differential equations, becoming fundamental
for that subject. One avenue of this approach includes domain decomposition methods, but many
other aspects may be illuminated.

Trefftz methods can be classified firstly into two broad categories: direct and indirect methods.
The first one is essentially Jirousek’s method in which the local solutions are used directly as bricks
to build the global solution. However, this procedure is more general if one is not restricted to
use analytical methods for the production of the local solutions, but instead resorts to numerical
methods, as well. The second category is constituted by Trefftz—Herrera methods, in which local
solutions of the adjoint differential equations are used, in an indirect manner, as specialized test
functions which have the property of concentrating the information about the sought solution in
the internal boundaries defined by the partition.

From another point of view, just as domain decomposition methods [8, 9, 15-17, 57, 58, 66],
they can be classified into two very broad classes: overlapping and disjoint (or non-overlapping)
methods. This terminology derives from the corresponding properties of the partitions. Since these
two classifications are independent of each other, they can be combined to yield four categories
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of Trefftz methods: direct-overlapping, direct-non-overlapping, indirect-overlapping and indirect-
non-overlapping, In this paper, these four categories are outlined and of some their main features
discussed.

2. JIROUSEK METHOD

In 1977 [41, 44], Jirousek started the development of a generalization of Trefftz method [68], in
which non conforming elements are assumed to fulfill the governing equations ‘a priori’ and the
inter-element continuity and the boundary conditions are then enforced in some weighted residual
or point wise sense. As in the case of Trefftz, Jirousek in his early work used variational principles
related to the differential equations considered. However, their use is not essential — collocation
and least-squares, for example, are also suitable [73] — and many alternative formulations can be
applied in order to generate “Trefftz-type” finite elements, which in more recent work have been
referred to as T-elements [53].

This method — Jirousek’s Method — has been quite successful because of its generality and
efficiency. Recent states of the art are available [53, 56] from which we draw. Jirousek’s method
has been applied to the biharmonic equation [41, 44], plane elasticity [48] and Kirchhoff plates [45,
48, 63]. Later the approach was further extended to thin shells [70], moderately thick Reissner—
Mindlin plates [54, 55, 63], thick plates [65], general 3-D solid mechanics [64], axisymmetric solid
mechanics |71, 72|, Poisson equation [74] and transient heat conduction analysis [52].

Just as in FEM, in Jirousek’s method one has h-convergence and p-convergence. Thus, this leads
to developing the h-version and the p-version of T-elements, as was first suggested by Jirousek and
Teodorescu in 1982 [48], and implemented and studied several years later [42, 49]. According to
Jirousek [53], the superiority of this version over the h-version has been so overwhelming that most
of the new developments refer to the p-version. One of its most important advantages has been the
facility with which a simple a posteriori stress error estimator [50] can be developed [52] and, using
it, derive a procedure for adaptive reliability assurance [47, 51, 52].

3. PRELIMINARY NOTIONS AND NOTATIONS

In what follows a region 2 C R will be considered and {Q;, Q2, ..., Qg} will be a partition
(or domain decomposition) of  (Fig. 1); more precisely, this will be a pair-wise disjoint family of
manifolds with corners [4, 62], such that the union of its closures is the closure of 2. The inner
boundary ¥, is defined to be the closed complement of 9Q in (J; 9€;. In addition, the following
notations will also be used in the sequel:

0,0 = (89) N (BQl), Yi=XN (89,), and Eij =3;N Ej > (1)
A unit normal vector n, pointing outwards, is defined almost everywhere in 02, in the standard
manner. Similarly, a unit normal vector n, will be defined almost everywhere on ¥;; — this is

unique, except for the sense which is chosen arbitrarily.

z oQ

/7‘\<)
o g

Fig. 1. The region

Q
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Two linear spaces of functions defined in €2, D;(2) and D(f2), will be considered. For every 4
(i=1,...,E) and a = 1,2 let D,(f2) be the space whose elements are the restrictions to §;, of
functions belonging to Dy (€2). Then

Do(R) = Do(21) & - - - ® Do(Q); a=1,2. (2)

In view of this definition, with every function v € Dy(R), @ = 1,2 there is a finite sequence of
functions {v!,v?,...,v¥} such that for each i = 1,2,..., E, v' is defined in €, . It will be assumed
that for every v = {v',v2,...,vF} € Do(Q), @ = 1,2, the trace on ¥ of v’ (:1=1,2,...,E), is well
defined. However, on each X;; = ¥; N X; two traces are defined — one corresponding to »* and the
other one to vY — and in order to distinguish them the following notation is here introduced,

vy = trace of (v?) (3)
when (2; lies on the positive side of and
_ = trace of (vY) (4)
otherwise. The jump of u across ¥ is defined by
[v] = vy —v- (5)

and the average by

V= %(v+ +v_). (6)

More generally, whenever such a sequence of functions is associated to a function defined in Q,
it is possible to define two traces on ¥ and the notations of Egs. (5), (6) will be used in such cases.
Observe that the average, ¥, of a function and the product, [v]n, are not dependent on the sense
chosen for the unit normal vector n.

4. BOUNDARY VALUE PROBLEM WITH PRESCRIBED JUMPS

To formulate this problem some additional notation is here introduced. The symbols £ and £*
will stand for a linear differential operator and its formal adjoint, respectively. Also, B(v,w) and
C(w, v) will be bilinear functions defined point-wise on 9, for every v € D, () and w € Dy().
In a similar fashion, J(v,w) and K(w,v) will be bilinear functions defined point-wise, on ¥. When
dealing with bilinear functions and functionals, a star on top will be used to denote its transpose;
thus, for example,

C*(v,w) = C(w,v) and  K*(v,w) = K(w,v). (7

In addition, gs(-) and jx(-) are linear functionals defined point-wise on 9§ and ¥, respectively,
whose values at any w € Dy(9) will be written as gs(w) and js (w). Given any function v € D;(9),
B(v,-) and J(v,-) will denote the linear functionals whose values at any w € Dy() are B(v,w)
and J (v, w), respectively.

The general boundary value problem with prescribed jumps (BVPJ), to be considered is defined
by

Ly = f& = Lub inQ;, i=1,2,...,E, (8)
B(“’? ) = 96() = B(Uz% ) in aQa (9)
and

J(u,) =7s() =I(ug,)) inZ, . (10)
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where ug € D1(R), ug € D1(Q), us € D1(Q) and f§ (i = 1,2,..., E) are given functions, while g5(-)
and jx(-) are given linear functionals. They constitute the data of the problem and it is assumed
that they fulfill Egs. (8)—(10).

An important property is that, in applications, such functions can be constructed solving local
problems, if necessary. For simplicity, in what follows it will be assumed that the BVPJ poses
a unique solution fulfilling Eqs. (8)-(10) and the notation u € D;(£2) will be reserved for it.

As an illustration consider the general elliptic equation of second order. It will be assumed
that the coefficients of the differential operator may have jump discontinuities across the internal
boundary X. Then, the boundary value problem with prescribed jumps to be considered is:

Lut=-V-(a-Vu)+V-(bu')+eu'=fy in®Q, i=1,.. E, (11)
subjected to Dirichlet boundary conditions

U= Uy on 0f2 (12)
and jump conditions

[u] = [us)] and [a, - Vu] = [a, - Vug)] on X. (13)

Here a,, = a-n. When the coefficients of the differential operator are continuous, it may be seen that
the conditions of Eq. (13), are equivalent to prescribing the jump of the function and its normal
derivative. Define the bilinear functions

B(u,w) = u(a, - Vw + byw), (14)

and the linear functions g(-) and j(-) by g(-) = B(ug, -) together with j(-) = J(uy, -). Then, the
BVPJ of Egs. (11)-(13) take the form given by Egs. (8)-(10).

5. GENERAL VARIATIONAL FORMULATIONS

By the definition of formal adjoint, there exists a vector valued-bilinear function D(u,w) which
satisfies

wlu —ul*w =V - D(u,w). (16)
It will also be assumed that

D(u,w)-n = B(u,w) —C(w,u) on 02, (17)

—[D(u,w)] - n = T (u,w) — K(w, u) on X. (18)

Applying the generalized divergence theorem [4, 62], this implies the following Green—Herrera for-
mula [25, 30, 32, 35]:

/wﬁudm— B(u,w)dx—/J(u,w)dx=/u£*wdx— C*(u,w)dx—/lC*(u,w)da:.
Q N = Q P

o0
(19)

A weak formulation of the BVPJ is
/wﬁudm— B(u,w) dx—/j(u,w) dz
Q o0 b))

= / wlug dz — B(ug,w)dz — / J(ug,w)dz  Vw € Dy(Q) (20)
Q onN b
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in which in view of Eq. (19), is equivalent to
/uﬁ*w dz — C*(u,w)dz — / K*(u,w) dz
Q a0 5

= / wlugq dz — B(ug, w) dz —/ J (ug,w)dz Yw € Dy(Q). (21)
Q a0 5]

Equations (20)-(21) supply two alternative and equivalent variational formulations of the BVPJ.
The first one is referred as the variational formulation in terms of the data of the problem, while
the second one is referred as the variational formulation in terms of the sought information.

Introduce the following notation,

(Py,w) = / wludz, (Q*u,w) = / ul*wdz, (22)
Q Q

(Bu,w) = 1o B(u,w)dz, (Gl w) = /an C*(u,w) dz, (23)

(Tu,am) = / J (u,w)dz, (K*u,w) = / K*(u, w) dz. (24)

With these definitions, each one of P, B, J, Q*, C* and K*, are real-valued bilinear functionals
defined on D; () x Dy(€2) and a more brlef expression for Eq (19) is the identity

P-B-J=Q*-C*-K"* (25)
When the definitions
fEPUQ, gEB’u,a, 1 =Juyp (26)

are adopted, Egs. (20), (21) can also be written as equalities between linear functionals,

P-B-Jju=f-g—j (27)
and

(@-C—-K)'u=f—-g—j (28)
Notice that Egs. (27), (28) may be written as

(P—=B-Ju,w)=(f-g~-jw), VYweD,, (29)
and

(Q-C-K)'uw,w)=(f-g—jw), VweD, (30)

respectively. These equations exhibit more clearly their variational character.

Generally, the definitions of B, C, J and K, depend on the kind of boundary conditions and the
smoothness criterion of the specific problem. However, for the case when the coefficients of the
differential operators are continuous, Herrera [30 32, 36| has glven very general formulas for
J and K, they are:

J(u,w) = —D([u],w) - n and K(w,u) = D(u, [w]) - n. (31)
The fact that they fulfill Eq. (18) is easy to verify, when use is made of the algebraic identity
[D(u, w)] = D([u], w) + D(d, [w]). (32)

The case when D;(Q) = Dy(Q) = D(), the differential operator £ is formally symmetric and, in
addition, B = C and J = K, will be referred as the symmetric case. Since £* = £ and therefore
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P = Q, it is seen that the bilinear functional P— B —J is symmetric; i.e., P-B-J=(P-B-J)*,
and P—B—J = Q—C — K by virtue of Eq. (25). Using these facts, it is clear that in the symmetric
case the variational principles of Egs. (29), (30) are derivable from the potential

X(ﬂ)z<§(P—B—J)a—(f—g—j),a>z<§(Q—C—K>a—<f—g—j>,a> (3)

where i is any function belonging to D(£). More precisely, Eqs. (29), (30) can be written as
(X'(u),w) =0  Vwe Dy(R) ; (34)

where X'(u) is the derivative of the functional X (u); or more briefly, as X'(u) = 0. In particular,
when P — B —J = Q — C — K is positive definite, in a subspace N C D(Q) such that u € N,
then the functional X (@) yields a minimum principle for the BVPJ; i.e., X (4) attains a minimum
at @ € N C D(Q), if and only if, 4 = u.

In the case of the general elliptic equation of second order, in which the differential operator £
is given by Eq. (11), one has

L'w=-V-(a-Vw)—b-Vw+cw (35)
for the formal adjoint, and Eq. (16) is fulfilled with

D(u,w) = a- (uVw — wVu) + bw, (36)
and therefore, Eq. (31) yields

T (u,w) = tfa, - Vu] - [u](@, - Vo + byw),

: (37)
K(w,u) = ufa, - Vu] — [w](a, - Vu — byu).

Using these functions one can apply the previous definitions and obtain the two equivalent weak
formulations of Eqgs. (29), (30). In particular when b = 0, a symmetric case is obtained, because
the differential operator £ is formally symmetric and in addition B'= C and J = K. Even more,
let N C D(R) be the subset of functions which satisfy v = 0 on 99 and [v] = 0 on X, then it can be
shown that P — B —J = Q — C — K is positive definite in N C D(9). Thus, a minimum principle
is applicable when the sought solution is continuous across ¥ and vanishes on 952.

6. SCOPE

The generality of the methodologies presented in this article is great, since they are applicable to
any partial differential equation or system of such equations, which are linear, independently of its
type. The coefficients of the operators can also be discontinuous across the internal boundary 2. 1o
illustrate the wide applicability of theory the following cases are next presented: the general elliptic
equation of second order, the biharmonic equation, Stokes problem and the equations of equilibrium
of linear elasticity.

6.1. Second order elliptic operators

The formulas here presented are applicable when the coefficients of the differential operators are
discontinuous across the internal boundary .

a) Lu=-V-(a-Vu)+ V- (bu)+cu, while L'w=-V-(a:Vuw)+V-(bw)+ cw

b) Di() = D2(Q) = D() = H(Q)
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c)

d) D(u,w) = a-(uVw — wVu) + buw

1 =Dy =D =H*(%) ® H Q) @ - & H*(Qp)

e) B(u,w) = u(a, - Vw +byw) and C(u,w) =wa, - Vu, where a, =a-n and b,=b-n

£) J(u,w) = wla, - Vu] - [u](@, Vo + byw) and K(w,u) = ifa, - Va] - [u](@, - Vi = byu)

g) Boundary conditions u = ug

h) Jump conditions [u] = [ux] and [a, - Vu] = [a, - Vug]
i) Data on the external boundary u = ug

j) Data on the internal boundary [ux] and [a, - Vuy)]

k) Sought information on the external boundary a, - Vu

1) Sought information on the internal boundary % and (a, . Vu).

6.2. Biharmonic equation
a) Lu= A%y and L*w = Atw
b) D1(Q) = D2(Q) = D(Q) = H4(Q)

¢) D1 =Dy =D = HY(Q) @ H{(Q2) @ - -- ® H(Qg)
D

d) D(u,w) = wVAu — uVAw + AwVu — AuVw

e) B(u,w) = Aw%% - uB;&_nw

f) C(w,u) = Aug—: - w%

g) J(u,w) = [u]? — [aafl“] + [Au]gi: —Aw [g%]

h) K(w,u) = [w]? e [a{iw] i [A“’]% s [Z_:]

i) Data on the external boundary u, du/dn

j) Data on the internal boundary [u], [0u/dn], [Au] and [0Au/dn]

k) Sought information on the external boundary Au and dAu/dn

1) Sought information on the internal boundary 1, Bu} on, Au and 8A1; /on.
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6.3. Stokes problems

The system of equations to be considered is

—Au+ Vp = 0; V-u=0.

a) Let D1(Q) = D2(Q) = D(Q) = H*(Q) ® H'(2), and adopt the notation & = (u,p) whenever
u € D(Q)

b) Define the vector valued differential operator L by L4 = (-Au+Vp=0,-V-u=0)
\Y%

c¢) Then L is self adjoint and, writing w = (w,q), onehas w-L-4—4-L- W=V (u-Vw—-w-
Vu + pw — qu)

d) Thus D(4,%) =u-(Vw—q) —w-(Vu—p)

9 760) = |2~ n - o,
) K(@o) =i | 32 - | ] % —pn

i) Data on the external boundary u

j) Data on the internal boundary [u] and [% i p@]

0
k) Sought information at the external boundary ot =l pn

on

0
1) Sought information at the internal boundary % and o pn.

on

6.4. Equations of elasticity

Let D1() = D2(Q) = D(Q) = H*(Q) ® H*(Q) ® H*(Q), and define for every u = (u1,ug,u3) €
D)) ~ti(u)y = C’iqu%f , where as usual, it is assumed that the elastic tensor possesses the following
symmetries: Cyjpq = Cijpg = Cijgp

a) Define the vector valued differential operator £ by £ -u = —V - t(u), whose adjoint is L* - w =
~V - t(w)
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f) K(w,u) =2-[tw)] n—[w] u) n

g) Data on the external boundary u

h) Data on the internal boundary [u] and [t(u)]-n

i) Sought information at the external boundary t(u)-n

j) Sought information at the internal boundary @ and t(u

i

.ﬁ_

7. TREFFTZ METHODS

As mentioned in the Introduction, the method proposed originally by Trefftz, in 1926 [68], has been
generalized very much, and to be precise the following definition is proposed.

Definition 1. Let IT = {Qy,...,Qg} be a partition and for every i = 1,...,E, let H; be defined
by the condition that u%;, € H;, if and only if uly € D(Q;) and Lut; = 0 in ;. In addition, let
H=H1®---®Hg. Then the problem of finding u'; € H;,i=1,...,E, such that

E E
u:Zu}r{-Zuﬁq:ua-i-uH (38)
i=1 i=1

is the solution of the Boundary Value Problem with Prescribed Jumps, will be referred as “Trefftz
Problem”.

Observe that the ‘solution of Trefftz problem’, ugy = Zle u},, is unique necessarily, because
ug = u — ugq and, by assumption the solution u € D(RQ) is unique, while ug € D(9) is a datum.
The notation ug € H, will be reserved for it. Notice, however, that the definition of uy € H, will
change if the function ug, used to specify the right-hand side of the differential equation is modified.

Two approaches for constructing the solution of Trefftz problem will be considered; methods
derived from one or the other will be referred as direct (Trefftz—Jirousek) method and indirect
(Trefftz—Herrera) methods, respectively. In the direct approach the local solutions are put together
in such a way that the boundary conditions and prescribed jumps on ¥, are fulfilled, and the search
for uy is guided by such requirements. In Trefftz—Herrera method, on the other hand, special test
or weighting functions are applied to obtain enough information on the internal boundary ¥, so as
to define well posed problems in each one of the subregions €2;, 4 = 1,..., E. This condition assures
that the solution can be reconstructed locally, from the information available.

A second point of view for classifying Trefftz methods, which is independent of the first one, yields
other two wide groups: overlapping and non-overlapping methods; i.e., the same classes that are
considered when studying domain decomposition methods [8, 9, 15-17, 57, 58, 66]. Since these two
points of view are independent of each other, they may be combined to give four types of methods:
direct-non-overlapping, direct -overlapping, indirect-non-overlapping and indirect-overlapping.

For numerical applications, it is relevant to observe that the number of degrees of freedom is
minimal when superfluous information is eliminated; i.e., when only information that is essential for
defining local well-posed problems is retained. Generally, in order to eliminate superfluous informa-
tion and handle essential information only, in both Trefftz—Jirousek and Trefftz—Herrera methods,
it is necessary to resort to overlapping methods, as it will be seen in the next Sections.
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8. VARIATIONAL FORMULATIONS OF TREFFTZ METHODS

In what follows, @y will stand for any function belonging to H = Np C D1(). For direct methods,
a basic variational formulation, derived from Eq. (29), is that a function 4y € Np is solution of
Trefftz problem if and only if

—((B+ J)im, w) = ((B+ Juq, w) — (g+j;w), Vw€D;. (39)

The condition Yw € Dy may be relaxed. Indeed, generally it is enough to require that Eq. (39) be
satisfied for Yw € Ng C D(). _

For the symmetric case, discussed in Section 5, one can define the functional

Y () = ~2((B+ TV, ) +{g + — (B + Tun, in) (40)
where @ is any function belonging to Np = Ng C D(Q). Then, ag = Zil ii%; is solution of
Trefftz problem, if and only if Y'(4g) = 0. When the bilinear functional —(B + J) is positive
definite in Np = Ng C D(Q), the functional Y (iig) yields a maximum principle. Observe that a
sufficient condition for —(B + J) to be positive definite in Np = Ng C D(R), is that P — B — J
be positive definite in D(£2). More generally, when N C Np = Ng C D(€), is a subspace in which
—(B + J) is positive definite and 4y € N, then Y (i) attains a maximum at 4g € N, if and only
if, 4y = up .

9. TREFFTZ-JIROUSEK METHODS

The application of direct methods to one dimensional problems is relatively straight-forward [40].
However, their application in several dimension is considerably more complicated. The search for
the solution of Trefftz problem, uy € H, can be done in several manners. In his pioneering work,
Jirousek [41, 44] applied variational principles that were specific for the differential equations con-
sidered; they are particular cases of the general variational principles of Section 8. However, other
procedures can be, and have been used — for example, collocation in the internal boundaries [73].
The application of least-squares possesses also great generality and has the additional advantage of
yielding symmetric and positive definite matrices [53, 56].

In the case of direct overlapping methods, it is possible to apply two different approaches; one
which is more direct and the other one which is less direct. In this latter one, the base functions are
used to impose a compatibility condition from which the global system of equations is derived [40].
In addition, in this manner information about the sought solution is obtained, which is enough to
formulate well-posed local problems. This procedure handles only essential information, so that the
number of degrees of freedom is minimal.

In the first and more direct of the overlapping methods, the reduction in the number of degrees
of freedom, is achieved using base functions which fulfilled some of the jump conditions, such as
continuity conditions, from the start. This kind of weighting functions are easy to construct if
numerical methods are used to build them, but this is not feasible, in most cases, when systems of
analytical solutions are applied. The construction of TH-complete systems of weighting functions
will be discussed and illustrated in Section 11.

Consider, as an example, the BVPJ for the general elliptic equation of second order, defined by
Eqgs. (11)—(13). When a direct method is applied, one can use the variational principle in terms of
the data of the problem of Eq. (20), with the help of Egs. (14), (15). Other possibility is to apply
least squares to the quantities [& — up], on 99, together with [i — us] and [a, - Vi — a,, - Vug],
on ¥, where @& € D is any trial function. When the coefficients of the differential operator are
continuous, it is simpler, to replace this latter quantity by [04/0n — Ous/0On]. In addition, the
following observation must be made: when the numerical method that is applied to solve the local
problems is collocation [1], the boundary condition @& = us, on 02, can be fulfilled by the trial
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functions from the start, so that the least squares on [4 — up], need not be applied. Also, when
overlapping methods are used, it is easy to construct trial functions which fulfill the condition
[4 — ug], on X (see, Section 12), and this reduces the number of degrees of freedom of the matrices
of the global system of equations. As has already been mentioned, this is not possible when analytical
solutions are applied.

To illustrate the alternative overlapping procedure [40], which in some sense is only semi-direct,
consider the equation Lu = 0 in an interval of the real line, where L is a second order differen-
tial operator. Let z; € (zi—1, Ziy1), then u(z;) depends linearly on u(z;—1) and u(z;4+1). Indeed,
u(z;) = ¢; (i) w(zi—1) + @7 (z:) u(zit1), and this equation constitutes a three-diagonal system of
equations, whose coefficients can be obtained solving locally, by collocation, a pair of boundary value
problems in the interval (z;i_1, zi41): Lo; = Ly =0, subjected to ¢; (zi—1) = ¢ (ziy1) = 1 and
¢; (zi1) = @5 (zi-1) = 0.

The generalization of this method to more complicated problems and to several dimensions will
be presented in [40]. In particular, it will be shown that this is the basic procedure which is behind
the well-known Schwarz alternating method [61].

10. TREFFTZ-HERRERA METHODS

The indirect Trefftz methods have been introduced and developed by Herrera and his collabora-
tors [5, 7, 7, 19-29, 32, 33, 36-38, 67]. They stem from the following observation [25]: when the
method of weighted residuals is applied — and this includes the Finite Element Method (FEM) —
the information about the sought solution contained in an approximate one, is determined by the
system of weighting functions that are applied and it is independent of the base functions that are
used. A convenient strategy is to apply test functions of a special kind — specialized test functions
—, with the property of yielding information in the boundaries 92 and X, exclusively. In order to
solve Trefftz problem — i.e., in order to recover u}'q, t=1,...,F — it is necessary to have enough
information on ¥ for defining well posed problems in each one of the subregions Q; (i = 1,..., E),
since this will determine the functions u%;. In addition, Herrera’s algebraic theory of boundary value
problems supplies a very effective framework for guiding the construction of such test functions [29].

The point of view just mentioned yields the following interpretation of FEM formulations: the
system of test functions that are applied determine the information about the sought solution con-
tained in an approximate one, while the base functions interpolate (or extrapolate) such information.
A strategy, which in some sense is optimal [31], is to obtain enough information to define well-posed
problems locally and then use the solutions of these local problems, instead of base functions, to
extending the information that is available, since this is the most efficient way of performing this
function. Some times the specialized test functions have been referred as Optimal Test Functions [6]
and the extension of the information by means of the solution of the local boundary value problems,
as Optimal Interpolation [31].

By inspection of Egs. (22)-(24), it can be recognized that the information about the solution
u € D is given by Q*u, in the interior of the subregions ; (i = 1,..., E); it is given by C*u, in the
outer boundary 9€2; and it is given by K*u, in the internal boundary ¥. Jirousek [53], refers to ZUOS2
as the ‘generalized boundary’. A first step to derive Trefftz—Herrera procedures, is to manipulate
the variational formulation in terms of the sought information of Eq. (30), in such a way as to
leave information in the generalized boundary, exclusively. This requires eliminating Q*u in that
equation, and can be achieved by taking special weighting functions such that Qw = 0. This yields

—((C+ K)*u,w) = (f —g—j;w),  Vw € Ng C D1(9). (41)

Generally, one is interested only in part of the information contained in (C' + K)*u; so, it is useful
to introduce a decomposition of the bilinear functional C' + K and write

C+K=S+R (42)

where S is chosen so that S*u is precisely “the sought information”.
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Definition 2. Given R and S which fulfill Eq. (42), let @ € Di()) be such that there exists
a solution, u € D1(), of the BVPJ with the property that S* is the sought information; i.e.,

8%k 2.8 (43)
Then @ € D;(R) is said to contain “the sought information”.

In what follows, the symbol % € D is reserved for functions which contain the sought information.
Let Ng C Dy(Q) and Nr C Do(Q) be the null subspaces of Q and R respectively. In order to
formulate a necessary and sufficient condition for a function for 4 € D; to contain the sought
information, it will be necessary to define a concept of completeness, similar to that introduced by
the author in 1976 [20] and which has been very effective in the study of complete families [2].

Definition 3. A subset of weighting functions, £ C Ng N Ng, is said to be TH-complete for S*,
when for any 4 € D;1(f2), one has

(S*,w) =0, YweE—> S*i=0. (44)

Clearly, a necessary and sufficient condition for the existence of TH-complete systems, is that
Ng N Ng, be, itself, a TH-complete system.

Theorem 1. Let £ C NgNNg be a system of weighting functions, TH-complete for S*, and assume

that there exists u € ﬁl(Q) a solution of the BVPJ. Then, a necessary and sufficient condition for
14 € Dy to contain the sought information, is that

"(S*ﬂ,’UJ) = (f =9 _ja ’U)), Vw € £. (45)

Proof. The necessity of this condition can be derived using Eqs. (41) and (42). To prove the
sufficiency, observe that the necessary condition just mentioned, implies that for the solution u €
D,(€2), whose existence is assumed, one has

—(S*u,w) =(f-g—jw), VweE. (46)
Therefore, if 4 € D, fulfills Eq. (45), then Egs. (46) and (45) together, imply:
(™%, w) = (S"u, w), Yw € E. (47)

Hence Eq. (43), since is TH-complete. m

In numerical applications of indirect methods, Theorem 1 yields the basic system of equations
whose solution is sought. To obtain a formulation which is suitable for both elliptic and time-
dependent problems, it is necessary, in addition, to introduce decompositions of the bilinear func-
tionals C' and K. These will be

C=C°+C% .. and . K=K+ K°, (48)

When time dependent problems are considered, 2 is a space-time region and the final state of
the system that is modeled by the partial differential equation, lies in the outer boundary, 99.
Thus, a suitable choice of C permits handling this situation. In applications to elliptic problems,
on the other hand, it is frequently convenient defining S = K°, so that R = C + K€. In this
case the information on the external boundary is eliminated and the sought information S*u =
KS*u contains information in the internal boundary, exclusively. The choice K¢ = 0 leads to
non-overlapping indirect methods, while K€ #0 corresponds to overlapping indirect methods.

A corollary of Theorem 1, is that when up € D;(€) is such that Pup = f and Bup = g, then
Eq. (45) can be replaced by

—<KS*'ﬁ’aw> T _(KS*UPa ’LU) # <J(U’P = ’U,E),’U)), Vw € 5, (49)
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in that theorem. In applications, this result may be used to replace an expression involving integrals
in the interior of the subregions ;, (i = 1,..., E), by one which involves integrals over the internal
boundary, only. In our discussions, it has been assumed that up € 151(9) is a datum. Generally,
when this is not available from the start, its construction requires solving local boundary value
problems in each one of the subregions Q;, (i = 1,..., E), exclusively.

When K5* is symmetric in N = Nq N Np the variational principles of Eqs. (45) and (49) can be
derived from the potentials :

2(8) = ~5(K54,8) — (f — g - j, i) (50)
and
2(0) = ~5(K%0,3) + (KS*up , w) - (J(up - up), v), (51)

respectively. When it is positive definite on N = Ng N Ny, then a minimum principle holds, in
addition.

As in Section 5, let us illustrate the TH-method by applying it to the elliptic BVPJ of second
order of Eqgs. (11)-(13). Since in the case of elliptic problems a convenient strategy is to concentrate
all the sought information on %, a first possibility is to set § = K siies; KC.=0and R= C, so that
the test functions are required to fulfill £*w = 0, in each one of the subregions separately, together
with w = 0, on 9€2. Observe that no matching condition between the subregions is imposed. Thus,

in this case the method is non-overlapping. The sought information is % and O0u/0n, on . This
information is excessive, in the sense that when it is used to define local boundary value problems,
they turn out to be over-determined.

Indeed, it would be enough, for example, to prescribe % on ¥, to have a well posed problem,
if that information is complemented with the data, on dQ (see Fig. 1). Thus, one strategy which
permits handling information which is essential only, is to concentrate all the information in U, on X.
This is achieved if one sets

(KCw,u) = — / [w](a, - Vu — byu) dz (52)
3
in Eq. (48), together with C° = 0 (and CC = C). In this case, the requirement w € Ny implies
the condition [w] = 0, on ¥, in addition to the previous conditions. Thus, such functions must be
continuous across X. The construction, by collocation, of test functions fulfilling these conditions
is not difficult, but requires putting together several subregions. Thus, diminishing the information
that has to be handled, and so the degrees of freedom, leads to an overlapping method. In Sections 11
and 12, TH-complete systems of functions and procedures for their construction are presented.

11. TH-COMPLETE SYSTEMS

The application of Trefftz methods requires to have available systems of functions which are complete
for the space H = H; @ --- @ Hg . A criterion of completeness which has permitted applying the
function theoretic approach as an effective means to solving boundary value problems [2], is due
to Herrera [20] and an extension of that concept was given in Section 10; it will be referred to
as TH-completeness (Trefftz—Herrera completeness; it has also been referred as C-completeness or
T-completeness). This Section is devoted to discuss briefly the methods available for developing such
systems of functions, which can be grouped into two broad categories: analytical and numerical.
The classical approach is based on analytical methods and a thorough account may be found in
a book by Begehr and Gilbert [2]. The function theoretic method was pioneered by Bergman [3]
and Vekua [69], and further developed by Colton [10-12], Gilbert [13, 14], Kracht-Kreyszig [59],
Lanckau [60] and others. The author has supplied such systems for Stokes problem [39], Helmholtz
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equation (in [67] it is shown that a system of plane waves posses that property) and biharmonic
equation [18]. Other means of constructing them are using fundamental solutions and spectral
methods, among others (see [2]).

The most general procedures for constructing TH-complete systems are, by far, numerical meth-
ods. Any such method can be applied, but collocation is quite suitable [1]. One has to construct
families of solutions which span suitable spaces of boundary conditions, as it is illustrated in the
next Section, in the case of the general elliptic equation of second order.

12. CONSTRUCTION OF TH-COMPLETE SYSTEMS BY COLLOCATION

Consider again the BVPJ for the general elliptic equation of second order. For simplicity, a rectan-
gular region will be considered and the subregions of the partition, will be rectangles (Fig. 2a).

2

(x> 71) 1

a) b)

Fig. 2. a) Rectangular domain decomposition of €; b) numbering of internal boundaries

What is required, for a system of functions to be TH-complete is that, for each subregion €;,
the traces of its members span H(9€;). When collocation methods are used in the construction of
TH-complete systems, one may choose a system of functions which spans H°(9€2;) and then solve
a family of boundary value problems taking as boundary conditions each one of the members of
such system. A convenient choice for the system of functions that spans H°(9%;), is a system of
piece-wise polynomials. A linear basis of such system of polynomials may be obtained taking the
four bilinear polynomials which have the property of assuming the value 1 at one corner of each
given quadrilateral and vanishing at all the other three corners, together with all the piecewise
polynomials defined on 9€;, which vanish identically at three sides of the quadrilateral.

For constructing a TH-complete system, fulfilling a continuity condition, collocation methods
are also quite suitable. With each internal node (z;, y;) a region €;;, which is the union of the
four rectangles of the original partition that surround that node, is associated. Then, the system
of subregions {Q;;} is overlapping. The boundary of Q;; is 0Q;;, while that part of ¥ laying in the
interior of £2;; will be denoted by Xi; (Fig. 2b); it is constituted by four segments which will be
numbered as indicated in Fig. 2b and form a cross. Given any sub-region Qij , a system of functions
which fulfill £*w = 0 in its interior and vanish on 89, is developed. Using the numbering already
introduced, with each interior node (z; , y;) five groups of weighting functions are constructed, which
are identified by the conditions satisfied on 3;;:

Group 0. This group is made of only one function, which is linear in each one of the four segments
of Zi]‘ and Wij (iL‘, 5 yj) 751

For N =1,...,4, they are defined by:

Group N. The restriction to interval “N”, of Fig. 1b, is a polynomial in z which vanishes at the
end points of interval “N”. For each degree>2, there is only one such polynomial.
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The support of the test function of Group “0”, is the whole square, while those weighting functions
associated with Groups “1” to “4”, have as support rectangles which can be obtained from each other
by rotation, as it is shown in Fig. 3.

Group 0
RS 4
*
Group 1 Group 2
- 4
Group 3 Group 4

Fig. 3. The five groups of weighting functions, according to their supports

Of course, when developing numerical algorithms for the solution of boundary value problems,
only a few terms of these Th-complete systems are taken; it could be only one (see [5]). Generally,
the order of precision of the resulting scheme will depend on the number of terms taken.

13. CONCLUSIONS

A large class of numerical methods has been formulated, whose research thus far has been quite
incomplete. The conclusion is drawn that a lot of work should be done on them, because they have
great potential in the theory and practice of numerical methods for partial differential equations.
The framework here presented would valuable for this purpose. In particular, collocation methods
could be improved bvery much along these lines [34].
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