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This paper presents a hybrid-Trefftz finite element algorithm designated as fictitious load approach. Its
originality resides in the formulation and practical application of concepts which make it possible to
account for the unilateral contact conditions of a plate without modification of the finite element mesh. To
reach this aim, the approach allows the movable interface between the contact and non-contact parts of the
plate to travers any finite element subdomain. The adjustments are confined to fictitious load dependent
terms, while the element stiffness matrices remain unchanged during the whole iterative process. Several
numerical examples are analysed to assess the effectivity of the T-element algorithm and to compare it
with some of the existing solutions of the same problem.
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1. INTRODUCTION

The solution of plates on unilateral elastic Winkler foundation is a highly non-linear contact problem
since the non-contact pair of the lower surface of the plate is not known in advance. Its practical
importance is due to fact that the unilateral nature of the support (capable to resist only the
compression) may influence considerably the results.

The number of studies concerning the above problem is comparatively low and most of the
contributions in this field come from the boundary element method (BEM) community of research
workers [1, 2, 14, 16]. A solution combining the conventional finite element method (FEM) with
a linear complementary equation approach based on the contact theory was also presented [4].
Moreover, a formulation using infinite series to represent the displacement profile was reported [18],
but its practical usefulness is seriously compromised owing to its limitation to rectangular plates.

The aim of the present work is to study the opportunity of extending to the solution of the
unilateral contact problem of plates on elastic Winkler foundation the so-called T-element approach.
Initiated more than twenty years ago [5, 8] as a counterpart of the conventionally formulated (Ritz)
finite elements (FE), this class of alternative FE formulations is based on a generalized form of
the Trefftz method. As a consequence, the assumed displacement field is chosen so as to satisfy
the governing differential equations of the problem. The boundary conditions and the interelement
continuity of displacements and stresses are then enforced in the average integral sense.

In the past years many alternative T-element formulations were proposed (for a survey see [11,
13]), most of which fall into one of the two following categories:
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e The hybrid formulations, in which the T-elements are linked through an auxiliary “frame” rep-
resenting either the generalized displacement (the HT-D models) or the conjugate generalized
boundary tractions (the HT-T models). They are defined on the element boundary in terms of
nodal parameters, independently of the internal displacement field of the element.

e The direct formulations where the T-elements are linked without the help of any auxiliary bound-
ary or interelement fields.

The most popular among these formulations is the basic hybrid-Trefftz displacement frame model.
Such T-elements resemble externally the conventionally formulated h- or p-elements over which they
have, however, several important advantages [7, 9-11, 13]: enhanced accuracy, fast p-convergence,
facility of extending the p-element concept also to C' conformity problems, attractive possibility
of library of optional special purpose T-functions for accurate solution of various singular or stress
concentration problems without troublesome mesh refinement, calculation of local effects due to
various arbitrary positioned concentrated and/or discontinuous loads without necessity of a mesh
adjustment, simple and efficient p-adaptivity concept well suited for implementation into standard
FE codes, etc.

The following three sections outline the theoretical formulation. The first of them (Section 2)
is concerned with the solution of the governing differential 4th order equation with and without
the Winkler foundation term and the generation of the corresponding T-complete displacement
fields of the element. The second (Section 3) outlines some two T-element formulation for the plate
on a bilateral Winkler foundation (the foundation sustains indifferently the compression and the
tension, and the plate does not separate from its foundation in the case of upward deflection w > 0).
The Section 4 extends the approach to an iterative solution of a contact problem which arises in
presence of a unilateral Winkler foundation (contact area not known in advance) in which case
the plate separates from its foundation if w > 0. All T-elements are of the p-method type and, as
a consequence, the solution accuracy may be corrected by changing simply the optional number of
the hierarchic DOF of the T-elements while keeping unchanged their mesh. Sections 5 and 6close
this study with a short assessment and some concluding remarks.

In order to avoid cumbersome writing of some involved relations associated with various T-
element formulations, use will be made, as much as possible, of a simplified matrix notation. Such
notation is particularly useful for the definition of various T-element fields, such as for example the
assumed displacement w = w® on the subdomain Q€ of the element “e” (see (6)), or the generalized
boundary displacements v and tractions t on the element boundary I'® = 0Q° (see (3.2), (3.2)).
Hereafter will be admitted that

w=w+ Wc on 0N° (1)
and

v=v+ Ve on 1 (1a)
or

t=t+Tc on I'®, (1b)

derived from w¢, are such that
we(x®) + We(x®)c® x¢ € ()¢ :
wE ) e o LA e (22
and

{’,e(xe) + Ve(xe)ce x¢ e Ie

ve(x®) = { 0 x¢ ¢ Ie (2b)
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or

§o(x) = { :;)e(xe) + T¢(x¢)c® ;(: ; {—::. (2(;)

Further (Fig. 1) x® = {xe,ye}T are the local Cartesian coordinates originated at the center of the
element e.

Fig. 1. Typical HT p-version of thin plate element: a) local Cartesian coordinates z,y and non-

dimensional coordinate 7 involved in evaluation of boundary integrals and in definition of element geometry;

b) non-dimensional curvilinear coordinates ¢, 7 involved in evaluation of domain integrals and generation of
internal control points

2. SOLUTION OF THE GOVERNING DIFFERENTIAL EQUATION
2.1. Governing differential equation

The analysis of the Kirchhoff plate on elastic Winkler foundation is governed by the well known 4th
order partial differential equation

DV*w + Cww = p. (3)
Here w and p stand for the transverse displacement and the given distributed load directed along
the z axis (positive upward), Cw > 0 designates the Winkler coefficient,

Eh3 :
D= ——
12(1 — v2)

is plate rigidity (£ - Young’s modulus, v — Poisson’s ratio, h — plate thickness) and V4 stands for
biharmonic operator, where
9? 82_82+10+162
9z Oy>  Or2 ' rdr  r2dy?
with 2 = rcos¢, y = rsinp.

If the contact between the plate and the foundation is assumed to be unilateral (the soil foun-

dation can bear compression only), the solution of Eq. (3) is physically meaningful only in the
following two cases,

if Cw>0 and w<0,
if Cw=0 and w>0.

V2 = (4)

(5)
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The common feature of various HT-element formulations is the use of an assumed displace-
ment field which satisfies the governing differential equation (3) a priori everywhere in the element
subdomain €. Such field is of the form

Ayt
w=ﬁ)+Zchj=ﬁJ+Wc on Q°, (6)
i=1

. . o] . .
where ¢; are undetermined coefficients and w, W are known functions of local coordinates z,y or

r, ¢ which represent respectively the particular and the homogeneous solutions of the Eq. (3). This
implies that

DV + Cww=p (7)
and

DV*W; +CwW; =0 (8)
everywhere in Q°. Note that for convergence the functions W1, W, ..., Wn, should form a suitably

truncated T-complete set of homogeneous solutions and, as a consequence, the resulting solution
should converge under very general conditions to the exact one if m — oo (for a rigorous mathemat-
ical definition of T-completeness see [3]). The examples of such functions as well as of the particular
solutions 1 are given hereafter.

2.2. Case 1: T-functions for Cy, >0

The generation of the set of homogeneous solutions W; in polar coordinates is simplified by the
introduction of a non-dimensional radial coordinate

r L
p-——a, a= 6; (g)

This makes it possible to give the following simple explicit definition of the matrix W = Wi(p, )
of homogeneous solutions of the element,

W(p,¢) = [ Xfolp), 'folp)] ,
Rfy () sing, (o) sing, Ri(o) cosp, falp)cos |

R £,(p) sin 20, ! f2(p) sin2¢, R fa(p) cos 20, ' fa(p) cos 2¢)
. etc. ] (10)

where

Rfo(p) = Rely(pvi),  'fi(p) = ImI(pVf) (11)

and where Ij(pv/1) designates the modified Bessel function with order k and i = v/~1.
Provided that the right hand side term in Eq. (3) is given in the Cartesian local coordinates,
» = p(z,y), as a polynomial of not more than 3rd degree, the particular term in (7) is simply

B(z,y) = %ﬂx,y). (12)

In our case, however, p may be a function of a considerable complexity for which no such simple
particular solution exists. Then the term © may be evaluated by integrating the Green function

a2

alr’ g 1a? (1) 7 la” g
w(X,X)I—ZEReHo (pPQ 1):—15 9(ppq) (13)
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which stands here for the displacement at x = x¢ (Fig. 1b) due to the point load P =1 at X = xp.
In the above, H(()l)(pr\/f) stands for the Hankel function of the first kind with order zero and

LB 7 =
pro=—2, rrg=+(z-8?2+(y-9)°. (14)

The application of the relation (13) makes it possible to write

B0 = [ 2)(x) didy | (15)

2.3. Case 2: T-functions for Cyw =0

The definition of a set of the homogeneous solutions W; in polar coordinates makes again use of the
non-dimensional radial coordinate p, but the constant a is now conveniently chosen as the average
distance between the 8 nodes of the element and the element center O (Fig. 1a):

8

b=, a=z3\fE+yl (16)

j=1

Unlike Case 1, the value of a may be different for each element and the use of a p close to 1 at
the element boundary serves the purpose of avoiding numerical difficulties (overflow or underflow)
arising for high values of the exponent of r encountered during the p-extension process.

The matrix W of homogeneous solutions may readily be generated in terms of increasing powers
of non-domensionalized complex variable

% -3 ; .
(:E=E($+1y)=p(cos<p+1sm<p). (17)

We obtain the following T-complete set of homogeneous solutions:

W(¢) = [1],Re¢,Im( |, p? , Re¢?, Im(?,
p°Re¢, p°Im¢ , Re¢®, Im¢?,
p*Re¢?, p’Im¢? ,Re¢*, Tm¢*,
sigheto i (18)

The particular solution for a linearly distributed load is easy to obtain,

= 1 ot b s
Fely e hE Py Y wE z?y%(3po + P17 + P2y).- (19)

As in Case 1 (see (15)), the particular solution for a more involved load distribution may be
evaluated by integration of the Green function, now equal to

o PPoInpdg

w(x, %) = 167D (20)

where ppg is defined by the relation (14).
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3. T-ELEMENTS FOR PLATES ON WINKLER FOUNDATION

The formulations outlined in this section were obtained under the assumption that the Winkler
foundation has the capability to sustain indifferently the compression (downward deflection; w < 0)
and the tension (upward deflection, w > 0). As a consequence, the plate and the foundation show the
same vertical displacements and do not separate as it is in the case of unilateral Winkler foundation
(next Section) if the plate deflection w > 0.

In the following paragraphs of this section emphasis will be lain on the hybrid-Trefftz p-elements.
Such elements resamble, externally, the conventionaly formulated conforming assumed displacement
elements. This facilitates their application by the user and simplifies their implementation in the
element library of any standard FE program.

3.1. Geometry of hybrid-Trefftz p-element

Figure 1 presents a typical quadrilateral HT plate bending p-element. Its theoretical formulation
makes use of local Cartesian (z,y) and local polar (r, ) coordinates originated at the element center
O, conveniently defined in terms of global Cartesian coordinates (X,Y’) of the eight element nodes
(Fig. 1a) as

8
— XO —_— 1 .
XO_{YO }_S;XJ. (21)
With (21), the local Cartesian coordinates are simply

The geometry of the particular element side A—C—B (Fig. la) is quite general (straight,
parabolic arc, circular arc, etc.) and is defined in a parametric form,

Xicplpln) = { e ) (23)

ya-c-B(7)
in terms of non-dimensional curvilinear coordinate 7 varing from -1 to +1 between corner nodes A
and B. The local notation A and B at the end point of a particular element side is chosen so that

Ny < Np (24)

where N4 and Np stand for the global node numbers in the FE mesh. This rule warrants a unique
definition of the positive sense of the coordinate 7 (7 = =€ or +17) as well as of s and n (Fig. 1a)
along a side common to two neighbouring elements.

Whereas the element generation only involves the element boundary I'®, the iterative solution of
the unilateral contact problem also involves calculations at control points and the integration over
the element domain Q€. For this purpose it is convenient to express the local Cartesian coordinates
of any point x € Q€ in terms of non-dimensional curvilinear coordinates { and 7 (Fig. 1b) varying
from —1 to +1 between the opposite element sides. ;

3.2. Generalized boundary displacements and boundary tractions

All T-element formulations make use of suitably defined conjugate vectors of generalized boundary
displacements v and boundary tractions t. In the present study, these vectors will be defined as
follows (Fig. 2):
w w w
v=L Wy 3 =4 Owlfz } = ngwn— Nyw, (25)
Wy ow/0dy NyWn + NzWs
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Fig. 2. Internal forces and generalized boundary tractions of a plate in bending

ow Ot Bw
where w; = v e and
Qn neQz + nyQy
t=9 —Mpz p =< —neMz—nyMyy ;. (26)
—Mpy —ny My — ngMy,
Here
9 o
Q: =-D £V w, (27)
9 o
Q =-DgViu, (28)
0w &w
0w 0w
My =-D (a—yz e VW) y (30)
0w

My = -D(1-v) (31)

Finally n, and n, stand for components of the unit normal vector 7 (see Fig. 1 and 2) and the
indexes n and s indicate in (25) the normal and tangential derivatives.

Should the element displacement field w be generated in polar coordinates then the Cartesian
components of vector v (25) and t (26) can be evaluated more easily by an elementary transformation
from the polar components w; , wy,, My, My, Myy, Qr, Q.

Observing that the general form of the internal displacement field of the element (see (6)) is
w=w ¥ We, and usmg the relation (25) and (26) leads to expressions (1a,b) namely v = v + Ve

and t =t + Tc, where v, t and Ve, Tc stand respectively for the particular and the homogeneous
parts of the solutlon at the element boundary I'®.

3.3. Displacement frame

All hybrid T-element formulations make use of an auxiliary frame function defined at the element
boundary I'* and representing either the generalized boundary displacements or the conjugate gener-
alized boundary tractions [12, 13]. The T-element formulation with a traction frame is comparatively
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complicated and therefore the hybrid formulations used in the present study (next subsection) will
link the elements and enforce the boundary conditions through an auxiliary displacement frame.
This frame, designated as ¥, may be defined by a relation of the form:

$=Vd atTI° | ' (32)

in terms of the same type of nodal parameters, d, as used in the conventional assumed displacement
finite elements. The matrix V in this relation is formed of assumed boundary functions V defined
along each element side (see e.g. Figs la and 3) in terms of a local non-dimensional curv1hnear
coordinate 7.

Since the governing differential equation (3) is of fourth order in z,y or p,¢, the T-element
formulation should enforce the C! conformity on the internal displacement field w. This implies
that for each element the conformity of the first derivatives w, = dw/dz and w, = Ow/dy, in
addition to that of w, should also be enforced on I'*. For this purpose the components of the
displacement frame (32) should be assumed in the same form as used in (25) for v. Along the
particular element side A—C—B (see Fig. 1a), the three components of ¥, namely w, W, and Wy

Modes associated with corner nodes A, B

Displacement w Normal slope ¢ = #,
1.0 — |
& -3 +2)
0.0 I |
A c B
1.0
; 172 3 1:3—1:2—1+l)
4
0.0 i }
A C B
1-0 i 1
Vy=—(-’+3t+2
4
0.0 0.0
A IC Bl A l c B |
e \I_/‘
A B
o Syt il
7, _Z(r +i -1 1)
-1.0 —
Modes associated with mid-side nodes C
10— %=(-+) 10— h=(-+
0.0 I I 0.0 I ‘
A C B A
0.5 — 0.5 —
17;=176—sz /\ I7lo=1:(1—1:2) /\
A C B] A C B !
-0.5 - -0.5 —

Fig. 3. Hierarchic displacement frame functions of the HT-D plate bending p-element
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may conveniently be expressed in terms of only two independent functions of 7 — the boundary
displacement w(7) and the normal boundary rotation wy,(7):

w(r)
w(7) . da
Hr)=q dy(r) p=4 MeBnlm) -y 1 (33)
wy(7) dw

’I’Lyﬁ)n(T) + ng s

In the present study, the vector d in (32) involves two types of parameters (Fig. 1a):

e at corner nodes, designated as o, the 3 conventional DOF,

dy = [Wa Wya Wya]", (34)
dp = [Wp e Wys]"
e at the fictitious mid-side nodes a, an optional number, M, of hierarchic side-mode DOF
de = [IA'lI)nC 1A1DC zAﬂlnc 2A’U~}C +3 etC.]T (35)
with the shape functions V; = V;(7) (j = 1,2,...) displayed in Fig. 3 and with
Wra = 84| (—NyWza + nghya),
8 4 '3 (36)
WrB = |sB| (nyWzB + ngiyB),
where [s4], [sp| stand for modulae of tangent vectors s4 , sp, and
WnA = NzAWzA + NyAWyA ,
n r AWy yAWy (37)

WpB = NgBWzB + NyBWyB -

The independent functions w(7) and w,(7) along particular side A—C—B of the element have
the following definitions,

W(r) = Vi(r)ba + Va(r)ibra + Va(r)ip + Va(r)irg + Y Varss(r) ¥Adic (38)
k=12,
Wn (1) = Vs(r)tina + Vo(r)np + , Varrs(r) ¥ Adinc . (39)
h=12,...

3.4. Hybrid T-element formulation

The application of the internal displacement field w = 1 + Wec involving appropriate T-functions
(0 and W;) from Section 2 and linking the elements through the independly assumed general-
ized boundary displacements v = vd (32) leads in all hybrid formulations to a force-displacement
relationship of the form

r =t + kd. (40)

Here r stands for the vector of generalized nodal forces conjugate to d, ¥ is the part of r due to
the particular solution % and/or to imposed boundary tractions t (if prescribed at I'®) and k is the
element stiffness matrix.
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The formulation based on the concept of opposite weights (HT-D elements) is defined by the
following two weighted residual statements:

6tT(v—-¥)dlr =0, (41)
l"e

ovTtdr = [ 6¥Ttdl +6d"r. (42)
Ie S

Withv=v+ Ve, t = t+Tc and ¥ = Vd, this formulation leads to

c=-H'g+H'Gd,
£ =h-GTH g, (43)
k= GTH!G,
where

g=/ TT ¥ dr, h= [ VTtdr- [ VT&dr,

[] Fe I"(ti

(44)

H=| T'vdr= | vTTdr, G= [ TTVd.

e Ie Te

Note that H is a symmetric positive definite matrix.

4. PLATES ON UNILATERAL WINKLER FOUNDATION — THE FICTITIOUS LOAD
SCHEME

4.1. Two iterative approaches

The interaction between the plate and the unilateral Winkler foundation is a typical contact problem
in which the frontier of the contact area (part of whole plate where w < 0) is not known in advance.
To solve this problem, an iterative approach, of which several possibilities exist, should be used.

4.1.1. First approach
This approach is obtained if one converts the equation
DViw + Cww=p (45)

into the following iterative form,

(DV* + Cw) 'w = "p, (46)
: P ity < 0,

in = . . 4
4 { F+Cwlw if lw>0, (47)

where i = 1,2, ... and °p = 5. Here the homogeneous part of the solution is represented by the set
of T-functions (10) and the particular solution “w due to the right hand side p may be evaluated
at the element sub-domain Q¢ as

(z) = / (%) p(R) iy (3,9) € 0, (48)

where w(x, X) is defined by Eq. (13). It is worthwhile to observe that when Eqgs. (46)—(48) are used,
the contact or not contact situation can change from one point to another inside one element.
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4.1.2. Second approach

An alternative approach is generated if one realizes that instead of Eqs. (46) to (47) Eq. (45) can
also be trasformed into

DV4iw = p, _ (49)

. D Tl >0,
i { p— Cw *~lw if <, 50

The iterative process will be similar but now with the biharmonic functions (Sec. 2.3).

4.2. Additional considerations

Equations (46)—(48) or (49)-(50) suggest that stiffness matrices k® (e = 1,2,...,n;) and the as-
sembled stiffnes matrix K (of the whole structure) remain unchanged during the whole iterative
process and the evolution of the contact/non-contact situation will only be controlled by successive
modifications of the fictitious load component. This situation is reflected at the element level in the
force-displacement relationship of the form

ire £ ’ii—’,e 5 keide, (51)

the customary assembly process of which results at the level of the whole structure into a system
of linear equations with a symmetric positive-definite coefficient matrix.

Thanks to the absence in the set (10) of T-functions to any rigid body motion modes suspectible
of complicating the application of the ‘opposite weights’ form of the weighted residual method
(vanishing of boundary tractions corresponding to these modes), the development of the element
matrices may be based on the standard HT-D formulation (Sec. 3.4), the simplest and most inex-
pensive T-element form to be known.

The initial solution (i = 0) is based on the assumption that the contact between the plate and
the foundation extends over the whole FE mesh (w < 0 everywhere in Q = U, ©€). Provided that
the above assumption does not hold true, the solution in the subsequent cycles (i = 1,2,...) is
then iteratively adJusted via the fictitious dlstrlbuted load with intensity of Cy = 1w at all control
points where *~1w > 0. This leads to solving the system of equations with stlll the same matrix K

(the stiffness matrix of the assembly of elements) for a new right hand side iR. Provided that this
process converges, the solution is terminated if the relative percentage error

max |’w,‘§ -

€
e% = wk, x 100%, (e=12... N, k=190 . % (52)

max |’w,‘é|

does not exceed the specified allowable value.

4.3. Implementation

Since the approach outlined in the preceding paragraph does not need any iterative modification of
the initial (0 = 1) FE mesh, its implementation into most of the existing FE codes is easy. Provided
that such codes (such as e.g. the program SAFE [6]) have the capability of solving sequentially
any number of independent second members, then basically the only difference resides in their
specification. While, normally, they are read from the INPUT file, now they are generated, for
1 > 0, directly by the program.

To facilitate the implementation, the flowchart displayed in Fig. 4 is helpful in the understanding
and the organization of the calculations. Note that the effects of the given load alone (no fictitious
loads) as obtained in the initial cycle ¢ = 0 is calculated only once and need not be recalculated in
subsequent cycles i = 1,2,...
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Read Input Data | Reinitialize ‘'R =R I
i=0
Initial solution
(contact assumed over whole Q)
eEvaluate element matrices (Type 1)

Are all 'w§ <0?

k¢ and r ¢ (e=12,...,n,)

eExpand them for assembly process Evaluate for all j=1,2,...,n,
K 5K, ipe_yiR e fictitious part of eleme_nt load:
«Sum elements contributions ipe _{ 0 i ln W; <0
| i~l e s -l
k=Yk*, ‘R=Y'R* - Wi st e
¢ Solve resulting equation system Evaluate new particular terms
P I o o .
Kd=—R-> d=-K R ‘w¢ and ‘r{ dueto ‘p{

- : Expand ‘r¢ — 'R ¢ andupdate
Evaluate displacements in control points P ; : P

we (j=12...me=12,....m,) ‘R“='R‘+'R{

YES
. NO
Are all ’wj- <07? @

NO

Solve resulting equation system
Caloulate andprint| Set for new right hand side, =R :
requested results li 2 "IO{ : 3o
l ‘d=-K''R
@ Evaluate displacements ‘wj inall
control points (1 =12,...,n;e= 1,2,...,ne)

.

Evaluate corresponding error
max €%

YES

max €% <adme%

PRINT ‘Not converged’

5rop)

Fig. 4. Implementation of the first iterative approach
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5. NUMERICAL ASSESSMENT

While the preceding theoretical developments concerned the HT p-version elements, the numerical
assessment presented in this section will be confined to a single member of this family. Unless stated
otherwise, this member represents a quadrilateral curve-side element with 3 DOF at corner nodes
and 1 DOF at mid-side nodes. The results of this study will include the number of iterations which
is needed for achieving the required accuracy.

Ezample 1: Long beam on unilateral Winkler foundation

As the first numerical example the authors have chosen a long beam (L = 4.0 [m]) with a rectangular
(b x h) cross-section, which is analogous to a plate subjected to cylindrical deformations. The beam
was loaded in its center by a concentrated force P = 10 [kN]. It was characteristic, that the limit
contact points depended here only on the material and geometrical data and not the value of the
force. One can derive the analytical expression for the length L€ of the contact zone,

cia R _ Cwb
L= EX = 5y where )\——4EI.

For E = 210 [GPa], Cw = 90 [MPa/m|, b = 0.01 [m] and A = 0.3 [m], we obtained therefrom
L¢ = 3.362596 [m]. Shorter beams are obviously in full contact with the foundation along their

whole length.
Figure 5 presents in the logarithmic scale the absolute value of the error

(53)

L(I:\IUM T LCEX (54)

Error =
€
L EX

versus the number of the Gaussian points in the element of the beam. The increase of this number
above Ngp = 8 appeared to be unprofitable. In the elements loosing their contact with the foun-
dation the fictitious compensatory forces were here applied according to the algorithm defined by
Eqgs. (46)—(48).

Figure 6 compares efficiency of the two alternative algorithms — Eqgs. (46)—(47) and (49)-(50)
of the Sec. 4.1. As one can observe, both give similar results, but the second one needs much more

Number of Gauss points per element (NGP)
0 4 8 12 16

0.0

-1.0

-2.0
.. =30 = N NELEM=4
S .40 e i . — =NELEM=10
o L - - s - = = = NELEM=40
8’ -5.0 S
= s T S ) S — = NELEM=100

-6.0 Y — 7 = =— = NELEM=400

§ S ets \n—.________.

7.0 = D S S

-8.0 =

90/

Fig. 5. Long beam on unilateral Winkler foundation. Error in location of limit contact point for num-
ber of elements NELEM, and for different number of Gauss points per element NGP. (1st approach — see
Section 4.1.1)
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Fig. 6. Long beam on unilateral Winkler foundation. Comparison of two iteration algorithms: 1st approach
(Section 4.1.1) with 20-30 iterations; 2nd approach (Section 4.1.2) with 90-110 iterations

iterations. It calls for some comments. The standard beam element has three rigid body modes and
hence, for beam structure, one has to fix at least three degrees of freedom. In the above example
we know nothing about the beam deflection, and the beam slope can be determined only at the
point z = 0. To solve the problem we formally enforce the deflection at the point z = 0 instead
of applying the force. The value of such deflection is determined in the additional iteration process
with the condition that the sum (in the integral sense) of foundation reaction is equal to the applied
force. It should be mentioned that such a problem exists only for the beams without displacement
conditions.

Ezxzample 2: Circular plate on unilateral Winkler foundation

In the next example was investigated a circular plate subjected to a concentrated load P in the
middle. This problem is formally one-dimensional (the analytical solution is known (see [17])),
but it was solved for a quadrant with a mesh of 27 HT plate elements. For E = 210 [GPal,
Cw = 90 [MPa/m], v = 0.3, and P = 10 [kN] the results are shown in Fig. 7. The exact radius of
the loss of contact is here equal r. = 0.31848 [m]. In order to obtain satisfactory results (difference
in length of radius Ar, < 0.001 [m]) about 30 iterations were required.

Ay

symmetry

X

/‘ symmetry 032 05
w=-0.00148

Fig. 7. Circular plate on unilateral Winkler foundation; thick line stands for separation between contact
and non-contact zones
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Ezample 3: Rectangular plate on unilateral Winkler foundation

The last example presents deformations of a rectangular plate loaded continuously on a central
square (Fig. 8, [15]). Here E = 23 [GPa], v = 0.17, Cw = 20 [MPa/m)], the load ¢ = 2 [MPa] and
axbxh=29.6[m]x7.2[m]x0.2[m] - the dimensions of the plate. For both, the 3 x 4 mesh of HT
large elements and the standard ANSYS finite elements (small squares, dashed lines) the results
were fairly close, with the accuracy to the thickness of the diagram line.
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Fig. 8. Rectangular plate subjected to continuous load (shaded area), zones of constant deflection
(w > 0 - loss of contact)

6. CONCLUDING REMARKS

The characteristic feature of the unilateral contact problem solved by the T-element approach, as
studied in this paper, is its capacity of accounting, at the element level, for the contact/non-contact
phenomena occurring within the element subdomain Q€. As a consequence, the programmer’s and
analyst’s work is simplified considerably since troublesome mesh adjustment is avoided.

The two approaches based on the fictitious load concept, necessitate several iterations, but the
cost of the calculation is kept low, and the implementation is easy, since the stiffness proper-
ties remain unchanged during the whole iteration process. The gain is also that the intraelement
contact/non-contact interface (where w = 0) need not be explicitly determined.

An advantage of the second approach (49)-(50) over the first one is the replacement of the
modified Bessel functions (Section 2.2) by simple biharmonic polynomials (Section 2.3). However,
this advantage may be largely overweighted by the following drawbacks:

e In practical applications, the non-contact part of the plate (part subjected in the present solution
to the fictitious load +Cy “~!w in the first approach) is usually small as compared with the large
remaining portion of the plate, part associated with a negative fictitious load —Cyy ~!w and
converges slower;

o If the plate to foundation rigidity ratio is sufficiently large, then the contact between the plate
and its foundation is maintained over the whole domain. In the first of the presented approaches
this solution is accurately represented already by the initial solution — the ¢ = 1 step.
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