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The purpose of the paper is to propose of a way of constructing trial functions for the indirect Trefftz
method as applied to 2-D creeping (Stokes) flow problems. The considered cases refer to the problems
of flow around fixed and rotating circular cylinders, in corners with two walls fixed, or one wall moving,
and flow possessing particular symmetry. The trial functions, proposed and systematically constructed
fulfil exactly not only the governing equation, like T-complete Herrera functions, but also certain given
boundary conditions and conditions resulting from assumed symmetry. A list of such trial functions,
unavailable elsewhere, is presented. The derived functions can be treated as a subset of T-complete Herrera
functions, which can be used for solving typical boundary-value problems.

1. INTRODUCTION

The concept of Trefftz method consists in the application of analytically derived trial functions,
sometimes called T-functions, identically fulfilling a governing differential equation. In the tradi-
tional indirect formulation of the Trefftz method the solution of the boundary-volume problem
is approximated by a linear combination of the T-complete functions and some coefficients. The
unknown coefficients are then determined so as to make the boundary conditions satisfied approx-
imately. The most popular trial functions are those known as Herrera functions, or T-complete
Herrera sets of functions. These sets have been proposed for harmonic, biharmonic and Helmholtz
equations [1,2]. The functions in Herrera sets satisfy a differential equation and do not result from
boundary conditions. However, when solving some boundary-value problems better results my be
obtained by using frial functions which satisfy exactly not only the governing equation, but also
some of the boundary conditions on a part of the boundary, as well.

The purpose of the paper is to propose of a way of constructing trial functions for the indirect
Trefftz method, as applied to 2-D creeping (Stokes) flow problems in presence fixed and rotating cir-
cular cylinders, corners with two walls fixed, corners with one wall moving, and possessing particular
symmetry.

The trial functions, proposed and systematically constructed in this paper are related to bihar-
monic equation. These functions can be treated as a subset of T-complete Herrera functions, which
can be used for solution of boundary value problems related with cylinders and corners. Such func-
tions for harmonic problems were presented by one of the author at First International Workshop
on Trefftz Method [3].

The derivation of the trial functions is based on the general solution of 2-D harmonic and bi-
harmonic equations in polar co-ordinates system. The harmonic solution is used in the case when
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the boundary-value problem for creeping flow is formulated in terms of vorticity and stream func-
tion, whereas the biharmonic solution is used for the formulation of the boundary-value problem
by stream function only. The separable solutions of harmonic and biharmonic equations in polar
co-ordinates, in the most general form is a linear combination of the following expressions:

— for harmonic case

( (R?,1)(cos26,sin20, 1, 0) )
R(cos @, sin®)
(sinpf, cosub) (R*, R™#) [ 1)
(sinhv@, coshvf) [sin(vInR), cos(vInR)] |’
(cos@, sinf) (R, R™1)
| (1,0)(1,InR)

— for biharmonic case

( (R, R') [cos(1 + )@, sin(1 + A\)@, cos(1 — A)6, sin(1 — A)f] ]
[Rsin(sIn R), Rcos(sIn R)] [cos @ cosh 56, sin@sinh s, cos 0 sinhsf, sinf cosh s0]
(R%, 1) (cos20,sin26, 1, 0)

(R, RInR) (cos 0, sinf, cosﬂ sinf)

(sin 6, cos uf) (R, R‘ SHOTRRA ) P
(sinh 0 , cosh v6) [sm (vIn R) cos(vInR), R?sin(vInR), R?cos(vIn R))
(cos@, sinf) (R, R~', RnR, R%)
(1,6)(1, nR, B2, R’lnR)

. /

where R, # are polar co-ordinates, A, s, p, v are constants. The results for seven cases of special
T-functions are further considered. In two of these cases the detailed derivations are given (see
Appendix A and B).

2. TREFFTZ METHOD. TWO INDIRECT APPROXIMATIONS

The boundary-value problems related to the two-dimensional creeping flow can be formulated in
few different ways. The first one is based on the stream function and it is the following:

Biharmonic differential equation
V2V =0 inD (3)

together with boundary conditions

3‘11 on Pl ] (4)

220 on I, (5)

where V2 is the two-dimensional Laplace operator, ¥ 13 the unknown stream function (the
velocity components are given by Vy = 5— Yy = g X ), n is the operator of normal derivative,
¥, G, and p are given functions, and I' =T"; + I'.
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The second formulation is based on the stream function and vorticity. In such case the boundary-
value problem is the following:

Two-dimensional Laplace equation for vorticity
V=0 in D, (6)

two-dimensional Poisson equation for stream function:

V¥ =Q in D, (7)
along with boundary conditions
Q=0 on I'y, (8)
o0
-a—n = on I'y, (9)
=0 on Ty, (10)
ov
o 4 on I'p, (11)

or another combinations of the conditions.

The weak formulation of the boundary-value problem (3)-(5) can be expressed in weighted
residual form as follows,

2
/ Wv2v2wdn+fwl(@—@)dr+f W, ] —q dI‘-i—/ Wi a—qi—ﬁ dl’ = 0,
D r r on Ty on?
(12)
where W, Wy, W, and Wj are weighting functions. :
Similarly, the weak formulation of the boundary-value problem (6)-(11) can be expressed as

/leﬂndn+fﬁ@ (V2¥ - Q) dD + [ W3(Q—Q)dT
D D I

- (0N ~ = = (0¥
— — W dF —\I’ —_— =g —
+]Pzw.,( w) + l“lws(xp )d[‘+/F2W6(5 )dI‘ 0 (13)

where Wl : Wg, W;;, Wi “ W5, and W are weighting functions.
When using the Trefftz method, the solution of the boundary-value problem (3)-(5) is approxi-
mated by linear combination of a complete set of trial functions

M
v = Z CrUk (14)
k=1

where Cj are the undetermined coefficients, and U}, are trial functions chosen in such way that they
satisfy the equations

ViV, = 0. (15)
In the same way, the solutions of the boundary-value problem (6)—(11) are approximated by:
2M

fi= % GT;, (16)
k=1
2M

¥ =" Cylk, (17)

k=1
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where Cj, are the undetermined coefficients, and T} are trial functions which satisfy the equations

V2T, =0, (18)
VU, =Tk (19)

Substituting (14) into (12) and (16)—(17) into (13), we get

2M
/W] (ZCkUk—\i’) dr
r

k=1
oM oM
U, Ux
+£1W2(ch87*q)ﬂ+ﬂ W3(chm—p)df=0 (20)
k=1 2 k=1
and
_[2M L[ am
f Wi (Y CiTi - Q dr+f Wi (chm—*-m dr
T k=1 T2 k=1 on

2M

2M
+f Ws (ZCkUk—‘i’)dF+/ We (ZC;:%—@) dr' = 0. (21)
B k=1 Iz k=1 on

Depending on the selected weighting functions Wy, Wa, and W3 or W, Wy, W5, and Wﬁ ~
one obtains different variants of the Trefftz method. In what follows the two variants, that can be
identified as the boundary collocation method in the least square sense and the Galerkin method,
are discussed.

2.1. Boundary collocation method

Adopting the weighting functions in the form

WIZJ(PJ)a Pjers Jj=1...,m, (22)
W2=5(Qj)v Qjerli j=1,...,m2, {23)
W3=5(SJ), SjEF2! j=1)"‘!m31 (24)

where §(P;), 6(Q;) and §(S;) are the Dirac delta functions, we fall into boundary collocation case.
Putting these functions into (19), the system of linear equations for unknown coefficients Cj takes
the form

2M

Y CU(Py) = (Py), j=1,...,m, (25)
j=1

2M :

ZC"%ZQ(QJ)’ j=11"-sm11 (26)
=1

2M 2 ;

> cZ2@) g5y, i=tm. 27

While the condition mj + ms + m3 > 2M must be fulfilled and the system (25)-(27) can be
solved in the least square sense.
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2.2. Galerkin method
By taking

oU; o°U.
leﬁa W2=—Uj| W3:W;1

and substituting these functions into Eq. (20) we get the Galerkin formulation

/F%(%Gkvk—@) / (ch-@— )dI‘

i=12,...,2M, (28)

—p| dI'=0, 7= 1% 2M, 29
R o
Matrix form of Eq. (29) is
KC=f (30)
where
aU; Uy 0*U; 0U,
K;; —/ —+ Ui dl’ — / Uj—— n dar + S ﬁdf‘, (31)
aU; - g d%U;
="] 2 L Gdl’ b
fr Gt~ [ Ugar+ fz ipdT. (32)

3. CONSTRUCTION OF TRIAL FUNCTIONS

In the following seven paragraphs the trial functions corresponding to a chosen geometry of fluid flow
problems are constructed. Detailed derivation for the first and fifth case are given in Appendixes A
and B, respectively, while the derivations for the other cases are similar to these two cases.

3.1. Flow with two axes of symmetry around a circular cylinder

In many cases of creeping flow around a circular cylinder one can assume that flow is symmetric
with respect to the axis perpendicular to mean flow direction (axes y on Fig. 1a). On the other hand,
the axis of the cylinder parallels to mean flow direction can be assumed a line of constant stream
function (axis z on Fig. 1a). Moreover, this axis can be treated as axes of symmetry of vorticity.
In this way the flow around a cylinder can be represented by its properties in the fist quadrant
(see Fig. 1b). The governing equations in this region and boundary conditions on some parts of the
boundary are the following,

P20 160 1 09

ore " Ror t mEor = (33)
PU 100 19U

o2 T Ror TR~ (34)
=0 & R0, (35)
9w

3R 0 for : (36)
=0 for 6=0, (37)
Q=0 for =0 (38)
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Fig. 1. Region of flow with two axes of symmetry around a circular cylinder
av T
—_— = f = —,
=5 =0 or 0= (39)
o0 T

Taking into account a linear combination of functions given by (1) and (2) and performing the
derivations presented in Appendix A, we propose the following solutions which satisfy Eqgs. (33)~(34)
and boundary conditions (35)—(40)

2M
Q= ZCka(Ra 9]1

=1

2M
¥ = CyUk(R,0, E),

k=1

where
Tx(R, 0) = R%*~lgin[(2k —1)0], k=1,2,...,M,
Tuir(R,0) =R # Vsin[(2k-1)0], k=1,2,...,M,
Ui(R;0,B) = %(123 —2E*R + E*R—1)sin0,
2% — 1 R2k+1 = 2kE2R2k—1 EtlkR—(‘Zk—l}

Uk(Ra Q,E) = ( ) :

8k(2k — 1)

R
Um+1(R,60,E) = % (E2R_1 - 2RlnE - R) sinf,

E-4(k—1}R2k+l - (2k o l)R—2k+3 o 2(k‘ - 1)E2R—(2k—1)

sin[(2k — 1)4],

(41)

(42)

(43)
(44)

(45)

(46)

k=23,..., M,

(47)

sin[(2k — 1)0], (48)

k=23,...,M.

The constant coefficients Cy must be determined from another boundary conditions. An example
of boundary value problem for which trial functions given by (41)-(48) are useful is presented in
Section 4 when creeping flow through periodic array of cylinders is considered.
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3.2. Flow around a circular cylinder symmetrical with respect to the direction of
main flow

Consider the region in the surrounding a circular cylinder of radius E, in the case when the vorticity
field is symmetrical with respect to the direction of the main flow. In this case the pattern of the
flow may not be the same before and after the cylinder, as shown on Fig. 2a. In order to study
the flow around the cylinder we can restrict ourselves to quadrants I and IV (Fig. 2b). Now, the
governing equations in the considered region are the same as in the previous case, i.e. (33)(34),
and the boundary conditions on some parts of its boundary the are following,

W =0
ov

ﬁ—(]
=0
Q=0
0w _
00
o _
a0

0

0

for R=E,
forr R=F,
for 6=0,
for 6 =0,
for 6=,
for 6 =m.

(49)
(50)

(51)
(52)

(53)

(54)

Using a derivation similar to that given in Appendix A one can find a solution, which fulfils
Egs. (33)-(34) and boundary conditions (49)-(54)

2M

Q =) CiT(R,0),

k=1
2M

¥ = CUk(R,6,E),

k=1

a)

b)

y ? Lines the same values of
stream function

Fig. 2.

Region of flow around cylinder symmetrical with respect to the direction of main flow
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where
Ti(R, 0) = R*sin(k6), k=1,2,...,M, (57)
Tusk(R,0) =R *sin(kf), k=1,2,...,M, (58)
Ui(R,0,E) = %(33 —2E’R + E*R—1)sin6, (59)
kRK+2 + EXK+VRF 4+ (k+ 1)E*RF
Up(R,0,B) = Ok £ 1) sin(k0), k=2,3,...,.M, (60)
1 2 _1 R .
Um+1(R,6,E) = i E*R +2Rln§ — R ) siné, (61)
—2(k—1) pk _ 1.p—k+2 . 2 p—k
Um+k(R,0,E) = = L if(kﬁ 1“; =R R sin(kd), k=2,3,....M. (62)

These functions can by used, for instance, in solution of the boundary-value problem connected
with creeping flow around a circular cylinder placed between two parallel walls, as shown in Fig. 3. In
such case the constants Cj can be determined from approximate satisfaction of boundary conditions
at the boundary AGFE.

Fig. 3. Creeping flow around cylinder placed between two parallel walls

3.3. Flow around a rotating circular cylinder

Let us further consider a cylinder of radius E that rotates with constant angular velocity in an
infinite fluid domain or, alternatively, in a bounded fluid domain (Fig. 4). If the outer boundary
is symmetrical with respect to X-axis, the flow pattern can be also assumed to be symmetrical
with respect to this axis. In such cases the X-axis is an axis of symmetry for vorticity and stream
function. Here in, the governing equations stated above (33)-(34) are completed with the following
boundary conditions,

U=, for R=E, (63)
ov
3R 1 for R=FE, (64)
27 an
— Edé =0, (65)
o 0 for .0=0, (66)

e
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Fig. 4. Region of flow around rotating circular cylinder
ov
— = fi =0, 67
55 =0 or 8=0 (67)
2—3 =0 for &=m, (68)
% =) for 6 =m. (59)

Boundary conditions (63)-(64) express the non-slip conditions on the cylinder surfaces. The
condition (65) reflects the fact that pressure is periodic around the inner cylinder. The remain-
ing conditions result from symmetry of problem. Using a procedure similar to that presented in
Appendix A one can get the following solution, which fulfils equations (33)-(34) and boundary

conditions (64)—(69),

2M
Q =) CyTk(R,0),
k=1
R 2M
¥=FElng+ > CLUk(R, 0, E),
k=1
where
Ti(R,0) = {;
Ty(R, 0) =1,
Tx (R, 0) = R~ Veos[(k—1)8], k=3,4,...

Ty41(R,0) = Rcos®,

Ta42(R,0) = R 'cosé,

Trs1+k(R,0) = RFcos(kf), k=23,...,M,
U,(R,6,E) =1,

ol B Body - o5

Uz(R,6,E) = E‘ lnR 4(R — E*),
kRﬁ:+2+E2(k+1)R~k+(k+1)E2Rk

Glid.B) | = 4k(2k + 1)

Um+1(R,60,E) = %(33 + 2RE? — R7'E*)cos b,

sin(kd),

k

Il

0y .

(70)

(71)
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Unm+2(R,6,E) = % (2R ln% — R R-1E2) cos b, (82)
E2kR—k+1 _ 2 RE-1 (k — l)Rk+1

UM+k(R: B; E) =

(k- 1) cos[(k—1)0], k=23,...,M. (83)

The first constant in the solution, i.e. C , is unknown value of stream function on the cylinder,
C) = U, . Functions given by (70)-(83) can be used, among other cases, to find solution for creeping

flow between two eccentric circular cylinders when one rotates with constant angular velocity (flow
in bearing [4]) as shown in Fig. 5.

g

Fig. 5. Bearing geometry

!

3.4. Flow around a freely rotating circular cylinder

We now consider a cylinder of radius E that may rotate freely under the action of the flow (see Fig. 6).
The angular velocity w is unknown and must be determined from the solution of the appropriate
boundary-value problem. Moreover, we assume that the solution is symmetrical with respect to X
and Y axes. In the considered case, together with Eqs. (33)-(34), the following boundary conditions

ViQ=0
V¥ =0

Fig. 6. Region of flow around freely rotating circular cylinder
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must be fulfilled,
U =0 for R=E, (84)
g% L for R=E, (85)
2 2 2
fﬂ R (%—%%-%%) __do=o, (86)
%% —0 o =0, (87)
e =0 56~ 0=T (88)
g—‘;’—o for 0=7, (89)
%%—0 for e—g. (90)

Boundary conditions (84)-(85) express the non-slip condition on the cylinder surface. The con-
dition (86) states zero hydrodynamic moment acting on the cylinder, as it is free to rotate. Using
a derivation similar to that of Appendix A, one can get a solution, which fulfils Egs. (33)—(34) and
boundary conditions (84)-(90),

2M+1
= Z Cka(R: 9):
k=1
R 2M
¥=FEng+ Y CiUk(R,6,E),
k=1
where
2
Tl (R) 6) —= _E 1
Tx(R, 6) = R~k cos2(k — 1)0),
Trm+14k(R,0) = R*cos(2k0), k=1,2,..., M,
1 R?
nroE) =;(E-T),
RF-1E-26=2) 4 (k — 2)E2R-F+1 — (k — 1)R~++3
EQkR—k-f-l — kE2Rk-1 A (de: o Rk+l
UM+k(R:8! E) == ( )

k=2531-<-:Ms

cos[(k — 1)6],
k=2,3,...,M+1,

4k(k—1)

COS[(k = 1)8]:

(91)

(92)

(98)

The first constant in the solution is equal to the unknown values of angular velocity of cylinder,
C} = w. Functions given by (91)—(98) can be used, for instance, for the solution shear flow induced

by motion of two walls in opposite directions, as shown in Fig. 7.



370 J.A. Kolodziej and A.C. Mendes

N\

v

Fig. 7. Circular cylinder in shear flow

3.5. Flow in rigid corner

Consider the region surrounded by a rigid corner of % angle as shown in Fig. 8. The governing
equation in the region and boundary conditions on a part of the boundary of region are the follow-
ing,

2 108 18\

e — et )\ =
(6R2 tRorR T B2 392) L8 =0, (99)
=0 for 0=0, (100)
% =0 for 6=0, (101)
U =0 for 9=%, (102)
%‘:o for 0="7. (103)

0 ‘PHO, %%=0

Fig. 8. Flow in rigid corner
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If we now use the derivation presented in Appendix B, we may propose the following solution, which
satisfy Eq. (99) and boundary conditions (100)—(103),

oM
U =" CxUk(R,0), (104)
k=1
where
Uk(R,0) = Re {R“’”Ll[cos()\;C +1)8 — cos(\x — 1)6)
Ak cot 287 [ M +1 .
O+ 1) [sm(/\k-l-l)ﬂ— /\k_lsm(/\k—l)f?] . k=1,2,...,M, (105)

and Ap = ag+iby are complex numbers, which are solutions of the following transcendental equation,

LomA
sin D +A
Solutions of equation (106) are given in Table 1.
The functions given by (104)-(105) can be used for solving of creeping flow in a cavity, as shown
in Fig. 9. In such case the flow region can be divided into four large elements. For two of them

(elements IIT and IV on Fig. 9), solution (104)-(105) can be useful.

(106)

Table 1. Subsequent roots of Eq. (106)

k a b k aj by
1 0.0 0.0 27 | 50.96324700 | 2.944890604
2 1.0 0.0 28 | 52.96434003 | 2.969351749
3 | 2.739593356 | 1.119024534 29 | 54.96536403 | 2.992907843
4 | 4.808250761 | 1.463928121 30 | 56.96632555 | 3.015623484
5 | 6.845135158 | 1.681634696 31 | 58.96723031 | 3.037556589
6 | 8.868825976 | 1.842383989 32 | 60.96808336 | 3.058759286
7 | 10.88555235 | 1.970199497 33 | 62.96888915 | 3.079278866
8 | 12.89809091 | 2.076415813 34 | 64.96965162 | 3.099157389
9 | 14.90789080 | 2.167332596 35 | 66.97037429 | 3.118434266
10 | 16.91579046 | 2.246828034 36 | 68.97106029 | 3.137144667
11 | 18.92231199 | 2.317464558 37 | 70.97171243 | 3.155320937
12 | 20.92779903 | 2.381025854 38 | 72.97233324 | 3.172992728
13 | 22.93248780 | 2.438804427 39 | 74.97292499 | 3.190187287
14 | 24.93654647 | 2.491767285 40 | 76.97348974 | 3.206929715
15 | 26.94009826 | 2.540657034 41 | 78.97402935 | 3.223243179
16 | 28.94323570 | 2.586056465 42 | 80.97454552 | 3.239149113
17 | 30.94602969 | 2.628431430 43 | 82.97503978 | 3.254667381
18 | 32.94853556 | 2.668160213 44 | 84.97551356 | 3.269816430
19 | 34.95079716 | 2.705554217 45 | 86.97596813 | 3.284613422
20 | 36.95284973 | 2.740872866 46 | 88.97640467 | 3.299074348
21 | 38.95472190 | 2.774334582 47 | 90.97682427 | 3.313214135
22 | 40.95643725 | 2.806124999 48 | 92.97722793 | 3.327046735
23 | 42.95801532 | 2.836403219 49 | 9497761657 | 3.340585212
24 | 44.95947250 | 2.865306641 50 | 96.97799103 | 3.353841813
25 | 46.96082261 | 2.892954743 51 | 98.97835210 | 3.366828036
26 | 48.96207742 | 2.919452064 52 | 100.9787005 | 3.379554689
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=0" =2
R 06
V7
b .
Element 1
¥=0
_a‘_.P.:O
a0
Element I11
R
a¥
¥Y=0 —=0
a6

Element IV

M

Fig. 9. Flow in square cavity

3.6. Stick-slip problem

Let us consider the region surrounding the edge of a semi-infinite plate (see Fig. 10). The main
direction of the flow, far from plate, is parallel to the plate. The governing equation is the same as
in the previous case, i.e. Eq. (99), whereas the boundary conditions on a part of the boundary are

the following,

U =0 for 6 =0,
av
E—O for 6 =0,
U=0 for 0=,
0%
W=0 fO!‘ 0 =mr.

(107)
(108)
(109)

(110)

Fig. 10. Region surrounding the edge of semi-infinite plate
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Following a derivation similar to the one presented in Appendix B, we propose the following solution
which satisfy Eq. (99) and boundary conditions (107)—(110),

2M
U =" CyUk(R,0), (111)
k=1
where
Uk(R,0) = R™[cos(\ +1)8 — cos(\ — 1)4], (112)
Ak +1
Up+k(R,0) = RMH! [sin()q\, +1)0 - ,\"’ = Tsin(Ae — 10, k=12,..., M, (113)
o _
with
3 7
M=3, k=3, M=2 M=2, =3 de=r, M=4 .. (114)

2
Functions given by (111)—-(114) can be used, for instance, in the analysis of stick-slip problem [6]
shown in Fig. 11.

(3,1 ¥=1 VW¥=0 3.0
¥
Viw =0 5:0

W=y

¥

e =

o8

a\{ﬂ
b 2@

(-3,0)

Fig. 11. Stick-slip flow

3.7. Flow in corner § when one wall moves with constant velocity

Consider the region in the vicinity of the corner 7 angle, when one wall moves with a constant

velocity, as shown on Fig. 12. The governing equation in the region is the same as for the rigid
corner, whereas the boundary conditions on some parts of the boundary of region are as follows,

v=0 for 6=0, (115)
10

T =0 for 9:%", (117)
o -

_3?_0 for 0= T (118)

Using a derivation similar to the one presented in Appendix B, we propose the following solutions
which satisfy Eq. (99) and boundary conditions (115)—(118),

2M
1 m\ 2 T
QI=RT [ - sin9—9c059+—-95in9] + E CrUr(R,6), (119)
1-(%) (2) 2 =
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¥
00

[ ="P-o.

Fig. 12. Flow in corner when one wall moves with constant velocity

where

Ui(R,6) = Re {R’\"“[cos(}\k +1)8 — cos(\p — 1)6]

Ak cot 27
—__(’i\i: 2 [sin()t;c+1)r9—i:tisin()\k‘—l)g]} k=12....M,  (120)

where Ay = ax +ib; are complex numbers which satisfy transcendental equation ( 106).

Functions given by (119)-(120) can be used to find a solution for creeping flow in the cavity
shown in Fig. 9. For the two elements shown in Fig. 9 (elements I and II), the solution (119)-(120)
can be used.

4. NUMERICAL EXAMPLE OF APPLICATION OF THE PROPOSED T-FUNCTIONS:
CREEPING FLOW THROUGH A PERIODIC ARRAY OF CYLINDERS

Consider the steady-state flow of an incompressible fluid thorough a periodic infinite square array
of cylinders, each of radius 2a, with 2b being the center-to-center distance between two adjanced
cylinders (see Fig. 13). The mean flow velocity of magnitude U is in the X-direction. Due to the
symmetry, the creeping flow can be considered in repeated element OABC, shown in Fig. 14.

The boundary-value problem for this element is the following,

governing equations,

Viw = 0, (121)

Vi = w, (122)
and boundary conditions

=0 for r=a, (123)

o _ _

ar 0 for r=a, (124)

=0 for 6=0, (125)

w=0 for 8=0, (126)

N _ =X

75 =0 for 6= ) (127)
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Fig. 13. Flow through a periodic array of cylinders
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(128)
(129)

(130)

(131)
(132)

where w is vorticity, 1 is the stream function, U is the velocity of mean flow (average velocity in

z direction).
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Let us introduce the dimensionless variables, using b as the characteristic length scale and U as
the characteristic velocity. These dimensionless variables are the following:

x Y r a ) wh
X=- ==, R=—, E=- UV=—, Q=—.
b’ ¥ b b b’ bU U (139)

This leads to the non-dimensional formulation of the boundary-values problem presented in Fig. 14.
Here, it must be noticed that governing equations and boundary conditions on that part of the

boundary CD, DF, and FA are identical to Eqs. (33)-(34) and boundary conditions (35)—(40).
The additional boundary conditions are .

v

—_— | =1

X 0 for X =1, (134)
N

3—X =) for X = 1, (135)
U=1 for Y =1, (136)
Q=0 for ¥ =1 (137)

The solution of the above boundary-value problem is assumed in the form (41)-(42), namely

2M

Q =Y CiTi(R,9), (138)
k=1
2M

¥ = CxUk(R,0, E). (139)
k=1

where T}, and Uy, are given by (43)-(48).

The solution (138)—(139) exactly fulfils the governing equations and boundary conditions on
the boundary CD, DF, and FA. The constants C} must be determined from the other boundary
conditions (134)—(137).

Using the formula

av oY 197 .
ﬁ:'éﬁcose_ﬁﬁ sin 6 (140)
one can obtain
2M
v
25 = O CkWi(R, 6, E) (141)
k=1
where
Wi(R,0,E) = %(Rz — E*R7?) sin@ cos 0, (142)
Wi(R,0,E) = %(R”‘ — E*R¥*=1)) sin2(k — 1)0 + %(ﬁ:2Jc — E* R2k) 5in 2k6, (143)
k=2,3,...,M,
Wrs1(R,0,E) = -;-(1 - EZR_z) sinf cos @, (144)
—4(k—1) R2(k-1) 2 p—2k
Wark(R,0,E) = £ 8 _Rl) sin(2(k — 1)6 + [ﬁ}i‘“““” - E%] sin 2k0
R-—‘Z{k—l]
- [3sin(2k — 1) cos 0 + cos(2k — 1)@ sin ). (145)

8k —1)
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In a similar way

2M
% = ; CVi(R,0)
where
Vi(R,0) = (2k —1)R?*Vgin2(k — 1)6,
Vam+k(R,0) = (2k — 1) R?* sin 2k0 (G B oo
We chose the collocation points whose co-ordinates are given by
RAB() = 1+ = 11))2 ,

TAB(j) = arctan (J = )
on boundary AB (see Fig. 14) and

RCB(j) = RAB(j),

TCB(j) = 5 -TAB(j), j=23,...,L,

on boundary CB (see Fig. 14), respectively.
By using boundary condition (134) we have

2M

M.

Y  CWi(RAB(j),TAB(j),E) =0, j=23,...,L.

k=1
Similarly using boundary condition (135) we have
2M
Y CiVi(RAB(j),TAB(j) =0  j=23,...,L.
k=1
From the condition (136) results that
2M

> CUk(RCB(j), TCB(j),B) =1,  j=23,...,L.

k=1
Similarly using boundary condition (137) we have

2M
> CiT(RCB(j), TCB(j)) =0  j=2,3,...,L.
k=1

(146)

(147)
(148)

(149)

(150)

(151)
(152)

(153)

(154)

(155)

(156)

Equations (153)-(156) constitute a system of 4L — 2 linear equations with N = 2M unknown
coefficients Cj . This system has been solved in the least square sense. Example of the coefficients
Ck , calculated by means of this algorithm, is given in Table 2. One can observe that the coefficients

quickly decrease, as the number of terms considered in the truncated series increases.

In order to estimate the accuracy of the method the local error criteria has been applied. The

following definitions for errors are introduced,
ER1 = max |¥(X,1) — 1],

= a(1,Y)
ER2 = max T 3
ER3 = max |Q(X, 1),

) 89(1,Y)
ER4 = max ‘—aX— N

(157)
(158)
(159)

(160)
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Table 2. Coefficients of expansion in solution (138)-(139). Number of collocation points per unit length of
boundary L = 25. The ratio of diameter of cylinders to distance between neighbouring cylinders E=101

C(1) = —0.884966408993115183D+00 | C( 8) = 0.112861886362430064 D+01
C(2) = 0.222942184902081481D+00 | C( 9) = —0.300868155068206953 D—03
C(3) = 0.316949653135075663D0—-03 | C(10) = —0.302089135558947975D—-07
C(4) = 0.1806022778639333050-01 | C(11) = —0.180701348649491536 D—11
C(5) = 0.540035521614847577D-03 | C(12) = —0.176197412254323144D—16
C(6) = 0.673371493354316683D-03 | C(13) = —0.955714134181379626 D—20
C(7) = 0.101756084072560863D—03 | C(14) = 0.266208914274642255D—24

Table 8. Values of maximum local errors versus number of terms series N = 2M in solution (138)-(139).
The ratio of diameter of cylinders to distance between neighbouring cylinders E = 0.1. Number of collocation

points per unit length of boundary L = 25

ER1

ER2

ER3

ER4

0.14486 E+00

0.19778 E-01

0.18930E+00

0.22354E+00

0.40995E-01

0.17262E-01

0.28953E-01

0.50270E-01

-y
o|w|la| =

0.48470E-01

0.14454E—-01

0.30871E-01

0.24145E-01

12

0.46973E-01

0.14051E-01

0.52413E-02

0.88743E—02

14

0.70820E-01

0.14185E-01

0.46934E—-02

0.46594E—02

16

0.69712E-01

0.14190E-01

0.14459E-01

0.52028 E—02

18

0.29472E-01

0.14387E-01

0.12810E-01

0.59318 E—02

20

0.32266 E—01

0.13758 E-01

0.59177E-02

0.46124E-02

22

0.49571E-01

0.13618E—01

0.55568 E—02

0.33682E-02

24

0.64872E-01

0.13804E-01

0.12451E-01

0.39154E-02

26

0.28288E-01

0.14283E-01

0.11530E-01

0.47579E—-02

28

0.23598 E-01

0.13648 E—01

0.76384E—02

0.44121 E—02

30

0.34713E-01

0.13280E-01

0.55524E—-02

0.35546 E—02

where functions Q(X,Y) and ¥(X,Y) are given by (138)-(139). These errors are measures of sat-
isfaction of boundary conditions (134), (135), (136), and (137), respectively. Examples of values of
errors are presented in Table 3. One may notice that the method applied above is relatively accurate.

5. CONCLUSIONS

A new way of constructing trial functions for the indirect Tefftz method as applied to 2-D creeping
flow problems has been proposed. The functions fulfil exactly not only the governing equations, as
in the traditional Trefftz formulation, but also some additional boundary conditions of the problem.
The boundary conditions considered throughout the paper concern particular geometries that are
difficult to tackle numerically, like corners. Moreover, the method is especially efficient in treating
the problems of creeping flow around cylinders in bounded or unbounded domains. In the case
study that was worked out in the paper numerical results are presented for values of maximum
local errors, as a function of the number of trial functions. The local errors observed on the stream
function at the boundary, where the boundary conditions are fulfilled approximately, are below 4%
for 30 trial functions. The precision of the method can still be improved by an adaptation procedure,
like the one presented in [4]. The practical applications of the proposed algorithms are related to
the steady-state flow of a viscous fluid in bearings (4], stick-slip flow [6], and flow in fibrous porous
media (flow in infinite array of cylinders), among others.
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APPENDIX

A. DERIVATION OF SPECIAL PURPOSE T-FUNCTIONS FOR FLOW WITH TWO AXES OF
SYMMETRY AROUND A CIRCULAR CYLINDER

A general solution of Eq. (33) in polar co-ordinate system is:

Q=A1+ AR+ A0+ A0l R+ [(BkR" + CxR~*) cos k@ + (DyR* + ExR™*)sin kﬂ]

k=1
(A1)
where Ay, Ay, A3, Ay, By, Ck, Dy, Ey , are integral constants.
The boundary condition (38) will be fulfilled if
A =4=A3=By=Ci=0. (A2)
Hence
o .
Q=A30+ Y (DiR* + ExRF) sinkg. (A3)
k=1
The derivative of (A3) with respect to @ is equal
o0 T X o
= = A3 + Y _ k(DxR* + ExR™*) cos k6. (A4)
00 —
Taking A3 = 0 and putting @ = 7 as in the boundary condition (40) we have
>~ k(DkR* + ExR*) cos kg =0 (A5)

k=1
which is satisfied if
k=1,3,5,7,... (A6)

Thus without lose of generality one can write

Q=) (DxR*! + ExR~(-) sin[(2k — 1)0). (AT)
k=1

The general solution of Eq. (34) can be written in the form
where
[oe]
U=F+FnR+F+FOnR+Y [(GkR"‘ + HR %) sink@ + (P.R* + QxR™*) cos ko]

k=1
(A9)
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and Fy, F, Fy, Fy, Gy, Hy, Py, Qy are constants, and W, is particular solution of the nonhomo-
geneous Eq. (34), i.e.

0%, 18\1!,,, 1 820,
OR? " R R ' R? 30?

It can be easily checked that the above equation is satisfied by the function

i(fgkﬁ?k-1 — EyR) sin[(2k — 1)8)]. (A10)
k=1

Wy = (812391 + ElRlnR) sin @ + Z [ Dy R**L ——E R~ 2’=+3J sin[(2k — 1)6)].

8(k —
(A11)
Hence, the general solution of Eq. (34) has the form
U =F +F21DR+F38+F49111R
+3 [(GkR" + HiR %) sink6 + (PuR* + QuR™*) cos kS]
k=1
| 1 3
+ —R D, + §E1RII1R sinf
4 Okl _ 2k+3 2
+ Z [ DR S(k 5 ExR™ ] sin[(2k — 1)6). (A12)

Taking into account the boundary conditions (37) and (39) we have
=F=F=F=PF=Q=0. (A13)
Then, the general solution (A12) is reduced to the form

_ k —ky o 1.3 1 :
U= Z_: [(GkR + HR™7) smk9+] + (SR Dy + 2E1RlnR sinf

1 = .
+ Z [ o DR S =T) EiR 2’“+3] sin[(2k — 1)6)]. (A14)
k=2

Taking into account condition (35) we have

oo
0= [(GkE* + H,E™) sinkf + (PuE* + QuE*) cos kﬁ] + (—1-E3D1 + %ElE]nE) sin

k=1 8
22 2k A 2k+3 .
+ Z [ D\E : (k ) E.E- ] sin[(2k — 1)6]. (A15)
This will be fulﬁl]ed if
%5‘301 + %E;EIDE+G1E+H1E“1 =0, (A16)
GLE*-1 4 g g1 4 1 D+ 1 E E~%43 =, k=234 (A17)

8k 8(k—1)
Taking into account condition (36) we must calculate derivative of (A14) with respect to R,
g;i [3R2D1 e E; (InR+1)+G; - R_2J sinf
+ Z [(% —1)GrR*~? — (2k — 1)H R~%
k=2
2+1 ) ek, 2k—3

T 8k — 1)

ExR~ 2k+2] sin(2k — 1)6.
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From condition (36) we have

%E2Dl + %El(lnE +1)+Gi—HE%2=0 (A18)
or

gEaDI B %E;E(lnE +1)+GiE-HE =0 (A19)
and

(2k=1)GLE¥2% = (2k= 1) H E~% et D E* + il E E*+2 = (A20)

8k 8(k—1)

or

(2k — 1)GrE*~1 — (2k — 1)H E~2+1 ¢ Sl Dy E*+1 4 g E E?t3 = 0. (A21)

8k 8(k — 1)
Using Eqgs. (A16) and (A19) we can express G; and H; in terms of D; and E; , namely
B = _33291 i %El (lnE + %) , (A22)
14 1.

Using Eqgs. (A17) and (A21) we can express Gy and Hy in terms of Dy and Ej , namely

E—d(k—l] EZ

Gk = gDk =) * " q@k =1 °* (A24)
Eflk EZ

Hk = mpk -+ Z@c—_—l—jgk . (A25)

Putting (A22), (A23), (A24), and (A25) into (A14), we can express stream function in terms D, ,
ElsDksEkaonly

6 i D, 2k~ 1)R2k+1 _ ok B2 R+ 4 ik p—(2k-1)
k

8k(2k — 1) sin[(2k — 1)0] Dy

k=2

o0 E—4(k—1)R2k+l + z(k = I)EQR—2k+l - (2k e l)R—2k+3

i kzng" 8(k —1)(2k — 1)

sin[(2k — 1)0) Ex . (A26)

Now we introduce the following nomenclature,

CI=D1| 02=D2: i Ck‘:Dk (k:213!"'1M): (A27)
CM-{-l:El) GM+2=E23 veey CM+k=Ek (k=2131"-sM))
and truncating infinite series to finite number M terms we can write

2M

Q=73 CiT(R,0), (A28)
k=1
2M

¥ =" CUk(R,9,E), (A29)
=1

where Ty (R, 0) and Ui(R, 6, E) are functions given by (43)-(48).
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B. DERIVATION OF SPECIAL T-FUNCTIONS FOR FLOW IN % RIGID CORNER

Following Moffat [5] we introduce the separated solution ¥(R,0) of Eq. (99) in plane polar co-
ordinate system appropriate for corner flow. Moffat has used the following solution,

¥ = RN (9), (B1)

where )y is real or complex constant and called the exponent of the solution. For k=0 and k =1
the function fy(6) take special forms. In considered case Moffat’s solution of Eq. (99) is assumed in
the form

U(R,0) = BoRfo(6) + SR 1(0) + Y BRMH! £(6) (B2)
k=2

where By, 3, B> are constants and

fo(0) = Agcosf + Bysinb + Cyf cos § + Dyl sin 0, (B3)

f1 (9) = A cos 260 + By sin29+019+D1 . (B4)

f(0) = Ag cos(\x +1)0 + By sin(Ag +1)0 + C cos(\, — 1)0 + Dy, sin(Ax —1)8, (B5)
k=235,

The functions fi(#) involve arbitrary constants Ao, Bo, Cy, Dy, Ay, By, Cy, Dy Ak o By, Chy
and Dy, which must be determined from boundary conditions.
The boundary condition (100) will be satisfied if

Ag =.0, (B6)
A1+ D; =0, (B?)
Ayx+ Dy =0. (B8)

The derivatives of functions fj (6) with respect to 6 are following,

fo = —Agsin@ + By cos 0Co(cos @ — Osin ) + Dy(sin 6 + 0 cos 0), (B9)
fi = —2A;5in20 + 2B, cos 20 + C (B10)
fr = =AMk +1)sin(A\x +1)0 + By(Ar + 1) cos(Ag + 1)0

— Ci(Ax — 1) sin(Ag — 1)0 + Dy (A — 1) cos(Ax —1)8. (B11)

After using (B9)—(B11) from the boundary condition (101) results that

By ¥ Cy=10 (B12)
2B, +Cy =0, (B13)
Bk()\k + 1) o Dk()\k == 1) =0 (814)

The boundary condition (102) will be satisfied if
By + Dg% =0, (B15)
Lok +clg £, =0 (B16)

Ay cos( M\ + 1)% + By sin(A + 1)% + Cr cos( Ay, — 1)% + Dgsin(\g — 1)% =0. (B17)
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The condition (103) leads to

Ao co% +Dy:=0, (B18)

—2B; +Cy =0, (B19)

Ax(Mx + 1) sin(x + 1)% + Br(\k + 1) cos(h + 1)%

~ Gk = D sin(A — 1)3 + Di(M — 1) sin(h — )7 =0. (B20)

From (B6), (B12), (B15), and (B18) results that

Ag = By = 0 =Dy (B21)
Similarly, from (B7), (B13), (B16), and (B19) results that

A; =Bi = =Di. (B22)
Equations (B8) and (B14) permit to express Cy and Dy by Ay and By, namely

o= Sl (B23)

3 —i‘: < in. (B24)

Now, Egs. (B17) and (B20) can be written as

™

2
A [(J\,c + 1)sin(As + 1)% — (M — 1) sin(Og — 1)%]

T A+1 ., T
S sin(Ag — I)E:I =1, (B25)

Ag [cos()\;c +1) cos(Ag — 1) %] + B [sin()\;c +1)

iy [(,\,c +1) cos(hk + 1)"'2—r — (M — 1) cos(Me — 1)5] =0.  (B26)

2
Because
T AT T AT . AT
cos(z\+1)-2— = cos 5~ c08 5 —8in - gin 5 = —sin -, (B27)
s AT T, o AT, T AT
cos(,\—l)§ = cos - cos 5 +sm—2— sin 5 =sin—-, (B28)
: s . AT T D, P A
sin(A + 1)5 = sin —- cos 5 + cos 5 sing =cos—-, (B29)
g s AT s AT .o Am

sm()«—l)i = sin == cos 5 — cos - sin 5 = —cos -, (B30)

Egs. (B25) and (B26) can be written as
A A
Ax(\ — 1) sin -—‘253 = Bk)«kcos%ﬂ , (B31)
A c N
A Ay cos %ﬂ' = —Bi(Ax + 1) sin %ﬂ z (B32)
Dividing by sides the last equations we obtain
A

A2 cos? ""T’r = —(A% — 1) sin? %"” : (B33)
which gives the transcendental equation (Eq. (106)) in the form

i g (B34)

2
Solutions of this equation are given in Table 1.
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Due to Eq. (B32) we have

Ak cot 24T
By =-— Ak“co—2 (1335)
Reoil
Taking into account the above results in solution (B2) we have
2M
¥ = " CyUk(R,0) (B36)
k=1

where Ui (R, 6) are functions given by (105).
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