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The purpose of this work is to compare and assess, more in terms of computational efficiency than in terms
of accuracy, three alternative implementations of a boundary formulation based on the Trefftz method
for linear elastostatics, namely a collocation-based and two Galerkin-based approaches. A finite element
approach is used in the derivation of the formulation for the Galerkin-based alternative implementations.
The coefficients of the structural matrices and vectors are defined either by regular boundary integral
expressions or determined by direct collocation of the trial functions. Numerical tests are performed to
assess the relative performance of the different alternative implementations.

1. INTRODUCTION

The basic feature of all Trefftz-based formulations is the use of solutions of the governing differential
equation as trial functions anywhere in the domain and on the boundary, [1, 9]. As these solutions
satisfy locally all the domain conditions, the role of the resulting discrete model is to approximate the
boundary conditions of the problem. This is a feature shared with all boundary integral formulations.
The formulations known as boundary element and boundary integral equation methods rely in the
use of fundamental solutions which are singular by nature. This singular nature may cause numerical
difficulties for the procedures usually found in these types of boundary methods, namely, the direct
and the indirect approaches. In the direct approach sources are placed on the boundary which, due
to the singular nature of the trial functions used, leads to singular and/or hypersingular boundary
integrals. The indirect approach starts by defining a fictitious boundary (enclosing the actual one) for
placing the sources thus avoiding the singular integrals although at the cost of needing a supporting
criterion to decide on the optimal distance, which has a direct influence on the condition number
of the solving system.

By contrast, Trefftz methods utilise, in general, regular solutions of the governing equations.
Briefly, it can be said that the classical Trefftz method [14] consists in the superposition of a certain
number of solutions of the governing differential equation, appropriately scaled by some unknown
parameters. These unknown parameters (which define the contribution or “weight” of each function
to the global solution) are then determined from the approximate enforcement of the boundary
conditions.

The boundary conditions can be implemented using different methods, namely by the least-
squares method, the Galerkin and the collocation methods. Depending on the technique being
used, these alternative approaches may produce or not symmetric and sparse solving systems. In
the collocation method (CO) the boundary conditions are enforced locally at a certain number of
points. The major feature of this approach is that there are no integrations to carry out. However,
it leads to non-symmetric and, in general, over-determined, systems of equations [10-12].

On the other hand, the Galerkin approach requires boundary integrations but leads naturally
to symmetric and sparse systems of equations. The boundary conditions are enforced on average,
in a weighed-residual form [2, 7, 8]. If the (static) boundary conditions are enforced at selected
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boundary points, by collocation, symmetry is preserved while reducing the computational cost of
boundary integration [6].

Although the Trefftz approximation is a boundary solution method by nature, it is important
to stress and emphasise the similarities with domain methods, namely, the finite element method.
The main advantage of implementing the Trefftz method from a finite element standpoint is the
possibility of combining the main features of the competing boundary element and finite element
methods. The approximation bases are regular and the solving system is symmetric and sparse,
like in the conforming finite element method but all structural matrices present boundary integral
expressions, as in the conventional boundary element method.

The implementation of the Trefftz method within a hybrid finite element framework was first
suggested by J. Jirousek, who has applied it to a variety of problems in structural mechanics.
Basically, depending on the constraints placed on the domain approximation bases it is possible to
define hybrid-mixed (no constraints), hybrid (either equilibrium or compatibility) and hybrid-Trefftz
formulations (all domain conditions).

In this work, a hybrid-Trefftz finite element approach is used in the derivation of the formulation
for the Galerkin-based alternative implementations. The theoretical framework for the hybrid-Trefftz
model used here is presented in [2]. This model is derived directly from the fundamental equations
governing the problem under analysis and mathematical programming is used to establish the
associated variational statements and the conditions for the existence, uniqueness and multiplicity
of the finite element solutions.

The domain is subdivided in regions or elements, which need not be bounded, simply connected
or convex. The stress field is directly approximated in each element using a complete solution
set of the governing Beltrami condition. This stress basis is used to enforce on average, in the
Galerkin sense, the compatibility and elasticity conditions. The boundary of each element is, in turn,
subdivided into boundary elements whereon the displacements are independently approximated.
The same basis is used to enforce the static admissibility conditions. In general, these conditions
are enforced, on average, in the Galerkin sense (FG or Full Galerkin). When Dirac functions are
used for the displacement approximation, the static admissibility conditions, which reduce to the
Neumann conditions as the stress approximation satisfies locally the domain equilibrium condition,
are enforced by collocation thus minimising numerical integrations (GC or Galerkin Collocation) [6].
The resulting solving system is symmetric and sparse. The coefficients of the structural matrices
and vectors are defined either by regular boundary integral expressions or determined by direct
collocation of the trial functions.

The following sections will describe, in a concise manner, the basic aspects of the three alternative
Trefftz formulations under analysis. Details can be found in [3-6, 11, 12]. Numerical tests are then
performed to assess the relative performance, especially in terms of computational efficiency, of the
different alternative implementations.

2. FUNDAMENTAL RELATIONS
The system of equations governing the linear response of an elastic (linear, laminar or solid) body

with domain V' and boundary I, assigned to a Cartesian system of reference, can be stated as
follows,

Do+b=0 inV, (1)
E=1r"a inV, (2)
e =f(oc—op) +¢€o, inV (3)
N&< {7 e 4)
u=ur o La (5)



Galerkin vs. collocation Trefftz formulations 399

In the equilibrium and compatibility conditions (1) and (2), vectors o and € list the independent
components of the (generalised) stress and strain tensors and vectors b and u collect the (gener-
alised) body-forces and displacements, respectively. The differential equilibrium and compatibility
operators D and D* are linear and adjoint in the context of geometrically linear analysis.

In description (3) of the constitutive relations, the (symmetric) flexibility matrix f collects the
relevant elastic constants and the residual states are represented either by the (generalised) stresses
or strains listed in vectors oy and &g, respectively.

Appropriate combination of the domain conditions (1) to (3) yields the Navier description (6)
for the differential system of equations governing the response on the domain under analysis, where
k = f~1is the local stiffness matrix

DkD*u+D(og—keg) +b=0 in V. (6)

The boundary conditions (4) and (5) apply to the entire limiting surface I" of the domain V
under analysis: ' =T', UT', and § =T, N T, . In the Neumann boundary condition (4), matrix N
collects the components of the unit outward normal vector associated with the entries of the dif-
ferential equilibrium matrix D and tr is the (generalised) stress vector prescribed on portion I',
of the enveloping surface. In the Dirichlet boundary condition (5), vector ur defines the (gener-
alised) displacements prescribed on the complementary domain I',,. The notation used above can
accommodate mixed boundary conditions.

3. DISCRETIZATION

Assume that domain V is discretized into elementary regions V¢ and that its boundary, I'¢, is in
turn discretized into sides.

Two complementary regions, the static (Neumann) and kinematic (Dirichlet) boundaries I'¢
and I'; , respectively, are distinguished on the boundary of a typical region (I'* = I'¢ UT¢ and
0 =TeNTe). For a stress model, the kinematic boundary, I'¢ | is the region of its boundary whereon
the displacements are prescribed, I'; = I'*NT'y, and the static boundary, I'¢ = T'¢U (I'*NT,), is the
complementary region of the boundary where the displacements are not known. Hence, the static
boundary of a stress element combines the inter-region boundaries with the static boundary of the
mesh that region e may contain.

The Trefftz approximation is, usually, of very high quality even when coarse meshes are used.
As it is shown below, the domain approximation basis is polynomial and described by generalised
(non-nodal) variables. This allows for a very loose definition of the geometry of the regions, which
may not be bounded, simply connected or convex.

The geometry of the mesh is defined by the co-ordinates of the nodes strictly necessary to describe
a given shape in parametric form, typically n+1 nodes for a polynomial line of degree n in two-
dimensional problems. The topology of the mesh is defined by assigning sides to the nodes and each
region is identified by its connecting sides.

4. INDIRECT COLLOCATION — APPROXIMATION

To solve the problem above represented by the Navier equation (6), the indirect collocation is,
probably, the simplest technique. All that it requires is a complete set of homogeneous solutions
plus a particular solution. It is possible to derive a complete system of functions for a bounded,
simply connected, two-dimensional region using, for example, the complex representation of Muskhe-
lishvili [13] (of biharmonic functions):

e for the displacement components in the complex plane, u and v, respectively,

2u(u +iv) = Kkp(2) — 2¢'(2) — P(2), (7)
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e for the projections of the stresses on the outward normal and on the tangent (n and ¢):

tn — ite = ¢/ (2) + ¢/ (2) — {2 (2) + ¥/(2)}, (8)
where

z = x + 1y is the position vector in the complex plane of a boundary point with respect to some
fixed position which is normally taken as the centroid of the region being analysed;

1 is the shear modulus;

k =3 —4v or [(3 —v)/(1 + v)] for plane strain and plane stress, respectively;
v is the Poisson ratio;

« is the angle between the normal and the z axis;

and the functions ¢(z) and 1)(z) are arbitrary analytic functions. For convenience the following set
is used,

p(2) =iz" and 4(2) =0; p(z) =2 and 9(2) =0;
0(z) =0 and o(z) = iz"; @0(2) =0 and w(2) = 2*,

where k is an integer.

When a sufficient number of these solutions is used, an approximation to a general plane elasticity
problem in a simply connected region may be found by matching the boundary conditions in an
appropriate manner.

Solutions exist as well for multiply connected regions and for regions with cuts or cracks [12].
If an analysis is required of a multiply connected domain then it is probably a better approach to
discretize the domain with the use of more than one simply connected regions. It is possible, in this
way, to decrease the possibility of numerical ill-conditioning which may arise when the degree of
approximation required (which depends on the geometry of the domains under analysis) gets too
high.

The use of more than one region is, therefore, recommended and it does not cause any implemen-
tation or numerical inconvenience. All it requires is a proper definition of the interface continuity
conditions, that is, equilibrium and compatibility.

This is represented below for an interface between regions a and b,

Ylz) ="ulz);  vlz)=Yvlx); talm)==ala)io Shla) = =Mz

where u, v and t,, t; are, respectively, the displacement and the traction components at interface
collocation point z;.

5. INDIRECT COLLOCATION — SOLVING SYSTEM

A non-symmetric and, usually, overdetermined solving system is obtained by simply allocating at
each collocation point two equations out of the set of four which is possible to establish, that is,
two boundary displacements and two tractions given, respectively, by Egs. (7) and (8).

The resulting system of equations is of the following form:

0%(z2) ©Ok(z2) u(22) = Be=¥§ 9)
0 ©i(z) tn(23)

In the expression above the first and second equations represent the enforcement of the u com-
ponent of the displacement boundary condition at collocation point z; , and 2z, respectively, while

05(21) ©j(21) [CO ] : u(21)
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the third equation represents the enforcement of the normal component of the traction boundary
condition at collocation point z3. The matrix term ©J (z;) represents the rigid body terms at the
first collocation point and ©} (21) is the linear term of the boundary displacements description. All
the other (higher order) terms would be expressed in a similar manner. The traction equation only
differs from the displacement one in the sense that the tractions corresponding to constant (rigid
body) displacements are, obviously, zero. The unknown coefficients ¢y and ¢; are obtained with the
use of least-squares type solvers or other suitable techniques.

6. GALERKIN — APPROXIMATION

The stress model of the hybrid-Trefftz formulation is based on the direct approximation of the
stresses in the domain of the region and of the displacement components on its Neumann boundary,

oc=SyX +op 1, G (10)
u = Urq on I (11)

In the definitions above, matrices Sy and Ur collect stress and boundary displacement modes and
the corresponding weighting vectors, X and q, define generalised stresses and generalised boundary
displacements, respectively. Vector op is used to model particular solutions that will be, from now
on, disregarded for the sake of simplicity.

Besides completeness and linear independence, no constraints are placed a priori on the selection
of the boundary approximation basis Ur . However, in the Trefftz method for elastostatics, the stress
approximation basis Sy is constrained to be associated with the (elastic) displacement field Uy that
solves locally the Navier equation (6), as given in Eq. (7).

The domain approximation (10) is strictly region dependent, as a set of weights X is associated
to each region and different approximation bases Sy are implemented in each region. Approxima-
tion (11) is strictly side dependent, as a set of weights q is associated to each side of the region(s)
and different approximation bases Ur can be implemented in each side.

The boundary approximation basis Ur is taken as a subset of linear independent terms of the
mapping of the complementary solution basis Uy on each side of the region(s).

Depending on the type of boundary displacement approximation basis chosen, continuous (poly-
nomial based) or “concentrated” (Dirac based), it is possible to obtain a continuous (Galerkin)
representation or a boundary collocation representation.

The boundary collocation representation [6] simplifies the computation of the compatibility ma-
trix and leads to a boundary displacement approximation matrix where sets of Dirac functions are
placed at collocation points which are, in the tested implementation, 1nter10r points of the boundary
thus leading to a discontinuous approximation.

7. GALERKIN — ELEMENTARY EQUATIONS
The equations governing the discrete hybrid-Trefftz stress model summarised in Table 1 are derived

from the dual transformations of the basic approximations (10) and (11), which define the following
generalised strains, e, and tractions, Qr,

- / St edve, (12)

O / Ut tpdre, (13)
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Table 1. Basic equations for the hybrid-Trefftz stress model

Equilibrium Qr-=A'X, ' (14)
Compatibility e=Aq, (15)
Elasticity e=FX. - 1

The following definitions are found for the compatibility matrix and for the flexibility matrix,

A= /T%,Up a1t (17)

F = /sﬁ,fsvdve =/T§,UVd1‘€. (18)

Following a straightforward Galerkin approach it can be easily confirmed that the equilib-
rium (14) and elasticity (16) equations represent the Up- and Sy-weighed residual enforcement
of the local Neumann and constitutive conditions (4) and (3), respectively, for the assumed stress
field (10),

/U% {t —tr} dI¢ =0, (19)

/ St {e — [£()]} AV° = 0. (20)

Similarly, the compatibility equation (14) can be interpreted as the Sy-weighed residual enforce-
ment of the compatibility condition (2), which is integrated by parts to incorporate the Dirichlet
condition (5) and implement the assumed boundary displacement approximation (11),

/ St {¢ — D*u}dV® =0. (21)

8. GALERKIN — SOLVING SYSTEM

The symmetric, boundary integral finite element solving system (22) is obtained combining
Egs. (14)-(16), to eliminate the generalised strains as explicit variables,

Eoli b tahs &

The solving system for the assembled mesh presents the same structure of the elementary sys-
tem (22). The assembly procedure is based on simple direct allocation instructions, instead of the
double summation typical of the conventional (conforming) finite element formulation and can be
performed either directly on the elementary system (22) or on the supporting equations given in
Table 1.

To assemble the elasticity condition, it is sufficient to collect the elementary relations (16) for
all building elements/regions. The resulting elasticity matrix is block-diagonal and symmetric and
vector X lists the generalised stresses for all regions.

9. NUMERICAL IMPLEMENTATION

The most relevant aspects in the numerical implementation of both solving systems (9) and (22) are
commented in [3-6, 11, 12]. One of the main aspects of any implementation of a numerical technique
is the type of solver used.
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For the Galerkin based approaches the sparsity of the system is fully exploited with the use of
routine MA47 of the Harwell Subroutine Library that is a direct solver.

The collocation-based approach uses routine MA44AD, a least squares solver based on the SVD
algorithm, of the Harwell Subroutine Library. This solver does not exploit sparsity and is, therefore,
much less suitable than the MA47 solver for the case of multiple regions.

10. NUMERICAL TESTS

In [3, 6, 12| tests are presented that illustrate the convergence patterns of the solutions obtained
with the three alternative Trefftz models, their sensitivity to incompressibility and mesh distortion
and their relative accuracy in the estimation of stresses. From those results it is possible to conclude
that all the alternatives perform quite well in terms of accuracy. What remains to be done is the
comparison of the approaches in terms of computational efficiency.

To assess the computational efficiency of the Trefftz models, the (total and partial) time taken
to assemble and solve the system and the amount of required storage, are represented for the test
cases considered. In this work two problems are analysed:

e a square plate for which an exact solution is available;

e an L-shaped plate discretized with multiple regions.

Square plate with exact solution

The first example analysed is that of a square plate of unit length discretized in a single region
subjected to Neumann (on two parallel sides) and Dirichlet (on the other two sides) boundary
conditions associated with the following cubic stress field,

{02, 0y, 00y} = {—0.32y(32? + 49%), +0.32y(182% — ?), —0.96z(22% — y?)}.

The exact solution for the strain energy is Uy = 384(89 + 64v)/21875 E, where E is the Young
modulus and v the Poisson ratio, and is very accurately represented by each of the alternative
Trefftz models described.

The results, see [3, 6], show that the exact solution is recovered when the appropriate degrees of
freedom are accommodated by the stress and boundary displacement approximations, namely when
the stress approximation includes the cubic term and the displacement approximation includes the
quartic term.

To recover the exact solution is therefore necessary that the number of stress parameters (un-
knowns) be, at least, 15, corresponding to 3 + 4+n, with n, = 3. The number of unknown displace-
ments should be, at least, 20, corresponding to 2 (sides) *2 (directions) *n, where ng = 5 is the
number of collocation points or the degree of the displacement approximation +1, respectively, for
the Galerkin-collocation and the full Galerkin approaches.

The indirect collocation approach requires, at least, a total of 3 4+ 4*n, with n, = 3 unknowns
for the traction equations while for the displacement equation an extra set of three rigid body
displacements are also required.

For this approach the system of equations is, usually, overdetermined, that is, the number of
equations is larger than the number of unknowns. In all tests carried out here, and based on past
experience, the number of equations is taken to vary between 10 to 50% higher than that of un-
knowns.

Although exact values are recovered with a very low number of unknowns, a much higher number
of unknowns was considered so that comparisons could be made.

The first test was then carried out assuming n, = 26 and ng = 15 and the results were as in
Table 2.
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Table 2. Robinson’s test; dimensions of the system and CPU time (in 1/100-th of second) on an IBM RISC

workstation
. Galerkin based Collocation ;
unknowns | equations Solving
create F, Eq. (22) | create A, Eq. (22) | create ©, Eq. (9)
FG 197 197 143 99 : 5
GC 197 197 127 2 :
cO 109 128 £ : : 2 3

It can be observed from Table 2 that for the Galerkin based approaches most of the time is
consumed in creating the system matrix (for convenience, the system matrix is decomposed into
two parts corresponding to the creation of the flexibility matrix F, and the compatibility matrix A).
Notice, in particular, the decrease in the time taken to create matrix A with the GC approach when
compared to the FG approach due to the need, in the latter approach, to numerically integrate all
the terms of the matrix.

The CO approach is, by far, the fastest alternative for the same degree of approximation because
no integrations are required and the matrix is obtained by straightforward allocation. There is also
a (not relevant) difference in the time taken to compute the F matrix for which the only explanation
is the fact that different implementations (of the same formulation) were used.

The results above may be misleading as only one region is considered. As referred in the previous
section, when multiple regions are considered the least-squares solver used for the CO approach
performs less efficiently in comparison to the sparse linear solver used by the other approaches.

L-shaped plate

A second test with multiple regions was then carried out. Consider the L-shaped plate shown in
Fig. 1 discretized into three square regions. The tangential displacement is allowed at the supported
sides. :

In previous works [3, 6, 12], this test has been used to assess the estimates produced by the
different Trefftz models for the stress components at point P(—a/10,+a/10) in the vicinity of the
wedge singularity. The material constants used are £ = 1 and v = 0.1.

6 5 " 2%l
b §
P. X
7 (/2 s
0 5 1 ]
t
iy s radshen faol f
La I a

Fig. 1. L-shaped plate in tension
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At this point it should be stressed that this test is, in fact, a difficult challenge for any formulation
due to the singularity at the inner corner. From the results previously published [3, 6, 12], it is
possible to conclude that all the different Trefftz models perform very well in particular when
the approximation bases also include singular terms (this was not considered in the comparison
presented here).

The non-dimensional traction distributions (the actual tractions divided by the applied load “t”)
shown in Figs. 2 and 3 are obtained with the Galerkin-collocation approach. Similar results are
obtained with the other approaches. In this case the stress approximation was assumed to be of
degree fifteen in each region, n, = 15, and the boundary displacement approximation was assumed
to be of degree six, ny, = 6, yielding N = 315 degrees of freedom. The traction distributions are
shown here to reproduce the very good agreement with the Neumann boundary conditions. The
values 0-8 on the horizontal axis of Figs. 2 and 3 represent the “s/a” coordinate as represented in
Fig. 1 where “s” is the length starting from the left bottom corner.

In Table 3 all the CPU times and dimensions of the systems of equations obtained with the
different techniques are represented.

tx
3.0 KX
e B
0_0«3}00—0003)0—00@»0—000:&»00%
: PO-0-0-0-0q
2.5 F
B B B e S L e aa o' RS PY)

0 1 2 3 4 5 6 7 8

Fig. 2. Non-dimensional boundary traction ¢, in the L-shaped plate

5.0

25+

-5.0 e b
grog s Uy g oRon sapladie: 96g

Fig. 3. Non-dimensional boundary traction ¢, in the L-shaped plate

Table 3. L-shaped plate. Dimensions of the system and CPU time (in 1/100-th of second) on an IBM RISC

workstation
! Galerkin based Collocation :
unknowns | equations Solving
create F, Eq. (22) | create A, Eq. (22) | create ©, Eq. (9)
FG 315 315 111 78
GC 315 315 91 3 :
CO 198 288 : : 4 19




406 V.M.A. Leitao

It can be observed from Table 3 that, again, for the Galerkin based approaches most of the time
is consumed in creating the system matrix. As expected, the same decrease in the time taken to
create matrix A with the GC approach when compared to the FG approach observed previously
is seen for this test as well. The CO approach is still the fastest alternative for the same degree of
approximation but, now that the system shows a high degree of sparsity, it is evident that there are
advantages in the use of a solver that fully exploits sparsity such as the MA47 solver.

11. CLOSURE

The main conclusion that can be extracted from the work presented here is that computational
efficiency is strongly dependent on the type of Trefftz model considered. Of the three alternative
Trefftz models described here the collocation approach was, for the tests carried out, the most
efficient one in terms of time taken to carry out the basic tasks of assembling and solving the system
matrix. This is so due to the fact that, for the CO approach, there are no numerical integrations to
carry out whereas for the Galerkin based approaches there are always a number of integrations to
compute. The Galerkin-collocation implementation of the hybrid-Trefftz stress model, GC, achieves
a strong reduction in the assembling/creating time when compared to the full Galerkin approach
as matrix A is obtained by simple allocation instructions.

Furthermore, it may be observed that the CPU time consumption for determining the F matrix
(and also for A in the case of the FG approach) increases with the degree of approximation (of the
stresses) considered. This is caused by the need to increase the number of Gauss points proportion-
ally to the increase in the degree of the integrand functions. In the case of the CO approach, the
CPU time for determining the © matrix is, virtually, independent on the degree of approximation
considered.

Another important aspect to point out is the fact that the solution stage is much faster (at
least for the tests presented here and for a whole range of others which are not presented here for
brevity) than the assembling stage for the Galerkin-based approaches, GC and FG. On the contrary,
the solution stage is slower (or takes approximately the same time) than the assembling stage for
the collocation approach. It is a much harder task to solve an overdetermined and, therefore, non-
symmetric, system of equations by using least-squares than to solve a symmetric system of equations
by using fast and efficient solvers that take full advantage of sparsity and symmetry. In a previous
work [11], alternative schemes for the solution of overdetermined systems of equations (in the context
of a Trefftz collocation technique for potential problems) are suggested that may be more efficient
than the one used in this work.

For problems exhibiting singularities, such as the ones encountered in problems of fracture me-
chanics, it is convenient to extend the approximation basis, in Eq. (10), with a set of solutions
that already take the singularities into account. When this is done much coarser meshes may be
utilized but the price to pay is that the numerical integrations (to obtain the F and A matrices)
are more time consuming (than in the standard approximation) as the new stress approximation
functions (the Williams fields) are of singular nature. It is expected that, even more so in these
cases, there will be advantages in promoting the reduction of the number of numerical integrals to
compute.
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