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A method is proposed for smoothing approximate fields of stress-resultants in patches of finite elements.
The method is based on combining Trefftz fields of stress-resultants in a p-version so as to obtain a closest
fit using the strain energy norm as a measure. The local systems of equations are formulated from boundary
integrals. The method is applied to a problem of a square plate modelled by hybrid equilibrium plate
elements using Reissner—-Mindlin theory. Results for the problem indicate that the smooth solution for
stresses can be in close agreement with the analytic solution in the interior of a patch. Proposals are also
included to aid the visualization of tensor and vector continuous fields as stress trajectories.

1. INTRODUCTION

As noted in [10, 15] many methods have been proposed for post-processing stress fields derived from
finite element models. Most have been directed towards the more conventional conforming models
where stress fields are generally neither statically admissible nor continuous. The usual aim is to
improve stress quality by local or global procedures for stress smoothing with two purposes in mind:
(a) to provide a better reference solution for estimating error in adaptive procedures, and/or (b) to
improve reliability of design. Stress fields from equilibrium models may be statically admissible, but
not necessarily continuous, and so again smoothing may be desirable.

Smoothing methodologies are often based on fitting polynomial stress fields by a least squares
fit with discrete values, taking each stress component separately. It is proposed in this paper to fit
local stress fields by minimising the strain energy of the difference between a stress field which is
both statically and kinematically admissible within a patch, i.e. a Trefftz solution, and the finite
element stress field.

The Trefftz patch recovery (TPR) process for obtaining smooth stress-resultants is presented in
Section 2 when the initial stress-resultant field is obtained from a general finite element model but
with special consideration of equilibrating or conforming fields. A hierarchical adaptive procedure
is described in Section 3 for application to plate problems governed by Reissner-Mindlin theory.
An illustrative problem of a square plate representing a reinforced concrete slab as a bridge deck is
presented in Section 4. In this problem stress concentrations exist due to boundary layer effects [14],
and initial stress-resultants are derived from equilibrium models. Section 5 proposes refined methods
for constructing stress-resultant trajectories to aid the visualization of smoothed fields.

2. TREFFTZ PATCH RECOVERY OF STRESS-RESULTANTS

Stress fields are considered within a patch A of elements in which the stresses derived from a finite
element analysis are denoted by opr, . These stresses may satisfy certain conditions, such as those of
kinematic or static admissibility when derived from a conforming or an equilibrium finite element
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model respectively. On the other hand neither of these conditions may be satisfied. In any event,
the stresses opg are generally not fully continuous. The aim with Trefftz recovery is to define within
a patch continuous stresses & which satisfy all the linear elastic equations whilst remaining close to
opg . One way to achieve this aim is to minimize E = |6 — oFg|| over a patch, where E refers to
the strain energy norm [14].

To this end, a vector space Tr is defined which is comprised of homogeneous Trefftz stress
fields &1 , so that & can be expressed as in Eq. (1).

{6} ={61} + {60},  where {51} =[H|{B}. (1)

The columns of [H] contain a basis for Tr, {#} contains stress parameters to be determined, and
{0} contains a particular Trefftz solution for stresses which is in equilibrium with loads distributed
within the domain of a patch. Then E can be expressed as in Eq. (2),

E = %/ {61+ 60— GFE}T[f]{51 + 69 — oFg}dQ
Q

1 3 = L =
= -2— /Q {0’1 + 09 — OFE}T{61 + €& — EFE} dQ

= Uy + Uy + Usg + /Q ({50} {1} — {oFe}T{é1} — {ore} {&0}) dO

= 0 - /Q el N - oy (U’o oo /Q 4 dQ) @)

due to the symmetry of the flexibility matrix [f] which represents the constitutive relations. As
a function of {f}, E is re-expressed as

B = LY IFIB} ~ {8)" [ (B[ ){owe — o} df2 + (constants).
Minimization of E for a linear elastic domain is accomplished by solving Eq. (3),
F() =6}, where ()= [ [(HIHIAR and (5} = [ (HI"fl{orn - 0}de. @)

After the minimization,
{BY" {8} = (B} [FI{B} = 201,
and then E is given by Eq. (4),
E = Upg + <ﬁo - /Q {UFE}T{éo}dQ) sl or
= Upg — U1 in the absence of lateral load. (4)

Equations (3) and (4) are now considered for particular cases of finite element models.

2.1. opg is statically admissible

Since {oFg — G0} is now in equilibrium with zero lateral loads,

/ N, }{ (i = &) {i} dr = {8)T 7{ (N7 i — fo} T,
Q N N
(8} = ¢ _(N"{i-&}ar.

onN
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Thus {6} transforms to a form involving only contour integrals as in Eq. (5), where {f} and {fp}
represent boundary tractions in equilibrium with opg and 6 respectively, and the basis for Tr leads
to corresponding displacements on the boundary defined by {@} = [N]{f3}. The latter displacements
are defined to within rigid body movements. The definition of displacements can of course be
extended to cover the whole patch, leading to displacement and strain fields {@} = [N]{g8} and
{é} = [B]{B}. In this case Eq. (3) takes on the form of weak equilibrium equations for a displacement
element representing the whole patch. {d} corresponds to the generalised forces consistent with the
self-balancing boundary tractions {f — #y}, and [F/] has the form of the stiffness matrix in Eq. (6),

(7] = /A (BIT[f]7(B] 42 (6)

The strain energy of the stress solution [H]{3} is thus a lower bound to the strain energy of
this traction driven problem, and it is thus to be expected that the strain energy of [H|{8} will
increase as the space Tr is enlarged in dimension. The general expression for E in Eq. (4) can be
re-expressed as in Eq. (7),

A (ﬁo —/Qw-ﬂodﬂ— ?,{,Q {i}T{ao}dr) i 4 1)

In Eq. (7), the product w - Gy refers to the work done by lateral loads w moving through the lateral
deflection component of %y . It remains to be seen whether E can form a useful local error measure
for the patch.

2.2. opg is kinematically admissible

In this case,

/ {orE — G0} {&1}dQ = / {61} {err — &} dQ = {ﬂ}T}{ [T) {upg — @i} dT,
Q Q o0

. (8)
i ]i Y ur ~ G0}

where {upg} and {@o} represent boundary displacements compatible with opg and & respectively,
and the basis for Tr leads to corresponding tractions on the boundary defined by {t;} = [T]{8}.
Equation (3) now takes the form of weak compatibility equations for a stress based equilibrium
element representing the whole patch. [F] has the form of a flexibility matrix, and for this displace-
ment driven problem, the strain energy of the stress solution [H]{f} is again a lower bound. After

minimization of E, its form can be given by Eq. (9),

E = Upg + (00 - /Qw - upg d) — ?gn {fO}T{uFE}dP) 2N (9)

where %o denotes particular tractions in equilibrium with stresses &y, and a distributed pressure
load w.

2.3. opg is a general stress field

Recent work by Debongnie and Beckers [1] has shown that a general approximate elastic stress field
can be decomposed into two fields as in Eq. (10), one o, which is hyperstatic (self-stressing), and
one o, which is kinematically admissible,

OFE = Oe¢ + 0¢. (10)
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These fields belong to orthogonal complements of the stress space in a patch §2 which has entirely
static boundary conditions. Then,

OFE = O¢ + O¢,

/ A / YT E (5 B s / BT ah
0 Q Q
= / (61} {ec — &0} dQ = {B}T }[ {£1}T {ue — 1ig} dT,
Q on

where u,. denotes a displacement field conforming with o, . In this case,

0} = § 1TV {uc — o}ar. (11)

The expression for E takes a similar form to that in Eq. (9), but with upg replaced by u, .

Thus it can be seen that although the general aim is to recover smooth stresses in a patch, the
Trefftz procedure has an hermaphroditic nature! Its “gender” depends on the nature of the problem.
It should also be noted that in each case, [F] can also be formulated from contour integration as in
Eq. (12), which may simplify the computational aspects of Eq. (3),

7] = ﬁ _(F"Tyar. (12)

3. APPLICATION TO PLATES GOVERNED BY REISSNER-MINDLIN THEORY
3.1. Generation of a basis for a ‘Tr’ space

Stress fields are now interpreted as moment fields, and a basis for Tr can be generated from two
scalar rotation functions g and f [7]. The rotations # of a normal to the plate are defined in Eq. (13),

| 6: 6, |=| —9o -9y ] andfor [ fy —fz]- (13)

The differential equations of equilibrium lead to the biharmonic and/or the “negative” Helmholtz
equations as expressed in Eq. (14),

10
Vig=0 and/or Vif = ok fi (14)

where h is the plate thickness. In the present paper, these rotation functions will be restricted to
polynomials of finite degree, and hence Trefftz type solutions generated by the negative Helmholtz
equation are excluded. :

In terms of g, the transverse deflections w can be derived to within rigid body movements as in
Eq. (15),

h? 9
w=g—5(1—_y)-Vg. (15)
Components of moments and shear forces are derived as in Eq. (16),
My L. 0 9,2z
My ==D|v 1 0 9wy ¢
Mgy 00 i1-v) 254 (16)
{ Z: } = ~——~——-—5(1h_2_ ) - grad(V?g),

where v and D denote Poisson’s ratio and the flexural rigidity of the plate respectively.
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Table 1. A basis for Trefftz moments up to degree 4, and corresponding transverse shear forces
Ref.
No. Mg My Mgy 9z Qy
ik 1 v 0 0 0
2 v ¥ 0 0 0
3 0 0 1 0 0
4 T -z -y 0 0
5 -y Y -z 0 0
6 T Ve 0 1 0
7 vy Y 0 0 {|
8 (—z% +y?) (z% - 9?) 21y 0 0
9 —2zy 2zy (=22 +y?) 0 0
10 (22 — vy?) vz? —y? 0 2z -2y
11 2(1+v)zy 2(1+v)zy (1 -v)(z® +9?) 4y 4z
12 (-2 + 3zy?) (z3 - 3zy?) (3z%y — y°) 0 0
13 (—=3z%y + y3) (3z%y — %) (=23 + 3zy?) 0 0
14 |vz? +3(1-2v)zy® | 22 -32-v)zy? | (1-v)Bz?y—24%) | 3(2® —y?) —6zy
15 | =32-v)z’y+y® | 3(1 — 2v)z%y + vy® | (1 — v)(—22% + 3zy?) —6zy 3(—z% +y?)
16 | (z* — 622y +y*) | —(z* — 622y +¢%) 4(—23y + zy%) 0 0
17 (z3y — z1%) (—zy® + zy3) (z* — 62%y% + y1) /4 0 0
(3 -v)zt (-1 + 3v)z?
18 —6(1 + v)z%y? —6(1 + v)z%y? —4(1 - v)(z’y + zy®) | 8(z® — 3zy?) | 8(—32%y +y°)
—(1-3v)y* —(-3+v)yt
19 (z°y — vay®) (va’y — zy°) (1-v)(z*-y*)/4 | B2%y-9®) | (z° - 3z3?)

A complete set of biharmonic polynomials has been derived using complex variables and tabulated
for degree n up to n = 8 [6]. With these functions the dimension of Tr is 3 when n = 2 (constant
moments), and it increases by 4 for each unit increase in n. Thus the dimension of Tr is (4n — 5)
for n > 2. The same Trefftz functions appear as Airy stress functions in plane stress, and transverse
deflections in plates governed by Kirchhoff plate theory.

As with the case of plane stress, an alternative approach to establishing this dimension can be
illuminating as well as providing alternative means to generate the basis functions [8]. This approach
focuses directly on the moment fields and their physical characteristics. Moment fields defined by
complete polynomials up to degree p form a vector space MP with dimension 1.5(p + 1)(p + 2) in
a similar way to plane stress fields [8]. In the case of plane stress, a Trefftz subspace of dimension
(4p + 3) was created by imposing three sets of constraint equations: two sets from the equations
of equilibrium div (¢) = 0, and one set from the equation of compatibility V2(o, + 0y) = 0. Now
for moment fields three sets of constraint equations are also imposed on the coefficients of the
polynomial terms: one set from the equilibrium equation (17),

Ma,zz + 2Mgyay + Myyy =0, (17)
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Table 2. Trefftz deflections and rotations corresponding to the basis in Table 1; N.B. p = (1 —v),
a = h?/5p, and all expressions should be divided by the flexural rigidity D

Ref. = 9, 6,
No.
1 —z%/2 z 0
2 -y*/2 0 y
3 —zy/p y/p : z/p
4 (—z* + 3zy?) /6p (2 —y®) /2 —zy/p
5 (3z%y — y°)/6u —zy/p (—2% +9°)/2u
6 (—z* + 6azx)/6 z2/2 0
7 (—y* + 6ay)/6 0 y?/2
8 (z* — 62%y® +y*)/12p (—2® + 3zy%) /3p (3z%y — y°)/3p
9 (z®y — zy®)/3p (—3z%y +9%)/3p (—2® + 3zy?) /3u
10 (—z* +y*)/12 + az? — ay? z3/3 -4%/3
11 (—z%y — zv°)/3 + dazy (3z%y +9°)/3 (=3 + 3zy?)/3
12 (25 — 102%y? + 5zy*) /20 (—z* + 62%y® — y*) /4p (z3y — zy°) [
13 (5z*y — 10z%y® + y°) /20 (—z%y + 29°) [ (—z* +62%y° —y*) /4p
14 | (=2%y? + zy?)/2 + az® — 3azy® (3x%y% — y*)/2 z3y — 2z33
15 (zty — 2%9°)/2 — 3az®y + ay? —223y + zy? (—z* + 322y?)/2
16 | (—z® + 1524y — 152%y* + %) /30p | (0.22° — 223y* + zy*)/p | (—z'y + 22%y° — 0.29°) /p
17 —(z5y + zy®)/20p + 23y /61 (5z%y — 10z2y® + y°)/20p | (z° — 1023y? + 5zy*)/20u
18 _($6+—22f;i12__622:;2::_;f:)/10 (0.6z° — 2z%y® — zy*) (—z'y — 22%y3 + 0.6y°)
19 | (2% +2y°)/20 + a(z* — y*)/4 (5z*y — y°)/20 (z° — 5zy*)/20

which leads to a subspace M¥ , of statically admissible moments having dimension
L5(p+1)(p+2) — 0.5p(p — 1) = (p” + 5p +3);

and two sets from the compatibility equations (18),

h2
—UMg g+ My — (L +V)mgyy + iﬁ((mz — My) zyy — May,zzy + May,yyy) = 0,

h2 (18)
Uy My = (L D)ty 25 (7 = i)y + Mz = Miaya) = O

which leads to the Trefftz subspace of dimension (p? + 5p+3) —p(p+ 1) = (4p+ 3). This dimension
agrees with that of Tr when n = (p+2) which is required for the biharmonic polynomials to generate
moment fields of degree p.

A basis for Tr for moments up to degree 4 (n = 6) is given in Table 1 together with the
corresponding shear forces. It should be noted that when p > 1, each set of 4 additional moment
fields includes 2 which are free of transverse shear. The displacements which are derived from these
kinematically admissible moments, to within rigid body movements, are listed in Table 2.
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3.2. A particular Trefftz solution for a patch with uniformly distributed load w

When a uniformly distributed pressure load w is applied in the positive z direction, a particular
Trefftz solution for moments and shears is given by Eq. (19),

lm] = [ v +ve? 22 +vy? 201 -v)zy J . lgl = |_ y |- (19)

The corresponding rotations and deflections, assuming the cartesian origin to be stationary, are
given in Eq. (20),

w

2o .’L'2 2 2
o=l 2ty ], ad w2 (T - ed). (20

3.3. Formation of Trefftz smoothing equations using scalar products

It has been shown that the formation of Eq. (3) reduces to performing contour integration on the
boundary of a patch. Each contour integral determines the virtual work done by boundary tractions
and corresponding displacements summed along the perimeter. When these quantities are simple
polynomial functions of a position parameter s for each boundary segment, it is possible to express
tractions and displacements in terms of dual modes. Then tractions and displacements for each
segment are represented by vectors with dual bases, and work on a segment is quantified by their
scalar product. No explicit integration is required.

segment i

X

Fig. 1. Polygonal patch with a typical boundary segment

Figure 1 shows a general polygonal patch with local cartesian axes, and a typical boundary
segment 7 with a local ordinate s having its origin at the midpoint. Dual bases for tractions and
displacements can exploit orthogonal Legendre polynomials. Equation (3) can then be formed as in
Eq. (21), for example when the patch is loaded by tractions,

[F] = > WT[Qi] + [Oni]" [Mni] + [04]" [Mul,

segment ¢

{6y = > Wil"{Gni} + [Oni] {rini} + (O] {rius}.

segment ¢

(21)

In this form all the matrices, before transposing, have dimensions (p + 1) x (4p + 3). [W;], [Onil,
and [©y;] denote lateral deflections, normal and tangential components of rotations for segment i;
[Qi], [Mpi], and [My;] denote shear, normal and torsional moments on segment i; and the vector
quantities denote applied shear and moments to segment 3.

Advantage has been taken of this way of constructing Eq. (3) in the examples presented in this
paper which concern rectangular patches where the number of segments for the formation of [F] is
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just 4 (the number of sides). The pattern of [F] is simplified in this case since the contributions to
alternate submatrices cancel out as indicated in Eq. (22) when p = 3.

Fu| o |FRs|o0

TR S R o x ik Em

e Fy 0 Fglo | (22)
0. Py O 4y

[ﬁ’] expands in an hierarchical way as the degree p is increased, with 4 additional rows and columns
being added to its border. When p = 0 (constant moments), [F] = [Fy;] and has dimension 3 x 3.

This hierarchical form of [F] may be exploited in an adaptive smoothing procedure where the degree
p is allowed to increase until convergence is satisfied according to some specified criterion [13].

4. SQUARE BRIDGE DECK

This example concerns a square bridge deck as specified in Figure 2, where unit value of Young’s
modulus is assumed for numerical simplicity, but the values of Poisson’s ratio are generally appro-
priate for concrete. Three fields of equilibrating stress-resultants are considered for “smoothing”.
These fields are selected to illustrate that TPR explicitly smooths stresses and implicitly smooths
any non-conformities which may be present in equilibrating fields.

opposite sides with fixed supports,
other sides unsupported

slab thickness = 0.5m
Poisson’s ratio = v

10m Young’s modulus = 1.0kN/m*

A

10/3 m strip loaded with 10kN/m”.

10m

A

Fig. 2. Square bridge deck

This problem has been the subject of investigation as a benchmark problem [9], using dual
finite element solutions based on hybrid equilibrium elements and 8-noded isoparametric conforming
elements. An “analytic” reference solution has been approximated by a 48 x 48 mesh of conforming
p-elements with degree 3.

The three fields of stress-resultants are defined: in a single beam strip with a width equal to
the loaded width (field (i)); in families of orthogonal beam strips leading to a continuous field of
stress-resultants throughout the slab (field (ii)); and in a 6 x 6 mesh of equilibrium finite elements
as in [9] (field (iii)). The fields are discussed with reference to Figs. 3(a,b,c).

In all cases, the patch considered for smoothing is a square of side length 10/3 m, and this is
shown shaded in Fig. 3. Field (i) is used with a Poisson’s ratio equal to 0.0 when the field is also
conforming, and equal to 0.2 when the field is non-conforming. The value of 0.2 is used with fields (ii)
and (iii) which are also non-conforming. Non-conformities can be quantified by the residuals present
in Eq. (18). Denoting this residual by the vector r, its norm is evaluated as in Eq. (23) taken over the
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(a)

(b)

(©)

Fig. 3. Generation of fields of equilibrating stress-resultants

patch area. It should be noted that this term would be incomplete for the finite element field (iii),
since it does not include terms representing the non-conformities between the elements [12].

It = ([ ¥ s an) i

Fields (i) and (ii) are defined, as in the Hillerborg strip method [4], without torsional moment
components. These are explicitly detailed in Egs. (24) and (25) respectively,

(23)

4 2 )
(m ) (B0
my 0
J May 0 ’ within the loaded strip, (24)
gz 10z
& \ 0 J
(250 ( 3z 2 )
e [EE-(-D) (1) (1-%)
20 ( 125+75y+15y2+ Fagh . o
my ! __LE_LM ) 13_0 (125 12;04 +2y )
{ Myy ; 0 0 s or 0 (s (25)
b A ey i (1-F)
& 20 ( 25+10y+y? Wy 1 _y
{ 3 10 J ekl J

where the first vector occurs within the loaded strip, and the second vector occurs outside the loaded
strip.

Stress-resultant and/or compatibility smoothing was carried out with the Trefftz biharmonic
degree n increased from 2 to 5. The energy results are tabulated in Table 3.

The convergence of the relative energy difference as defined by E/Upg is shown in Fig. 4 where
part (b) is an enlarged view of the lower area of part (a). In this Figure, the lines labelled Series 1
to 4 refer to the results of smoothing field (i) when v = 0.0; field (i) when v = 0.2; and fields (ii)
and (iii) when v = 0.2 in that order.

For field (i), stress-resultants are continuous within the beam strip and the patch, but discon-
tinuous for the whole slab. However, when v = 0.0, the field conforms within the patch and since
moments are quadratic, the Trefftz solution is identical with the field for n > 4. Hence this case
also formed a valuable check for the Trefftz smoothing program.

For field (i), v = 0.2, the field does not conform and ||r|| = 23.13 kN. The Treftz solutions
converge towards a different field of equilibrating stress-resultants which do conform.

For field (ii), the solution is improved with respect to energies, and this field is continuous
throughout the slab but does not conform, and ||r|| = 82.66 kN. The Trefftz solutions again converge
from below towards another equilibrating solution. It should be noted that fields (i) and (ii) lead
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Table 3. Convergence of strain energies for the plate patch. N.B. The “analytic” solution from the fine
mesh conforming model gave the following energies: a total energy of 1523010 kNm, and a patch energy of
435610 kNm

Energies are given | Field (i) | Field (i) | Field (ii) | Field (ii)
in kNm v=20.0 vi=102 =02 v=02
Total energy 2288890 | 2302220 | 2100330 | 1526430
Patch energy 772 840 779260 484 500 436790
E (n=2) 616150 | 616830 398 400 332790
E (n=3) 37820 46 410 49260 46 990
E (n =4) 0 14170 14 080 6 640
E (n =5) 0 12330 12080 5100
90 15 |
~—®— Series1
80
S X —&— Series2
40 K
Q ot "
5 0 10 Series3
= \ ---®---- Series4
= 50
@ \
5 40
: \
= 30 5
e \
: \
10 s;
0 T T 0 T T b
0 5 ... 8 B 0 5 10 15 20
number of degrees of freedom number of degrees of freedom
(a) (b)

Fig. 4. Convergence of E with increasing degree n of Trefftz polynomials

to boundary tractions in Eq. (5) which do not give rise to singularities in the analytic solution for

stress-resultants.

Field (iii) is both discontinuous and non-conforming, but forms a close upper bound to the overall
energy of the solution. Comparisons of stress-resultants when n = 5 are shown in Figs. 5-9 for the
section through the centre of the patch at z = 5/3 m. In these Figures, the lines labeled as Series 1
to 3, or 1 to 4 refer to the “analytic” solution; the Trefftz solution; and the finite element solution
field (iii). For the latter, dashed lines are used, and two solutions are defined on either side of the
section for stress-resultants m,, and g, due to the discontinuous nature of the finite element solutions.

The following observations are made on the results from the smoothing of the finite element

stress-resultants:

e by inspection of Figs. 5-9, the TPR procedure leads towards stress-resultants which are in
good agreement with the analytic solution within the interior of the patch. The boundary layer
effects are not recovered in this case since the width of this layer is about 0.5 m which is still
small compared with the other dimensions of the patch. The finite element model, though based
on a rather coarse mesh, appears to provide sufficiently accurate boundary tractions to drive
a good Trefftz type internal solution. This performance appears to be consistent with general
observations concerning global Trefftz solutions, namely superconvergence in the interior and
greatest errors on the boundary, particularly in the corners [5].
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mx, kNm/m

=
D

Il | |

Series1
Series2

T T T

w2 a-lSea] =08 0 0.5 1 )

distance from centre of patch, m

Fig. 5. Distributions of bending moment m, across the patch

my, kNm/m

5

Series1
Series2

------- Series3

- ———Series4

distance from centre of patch, m

Fig. 6. Distributions of bending moment m, across the patch
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mxy, kNm/m

Il Il |

Series1
Series2

-2.3 =15

2l

-0.5

<D

T T T

0 0.5 1 1.5

distance from centre of patch, m

Fig. 7. Distributions of torsional moment mz, across the patch

gx, kN/m

aYa¥

U

Series1
Series2

------- Series3

St o)

o1

-0.5

0 0.5 1 s

distance from centre of patch, m

Fig. 8. Distributions of transverse shear forces g, across the patch
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=N
U

10 +
25
- /] Series1
Z \ 29 ,':\ L Series2
ool ' e - it B N O R Series3
Blp L1 A0er X055 ~F —TA. 2 .
7 ———— Series4
V4 25
7/
04
V4
V4
/’ -10 T
U4
7/

1L
T

distance from centre of patch, m

Fig. 9. Distributions of transverse shear forces g, across the patch

e TPR with p-refinement indicates convergence towards a statically and kinematically admissible
solution which satisfies the traction boundary conditions. These conditions generally imply sin-
gularities in the solution due to their discontinuous nature, but such singularities may have little
influence towards the centre of a patch.

e since the Trefftz solutions appear to converge towards a conforming one, the quantity E in Table 3
may be interpreted as a local measure of incompatibility of the equilibrating finite element stress
field. In fact if the initial finite element stress field is decomposed as in Eq. (10), then the Trefftz
field tends towards o., and E — ||o¢]|.

5. STRESS-RESULTANT TRAJECTORIES

Visualization of fields of stress-resultants within an element, a patch, or the whole plate, is commonly
displayed as contours of stress components, or discrete vectors/crosses for principal components. The
most complete form of visualization for a plate would appear to be based on colour coded continuous
trajectories of transverse shear vector and moment tensor fields. Such trajectories should assist in
judging the quality of solutions of interest (e.g. by inspection of the continuity of tangent vectors
at element interfaces), and in structural design (e.g. provision of direct guidance in placing of
reinforcement in concrete slabs).

Since the popular days of photoelasticity [2], little attention appears to have been given to such
displays. This is probably due to the relative complexity of deriving trajectories, and it is of interest
to note that visualization of vector and tensor fields is an important topic of current research in the
computer science community [3]. Recent attention has been given to plane stress fields based on
an Euler method [11], and this has proved successful up to a point in dealing with the problematic
areas where isotropic points and closed trajectories exist. An example of these features is given by
the Maxwell problem illustrated in Fig. 10.

Here the stress distribution is hyperstatic, and was caused by the annealing processes of glass
manufacture. In this example, the stress field is described by 4th degree polynomials [8], but these
are not of the Trefftz type. The increase of degree to 5 has so far proved more demanding, and
a successful plot of trajectories is still under investigation.
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Fig. 10. Stress trajectories for the plane stress Maxwell problem
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(a) transverse shear force vector (b) moment tensor

Fig. 11. Stress trajectories for a Trefftz particular solution for a plate with a uniformly distributed load

A simpler example is based on the particular Trefftz solution given in Eq. (19) for a patch with
uniform pressure load. The shear and moment fields are illustrated in Fig. 11 with a single isotropic
point at the centre of the patch.

An outline only is here given for a proposed adaptive computational method for plotting tra-
jectories. Extrapolation of trajectories (vector or tensor) is described with the aid of Fig. 12 for
first order (piecewise linear, Euler method), and second order (piecewise parabolic, Runge-Kutta
method) schemes. From an arbitrary point A, at which the vector/tensor quantity is evaluated,
a principal direction (tangent vector) is extended by a step length a to point B. At B the new tan-
gent vector is evaluated, and the Euler method leads to the development of a polygonal trajectory
consisting of segments such as AB. A second order scheme seeks the position of point E (EB per-
pendicular to AB) with the property that the tangent vector at E extends back to the midpoint C
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Fig. 12. First and second order schemes for extrapolation of trajectories

of AB. A trajectory is interpolated between A and E by the unique parabolic arc with tangents AC
and EC at A and E respectively. Point D on BE serves as a starting point in the search for E, where
the line DC is parallel to the tangent vector at B.

As with finite element mesh adaptivity, there is the possibility for h-refinement — i.e. reduce
step length a, and/or p-refinement — i.e. increase the order of extrapolation.

Such refinements may be required to cope with trajectories having large curvatures, e.g. in the
neighbourhood of isotropic points for moments, particularly for the “overlapping” type of point [2]
where trajectories can follow a 180° U bend. Another problematic case occurs when trajectories
form closed circuits. In such cases numerical errors can lead to the development of a spiral rather
than a closed circuit as extrapolated points jump across to adjacent trajectories. The treatment of
these cases is currently under investigation.

6. CONCLUSIONS

e The Trefftz patch recovery process can be formulated so that only boundary integrations are
required around a patch.

e The patch equations in effect treat the patch as a hybrid Trefftz type element. This element is by
nature hermaphroditic in that it is equally well suited to a stiffness or a flexibility formulation
according to the problem to be smoothed.

e When the patch is driven by tractions from an equilibrium finite element model, the p-version
of the smoothing process tends towards the compatible component o, of the decomposition of
orE , and the energy of the difference E between the smoothed stress field and the original finite
element stress field tends towards the energy of the self-stressing incompatible component o, .

e In the Reissner-Mindlin plate example, the Trefftz solution appears to converge towards stress-
resultants in the patch which can be in close agreement with the analytic solution within the
interior of the patch. This indicates that a finite element model based on equilibrium elements and
a relatively coarse mesh can provide tractions of sufficient quality to drive a “superconvergent”
Trefftz solution in the interior.

e E, as a function of local incompatibility, may serve as a local error indicator. Alternatively the
stresses recovered at central nodes of a patch appear to be of good quality and may be used as
nodal values in order to define a continuous stress field by interpolation.
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e Further work is required to extend the implementation of the concepts to patches bounded by
polygons of general shape, and with Trefftz polynomials of higher degree than 5. More sophisti-
cated algorithms for plotting stress trajectories are to be investigated.
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