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In this paper a guaranteed upper bound of the global discretization error in linear elastic finite element
approximations is presented, based on a generalized Trefftz functional. Therefore, the general concept
of complementary energy functionals and the corresponding approximation methods of Ritz, Trefftz, the
method of orthogonal projection and the hypercircle method are briefly outlined. Furthermore, it is shown
how to use a generalized Trefftz functional to solve a Neumann problem in linear elasticity. Based on an
implicit a posteriori error estimator within the finite element method, using equilibrated local Neumann
problems, the generalized Trefftz functional yields a computable guaranteed upper bound of the discretiza-
tion error without multiplicative constants.

1. INTRODUCTION

The finite element method has been well established as an important tool for the numerical solution
of many kinds of boundary value problems in applied mathematics and engineering sciences. As
a matter of fact, the great success of this approach, a Ritz or Galerkin method applied to finite
subdomains, is based on a variational principle. While Ritz method is based on the minimization
of the total potential energy of a system, the dual idea naturally arises to maximize the corre-
sponding complementary energy. This method is strongly correlated with the name of Trefftz [45]
who presented this theory in 1926 on the 2nd International Congress on Applied Mechanics held in
Zurich, Switzerland. Trefftz himself called his pioneering work “a counterpart to Ritz method”, but
nowadays this approach is simply called “Trefftz method” in honour of Erich Trefftz.

Meanwhile, a vast of literature has been devoted to Trefftz method applied to second order elliptic
boundary value problems, where many sophisticated methods, especially within the finite element
method (FEM) and the boundary integral equation method (BIEM), were developed. Particularly,
many authors dealt with the development of the so-called hybrid Trefftz (HT) finite elements with
relations to the hybrid stress method as introduced by Pian [30]. The HT finite elements were
initiated by Jirousek [18] and considerably developed by many different authors like Zielifiski and
Zienkiewicz [51], Peters et al. [29], Qin [32] and Freitas et al. [13]. Furthermore, an a posteriori
error indicator for HT elements was presented by Jirousek and Venkatesh [19]. A central point of
Trefftz method is that the functions have to fulfill the governing PDE in the domain, but they
are not subjected to any boundary condition. This leads to the Trefftz boundary element method
(TBEM), as presented by Herrera [15], Jin et al. [17], Kita and Kamiya [22] and others, in contrast
to BIEM, where a Green’s function as fundamental solution is used. A coupling of finite elements
with boundary elements was shown by Brink et al. [7].

An important property of Trefftz method, however, is the bounding property of Trefftz functionals
in convex analysis which makes the method very attractive, particularly in view of the a posteriori
error analysis of finite element approximations. In an early work of Cooperman [12] Trefftz method
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is already applied to obtain local bounds of the approximated solution in linear elasticity. More
recently, different approaches based on complementary functionals have been developed. Kelly [21],
for instance, presented an a posteriori error estimator based on a complementary energy functional
evaluated elementwise. Oden et al. [26] made use of both, the lower bound property of the energy
functional and the upper bound property of the corresponding complementary energy functional, to
derive an error estimator in the primal as well as in the dual approximation. The dual theory was
also used by Han [14] to estimate the error caused by the linearization of nonlinear problems. As
pointed out by Repin and Xanthis [34, 35] it can be rather cumbersome to compute an approximated
solution of the complementary problem. In order to bypass this numerical difficulty, they developed
an error estimator for both, linear and nonlinear variational problems, without directly solving the
complementary problem.

The present paper is organized as follows. In Section 2 the complementary energy functional
associated with the potential energy of an elastic body is derived. Moreover, it is shown how to
compute numerical solutions of the corresponding maximization and minimization principles using
the methods of Ritz and Trefftz as well as the method of orthogonal projection and the hypercircle
method. In what follows, we deal with Neumann boundary value problems in linear elasticity.
A generalized Trefftz functional is applied in Section 3 to compute solutions of Neumann problems
using a maximization principle. In Section 4, the finite element method is introduced, and an
a posteriori error estimator based on equilibrated local Neumann problems is presented. Finally,
we present in Section 5 a computable guaranteed upper bound of the discretization error using
a generalized Trefftz functional.

2. GENERAL CONCEPT OF COMPLEMENTARY VARIATIONAL PRINCIPLES
2.1. The linear elasticity problem

Within this section we outline the general concept of finding solutions of the linear elasticity problem
by minimizing a quadratic energy functional and, conversely, by maximizing the corresponding
quadratic complementary energy functional, see e.g. Mikhlin [24], Arthurs [3], Nowinski [25] and
Reddy [33]. Following standard usage, let the elastic body be given by the closure of a bounded open
set  C R3 with piecewise smooth and Lipschitz continuous boundary I' such that I' = Ipuln
and Tp NTn = 0, where I'p and I'y denote the measurable Dirichlet and the Neumann boundary,
respectively. Material points of the body are denoted by x € Q = QUT. Furthermore, the total
potential energy of the elastic body IT : [H!(2)]* — R is given by

I1(u) = Za(u, ) - {(u), )

where we introduced the continuous, symmetric, positive semidefinite bilinear form a : [H P x
[H'(2)] = R and the potential of conservative exterior loads, given by the continuous linear form
1: [HY(R)]® — R, defined by

a(u,u)zZ/QWs(x,e)dV and  [(u) =/Qf'-udV+/F t-udS, (2)

respectively. Here, u : @ — R3 is the displacement field, W : Q x M3 — R (M" denotes the set
of all real square tensors of order n) is the convex strain-energy per unit volume of the system,
e=3(Vu+ (Vu)T) is the strain tensor, f € [L2(f2)]* are prescribed body forces and t e [Ly()]
are prescribed surface tractions. For the sake of simplicity, let us restrict our considerations to the
case of isotropy. Then, the strain-energy per unit volume is given by W, (x, )ose %s : C: g, where
C = 9%W, is the positive definite, constant, fourth-order material stiffness tensor depending only on
the two Lamé parameters A and u. Now, the basic problem of the energetic equilibrium formulation
consists of finding the minimum of the energy functional (1) (Dirichlet’s principle)

(@)= min II(u) (3)
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for a given ug € [H'(Q)]3, such that ue|r, =1 € [H %(FD)]S, over the linear manifold
V+u0={v€[H1(Q)]3;v=w+uo,wEV}, (4)
where the subspace V C [H'(2)]? is given by
P {v e [H'Q)]? ; vir, = o} : (5)

We point out that the bilinear form a is positive definite for all u € V and u # 0. As a consequence,
a generates a norm in V, the so-called energy norm || - ||z = \/a(-,-). Thus, V is a closed subspace
of [H'(Q2)]3. Indeed, it is easy to see that the energy norm is generally a seminorm in the entire
Sobolev space [H'(92)]3, denoted by | - |E .

A well-known theorem states that @ € V + ug is a solution of the minimization problem (3) if
and only if the first variation of the energy functional II(u),

a(d,v)=1Il(v) Vve, (6)

vanishes for arbitrary v € V. Furthermore, due to the lemma of Lax-Milgram, the solution &t € V+ug
of the variational problem (6) exists and is unique under the conditions that a is V-elliptic, i.e.
a(v,v) > a|lv|?, for all v € V with a positive constant « as well as a and [ are continuous as
postulated above.

It can be easily verified that the variational form (6) is the weak formulation of the boundary
value problem of linear elasticity which consists of finding a solution @ € [C?(R2)]? N [C}(Q)]? such
that

—V.o(a)=f in Q, : (7a)
og@)=C:e(@) in Q, (7b)
a=1 on I'p, (7c)
o(d)-n=t on I'y, (7d)

where o = 0gW; is the symmetric stress tensor and n is the unit outward normal.

2.2. The complementary energy functional

In what follows, we want to derive the corresponding complementary energy functional to II(u).
As a point of departure, it proves convenient to introduce the orthogonal complement V1 of V in
[HY(Q)]3, i.e.

vi={ve[m'@)’

i afv;u) =0 Vuev}. (8)
More precisely, V1 consists of all functions v € [H!(R)]® fulfilling the homogeneous PDE,
—V o) = 0 in Q, and the homogeneous Neumann boundary condition o(@1) -n = 0 on I'y
without any Dirichlet boundary condition. Moreover, the closed subspaces V and V' are orthogo-
nal with respect to the inner product a, and it follows that V N Y+ = {0}. From the well-known
projection theorem we conclude that

[H'@)]’=ve V' - | 9)

In other words, every v € [H'(Q2)]? has the unique representation ¥ +v-., with ¥ € V and v+ € VL.
Let us now consider the following variational problem: find a solution w € [H!(€)]? such that

a(w,v) =1(v) Vv e V. (10)
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Obviously, the solution w is not unique, since the bilinear form a is positive semidefinite. But
from (6) we conclude that the variational problem (10) has at least one solution, namely w = .
Now, let wo € [H(2)]? be any solution of (10) with the unique representation wo = Wo +wg, where
Wo € V and wi € V1, due to (9). By substituting w = wp in (10), the variational formulation
reduces to

a(Wo,v) =1(v) Vv eV. (11)

Likewise, every w € V1 4wy leads to the same variational formulation (11) and is therefore a solution

of (10). Furthermore, from (11) and (6) we see that if w € V1 4wy and w € V + g, then w =1,

or, more concisely, the solution is the intersection of the two manifolds Vi4+wonV+u = .
Following Velte [47], let us introduce the energy seminorm ;

lu — w|% = a(u,u) — 2a(u,w) + a(w,w) >0 (12)

which holds for arbitrary u,w € [H(Q)]3. In the special case that u € V +up and w € V1 + wo,
the variational formulation (10) can be expressed with v =u—ug € V by

a(w,u) = l(u) + a(w, ug) — I(uy). (13)
Thus, substituting of (13) in (12) results in
lu —w|% = 2II(u) — 2fI(w) >0 VueV+uy, YweVt+wy, (14)

with the complementary energy functional

*

(o) = —%a(w,w) b d T (15)

which implies II(u) > ﬁ(w) In particular, this inequality must be fulfilled on the one hand for
a fixed u and all admissible w and on the other hand for a fixed w and all admissible u. Furthermore,
the solution @ of the variational problem (6) fulfills II(@1) = ﬁ(ﬁ) We thus finally arrive at the
important result

in I(u) = (a) = II(d) = II(w). : 16
uerg{{{luo (U) (u) (U) welgf-):wo (W) ( )

2.3. The methods of Ritz and Trefftz

We now turn to the numerical solution of minimization and maximization problems as developed
in the preceding section. First recall Ritz method, see Ritz [37], which is based on the minimization
problem (3). It turns out that this problem is a special case of (14) in which w = 1, since we have

lu—a|% =2M(u) —2[I(4) >0 Vu€eV+ug. (17)

Apparently, it is generally impossible to give a closed-form solution of this minimization problem.
Therefore, Ritz-method is based on solving the minimization problem (3) in a finite-dimensional
manifold Vj, + ug with finite-dimensional subspace V}, C V. The resulting approximated solution Gy
is the orthogonal projection of the exact solution @ on Vj + ug .

Alternatively, based on (14), it is evident that an approximated solution 1 of the minimization
problem (3) can be computed by solving the maximization problem of the complementary energy
functional (15). This is the basic idea of Trefftz method, see Trefftz [45]. Analogously to (17), the
maximization problem is of the form

lw— a2 = 201(a) — 2[I(w) >0  VweVi+wg (18)
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which we solve in a finite-dimensional manifold Vhl + wy with subspace V,JL- C VL. Note that the
solution is not unique, but it exists at least one solution of the maximization problem. However,
a unique solution is obtained by choosing a basis for Vhl such that the resulting matrix has maximal
rank (cf. Velte [46]).

Clearly, as a consequence of approximately solving on the one hand the minimization problem
using Ritz method and on the other hand the maximization problem using Trefftz method in finite-
dimensional manifolds, we obtain the relation

*

min II(up) > min H(u)=H(ﬁ)=fI(ﬁ)= max fI(w)> max [I(wyp). (19)

up €V +ug ueV+ug weVl+4wy whLEVE+wo

2.4. The method of orthogonal projection
We now focus our attention on two further energy functionals given by

Mi(u) = lu-wollz  and  Tla(w) = |lw — ug|}- . (20)
The minimization problems associated with (3) now consist of finding the minima

Hl (ﬁ) = uensiﬁl-luo Hl (u) and H2 (W) = we{)njr.:wo Hg (W) (21)

It is readily seen that this is equivalent to finding the unique solutions @ € V+ugy and w € V+ +wy
of the variational problems

a(t—wp,v) =0 VveY and a(W —ug,v) =0 VYveVt (22)

respectively. Hence, we conclude from the construction of the space V* in (8) that @t € V+ + wy
and W € V + ug according to which it follows directly that both minimization problems (21) have
the same unique solution @t = W. A point to be emphasized is that the solution @i = W is on the one
hand the orthogonal projection of ug on V* + wyg and on the other hand the orthogonal projection
of wg on V+ug . Therefore, this approach is called the method of orthogonal projection as introduced
by Zaremba, [49, 50] and Weyl [48]. A graphical interpretation of this method in R? is depicted in
Fig. 1. We end up with introducing finite-dimensional subspaces V;, C V and Vhl C V! in order to
solve the minimization problems (21) numerically by means of a uniquely solvable linear system of
equations.

\% Y l+ W

u=w /u s “o
v

0 -

Fig. 1. The hypercircle method
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2.5. The hypercircle method after Prager and Synge

To complete the picture, we show next how to compute the solution @t = W of the minimization
problems (21) numerically using the hypercircle method as developed by Prager and Synge [31] as an
alternative approach to the method of orthogonal projection. Since u € V + ug and w € VY +wo,
wegetu—a€Vandw—-10¢€ VL. Consequently, from the definition of Y in (8), we obtain the
important result a(u—t, w—a) = 0. With this notation at hand, it follows the identity

[(u—1a)+ (w— )% = ll(u—8) - (w—-d)|% (23)
which can be rewritten as

2
u+w 2
—u

1
= 7l —wi. 29

E

Obviously, this result is the equation of a circle, the so-called hypercircle, with radius r = %||u—w|| E
and midpoint %(u +w) as shown graphically in Fig. 1 for the case of u,w € R?. Thus, the solution
@t = W of the minimization problems (21) is lying on the hypercircle described by (24). Again,
in the context of a numerically computed approximated solution, we introduce finite-dimensional
subspaces V;, C V and V,f- C V1 in order to obtain a uniquely solvable linear system of equations
which results from the minimization of 72, that is the right-hand side of (24). For further elaborations
and details we refer to Synge [42-44], Rieder [36] and Velte [46].

3. SOLUTION OF NEUMANN PROBLEMS WITH THE GENERALIZED TREFFTZ METHOD
3.1. A Neumann problem in linear elasticity

In this section we apply Trefftz method in conjunction with the a posteriori error analysis of finite
element approximations (cf. Section 4) to a Neumann problem. Let us begin with the strong form of
the following Neumann problem, derived from the linear elasticity problem (7), where we omitted
the body forces f: find a solution @ € [C%(R2)]? N [C1(R)]? such that

~V.o(a)=0 in Q, (25a)
o(t) n=t on '=Ty. (25b)

Further, we additively decompose the solution @t = 1 + @ in such a fashion that # and u fulfill

the boundary conditions o(i1) -n =t on I and o (1) - n = 0 on I, respectively. This leads to the
transformed boundary value problem
—-V-o(a) =fy in Q, : (26a)
o) -n=0 on T, (26Db)

with the body forces fy = V - o(1). As a consequence, the corresponding transformed energy
functionals (1) and (15) are given by

o]

1 5 ik
1) = ia(u,u) —(u) and II(w) = ~§a(w, w), (27)
where the continuous linear form I : [H(2)]> — R is now defined by
Haiys / Rt (28)
Q

Similarly to (16), the solution 1 of the strong problem (26) can be computed by a minimization—
maximization principle of the form (16) which now reads

i Thfu) = Fi)< TT6E) = fi(w). 929
minII(u) (1) = II(a) S (w) (29)
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3.2. The generalized Trefftz method

It is elementary to verify that a solution of the Neumann problem (26), computed by the maximiza-
tion of the corresponding complementary energy functional in the sense of Trefftz, has to fulfill the
PDE (26a) as well as the Neumann boundary condition (26b) at least in a weak sense which can
cause difficulties in finding functions fulfilling both, the field equations and the boundary condi-
tions. In order to cope with this problem, we will now construct a complementary energy functional
defined for functions satisfying only the PDE (26a) in the domain. In other words, the functions
are not subjected to any boundary condition, see e.g. Mikhlin [24]. For this purpose, let us first
introduce the quotient space H = [H2(2)]?/Z, where

Z={veV; a(w,v)=0 VYweV} (30)

denotes the space of rigid body motions on which we define an energy functional in the form of
a symmetric, positive semidefinite bilinear form b : H x H — R, as suggested by Birman [5], given
by

1
b(u,w) = a(u,w) —a/ u-wdS + a/(a(u) ‘n—au):(oc(w) -n—aw)dS Vu,w e H
r r
(31)
with constant o € R* fulfilling the condition
a/ u-udS < a(u,u), (32)
r

since b is assumed to be positive semidefinite. Particularly, in the special case of u € W C H, where
the subspace W is defined by

W={veH; ;o(v):n=0 on I'}, (33)
the bilinear form b simplifies to
A s il / Ceip R S TS T P T (34)
5

Subsequently, after integration by parts, we obtain the result
P g ok / o OV Ny SR E W BN (35)
Q

which states that the bilinear form b is the weak formulation of the homogeneous PDE, —V-o(w) =
0 in Q, for all u € W. Analogously to (12), let us now consider b(u—w, u—w) for all u,w € A.
Following Velte [46], we find that

b(u,u) — 2b(u, w) > —b(w,w) Yu,w € H, (36)

since b is assumed to be positive semidefinite. Next, we restrict b to all functions u € W and
w € H beeing an exact solution of the strong form (26a). Hence, we conclude from (34) that
b(u,u) = a(u,u) for all u € W. Furthermore, from (35) it follows that b(u, w) = I(u). Consequently,
Eq. (36) can be rewritten as

fi(u) > —%b(w, W) VEEW e e eatw) i (37)
With the same argumentation as in Section 2.2 we finally obtain
ool oy 1 ko O s d v 1 o Foos 1
{lrlelgﬂ(u) SO —Ea(u,u) =-l(u) = —ib(u, u) = max  — b(w,w). (38)

=V.o(w)=fy
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Here, the energy bilinear form b is a generalized Trefftz functional. Clearly, for the corresponding
discrete problem of finding a solution u, € V, C V we get

min I(up) > {lllei{)lf[(u) =T1(&) = —Z a(&, &) = —I(4)

Lo oiia 1 1

= _Eb(u’ u) W Ivlvlea'% I Eb(wvw) > wmh%%(t =) 5 b(whawh)a (39)
—V-o(w)=fy =V.o(wp)=fy

with the finite-dimensional subspace Hy C H. Note that the functions w and wj, have to fulfill the

PDE (26a) exactly in the domain 2, whereas the homogeneous boundary condition (26b) is not

supposed to be fulfilled.

4. FINITE ELEMENT APPROXIMATION AND A POSTERIORI ERROR ESTIMATION
4.1. The Qr-element

In this section we outline the basic theory of the finite element method as an alternative numer-
ical approach to compute an approximated solution of the variational formulation (6) in finite-
dimensional subspaces V}, C V, provided that we have homogeneous Dirichlet boundary conditions.
Henceforth, we suppose for convenience that the elastic body (2 is a polyhedral domain. In contrast
to Ritz method, cf. Section 2.3, we introduce a partition P of Q given by a finite number of closed
subdomains (hexahedrons) Qe = Q. U, , where 09, is the boundary of the element . , such that
Q = Ug, cp Qe - Further, we suppose that the intersection of two elements Q. and €y is either a ver-
tex, an edge or a face if Q. N Qs # 0, and that a family of partitions {P} is locally quasi-uniform,
see Ainsworth and Oden [2].

Following standard notation (cf. Ciarlet [11]), we let Qx(f2) denote the space of polynomials
which are of degree < k with respect to each variable and has the dimension dimQ(Q,) = (k +1)3.
To complete the picture, we define by X the set of degrees of freedom given by the values at the
nodes x, € 0, with 1 < n < dimQ(Qe).

As usual, let 2 = [—1,1]% be the reference element. Moreover, we introduce a bijective mapping
F : O - Q. such that functions v € [Qx(Qe)]® are given by v = ¥ o F~! : Q, — R3 with
v € [Qk(Q)]®. We assume further that the mapping is in the same space and call the finite element
to be of isoparametric type as presented by Irons and Zienkiewicz [16] (see also Johnson [20] and
Brenner and Scott [6]).

With this notation at hand, we may now construct the finite element space

V= {Vh € [C°D] ; vhlo, =9hoF!; Whe€ [Qk(Q)]g . V0, € 'P} (40)

using finite elements of the so-called Qg-family. The discrete problem of finding the unique solution
of the variational formulation (6) now reads: find an approximated solution @i, € V) such that

a(ﬁh,vh) = l(Vh) Vv, € V. (41)

Clearly, due to the lemma of Lax-Milgram, a unique solution @ of this variational problem exists,
since V, C V.

4.2. An a posteriori error estimator based on local Neumann problems

Since it is obviously not possible to evaluate the discretization error e = i—1y, exactly, we show next
how to derive an a posteriori error estimator of the error e by using an implicit error estimator rather
than an explicit estimator. Therefore, we follow Bank and Weiser [4], Ainsworth and Oden [1, 2],
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Stein and Ohnimus [40, 41] and Brink and Stein [8] to solve a posteriori a Neumann problem on each
element which has the virtue that the global error can be bounded above without any multiplicative
constant. Precisely, the local Neumann problem consists of finding a solution i, € V, on each
element (2, such that

Gt v / te-vdS — ac(iy, v) Vv e, (42)
e

with the local space V. = {v|g, ; v € V}, the equilibrated tractions t, € [Ly(99.)]® and the
bilinear form a. : V, X Ve — R, restricted to an element, such that

By, V) = Z ae (ulg, , vla,) Yu,v € V. (43)
Qe€P

Furthermore, we assume that the bilinear form a, is V,/Z,-elliptic, where
Ze={VvEVe; ac(w,v)=0 Vw €V} (44)

is the kernel of the bilinear form a., i.e. the space of rigid body motions. Note that for simplicity
the body forces f are omitted in this formulation. A necessary condition for the solvability of the
local Neumann problem (42) is that the equilibrated tractions t. satisfy the Neumann boundary
condition t on Q. NIy , the lemma of Cauchy fe = —ff on Q.N Qf and the equilibration condition

/ te:v—ae(lh,v)=0 Vvez. » (45)
ONe

The basic idea of using equilibrated tractions to obtain an improved solution of finite element
approximations was already introduced in the seventies by Bufler and Stein [10] and later by Stein
and Ahmad [39]. In conjunction with the a posteriori error analysis, Ladevéze and Leguillon [23]
first used equilibrated tractions based on averaged tractions on the element boundaries 09, . Stein
and Ohnimus [40, 41] used a different access to this method by using energy equivalent nodal forces
from the previous finite element solution. Moreover, they obtain the equilibrated tractions te by
making use of admissible test functions of the space Ve, = {vp|q ; vi € W3}, rather than b 4
which guarantees exact equilibrium. Hence, it is possible to derive an anisotropic error estimator.
For further details see Ohnimus [27]. Another equilibration method is shown by Ainsworth and
Oden [1] using the idea of weighted tractions instead of averaged tractions. Since t, € [L2(0%2)]3
and since we have no C°-continuity requirements for the equilibrated tractions in tangential direction
of element faces, due to the lemma of Cauchy, the equilibrated tractions can be computed on an
element patch.

Now that we have at our disposal the solutions i, of the local Neumann problems (42) on each
element, we are able to estimate the global discretization error e measured in the energy norm by

1
2

lellz <4 > Nl (46)

Qe€P

which was proven by Ainsworth and Oden [1] and Brink and Stein [8]. Moreover, the latter extended
the approach also to nonlinear, nearly incompressible problems. It was shown by many others, e.g.
Riiter and Stein [38] in the context of anisotropic, nearly incompressible materials at finite strains,
Ohnimus et al. [28] in the context of estimating the error locally and Brink and Stephan [9] in the
context of finite elements coupled with boundary elements, that implicit error estimators based on
the a posteriori solution of local Neumann problems are a powerful tool of estimating the error.
One of the reasons for the success of this method is obviously that an upper bound of the error
is guaranteed without any multiplicative constant. Furthermore, using test functions of sufficiently
high-order yields a sharper bound of the error than obtained by explicit residual error estimators.



434 S. Ohnimus, M. Riiter and E. Stein

5. RELATIONS OF THE GENERALIZED TREFFTZ METHOD TO ERROR ESTIMATION
5.1. An upper bound of the error based on a generalized Trefftz functional

Considering the error estimator (46), the first point to bear in mind is that the upper bound prop-
erty of the error is only fulfilled for functions @i, in the infinite-dimensional space V. Obviously,
in a practical computation we exchange the infinite-dimensional space for a finite-dimensional sub-
space. As a consequence, the guaranteed upper bound property may get lost. In order to get around
this problem, we show next how to use a generalized Trefftz functional to derive a guaranteed upper
bound of the error e which is computable in a finite-dimensional subspace. Therefore, let us first
introduce an improved solution of the discrete variational problem (41) given by G, = @, + g,
such that the variational form of the Neumann problem (42) may then be formulated as follows

ai(l. vy / te-vdS  VWveV.. (47)
e
Note that the corresponding strong form of equilibrium
~V.o(i,) =0 m g, (48a)
o(iie) -n = te on 09, (48b)

is a slight modification of the strong form (25) with improved displacements i, and improved surface
tractions t.. In analogy to Section 3.1 we may additively decompose the solution @i, = @ + i on
each element in two parts with the properties o (1) - n = t. and o() - n = 0 on the element
boundary 9, . Doing this, we are now able to use the same generalized Trefftz functional b(u, w)

for all u,w € H as introduced in Section 3.2, restricted to each element Q. € P, such that

b(u,w) = Z be (ulg, , wlg,) Yu,w € H. (49)
Qe€P

It is readily seen in (39) that b, achieves its maximum for ulg, = wlg, = u. In this case, a necessary
condition is that the first variation of b,

ae(t,v)— [ fg-vdV — (6(@) -n)-vdS=0 VveHe, (50)
Qe Qe
vanishes for arbitrary functions v € H, = {vl|g, ; V € H}. Now, we may insert this result into the
generalized Trefftz functional (31) to obtain
1 0. D 1 o o 1 O O

—Zbe(, 1) = —zae(u,0) + = (o(a) -n)-udS (51)
2 2 99
after some algebraic manipulations. Note that (51) holds only for the solution u. Next, we introduce
an approximated solution @y € Hep C He of the variational problem (50) in a finite-dimensional
subspace. A straightforward application of the estimate (39) then yields

bl Fon) = e = /6 (o)) -6 dS

> ae(0, ). (52)

In what follows, it proves convenient to add on both sides of the estimate (52) the bilinear forms
ae(ii, 1) + 2a. (1, 1) such that this estimate takes the form

ol B = (i Y W) / T L T
0N e

2> ae(ﬁea ﬁe)a (53)
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where we made use of the relation

ae (8, i) =/aQ (o(8) - m)-#dS — | (Vo) dV (54a)
& / (V- o(d) - #dV (54b)
= / te - 1 dS — ae(i, i1). (54c)

e

Furthermore, we introduced the “form” ¢, which is obviously not bilinear as indicated by the square
brackets. Since the approximated solution U has to fulfill the governing PDE (26a) in the element
domain ., we may now simply choose &, = —ii which clearly fulfills the PDE (26a). We thus
arrive at

ce[—1i, 1] = 3 / te- 0dS > ae(ile, @) (55)
00

Finally, upon summing up the solutions of each local Neumann problem over all elements Q. € P,
the error estimator (46) now reads

N
[

lele < > lbellk p << ) o, 8] —ac(ln, @) p . (56)

Qe€P Qe€eP

We remark that the computation of the upper bound can be rather cumbersome, since one has
to compute a solution i fulfilling the Neumann boundary condition o (ii)-n = t, on 9§, . The main
problem which arises is that the equilibrated tractions t. lead to unsymmetric stress tensors o. To
cope with this problem it is possible to use higher order tractions, such that symmetric stress tensors
are obtained. However, in this case the C-continuity condition between neighbouring elements is
not fulfilled, and the question remains if the upper bound is still guaranteed.

We show next that c. is asymptotically exact, i.e.

Jim e[l , 1] = a(ite, Ge) (57)
u,—u

holds. Therefore, we substitute the approximate solution 1, in (53) by the exact solution &. Hence,
we obtain

AT o R )= i) 42 / 1/oas (58)
o9,
and, subsequently, with (54)
Ce[U, 1] = ae(, 1) + 2a, (0, 1) + a.(i, i) (59a)
= ae¢(t + U, 0 + ). (59b)

The assertion is thus proved that c. is asymptotically exact.

6. CONCLUSIONS

In this paper we dealt with a generalized Trefftz functional to obtain an upper bound of the dis-
cretization error of finite element approximations. Therefore we first introduced the well-known
minimization principle of the total potential energy of an elastic body. A numerical solution of the
minimization problem led directly to Ritz method. Conversely, the linear elasticity problem can be
solved by maximizing the complementary energy functional which was constructed by using the
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projection theorem. The corresponding numerical solution of the maximization problem thus led to
Trefftz method. Moreover, in this context we presented two further numerical methods, namely the
method of orthogonal projection and the related hypercircle method, to compute approximated solu-
tions of minimization principles in finite-dimensional subspaces. Next, we introduced the Neumann
problem in linear elasticity. It proved convenient to solve the Neumann problem by introducing
a generalized Trefftz method, rather than the original Trefftz method, which has the virtue that
the solution of the maximization problem is searched amongst all functions satisfying the governing
PDE in the domain, but no boundary conditions. Upon introducing the finite element method and
an implicit a posteriori error estimator based on equilibrated local Neumann problems, we trans-
ferred the upper bound property of the generalized Trefftz functional to the solution of the Neumann
problems on each element. We were thus able to compute a guaranteed upper bound of the error
in a finite-dimensional subspace without any multiplicative constant. Finally, we showed that this
upper bound is asymptotically exact.

It remains to show that numerical examples confirm our presented theoretical results and yield
a computable guaranteed upper bound of the discretization error. A computer implementation seems
to be very attractive and is scheduled for the future.
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