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It is well known today that the standard finite element method (FEM) is unreliable to compute approx-
imate solutions of the Helmholtz equation for high wavenumbers due to the pollution effect, consisting
mainly of the dispersion, i.e. the numerical wavelength is longer than the exact one. Unless highly refined
meshes are used, FEM solutions lead to unacceptable solutions in terms of precision. The paper presents
an application of the Element-Free Galerkin Method (EFGM) leading to extremely accurate results in
comparison with the FEM. Moreover, the present meshless formulation is not restricted to regular distri-
bution of nodes as some stabilisation methods and a simple but real-life problem is investigated in order
to show the improvement in the accuracy of the numerical results, as compared with FEM results.

1. INTRODUCTION

The numerical solution of the Helmholtz equation, governing the wave propagation, is one of the
main problems that has not yet been properly addressed because of the spurious phenomena inherent
to this differential operator. In one dimension, the solutions are oscillatory of type sin(kz) where k
is the wavenumber. The major aspects of the numerical solution are the approximation error and
the pollution effect.

The discretization error can be split into the approximation error and the pollution error [13] i.e.
the error on the phase (dispersion error) and on the amplitude; for a summary of the pollution effect
and demonstrations on industrial examples, see [6]. The numerical wave is of dispersive character,
i.e. the numerical wave propagates with a phase velocity w/k" different from the speed of sound ¢;
for a theoretical analysis for the finite element method, see e.g. [14].

Several authors have suggested methods to stabilise the finite element method: the Galerkin
Least Square (GLS) [11] consists of a modification of the variational problem in order to minimise
the dispersion, the Quasi-Stabilised Finite Element Method (QSFEM) [1] modifies the system ma-
trix with the same goal and more recently a Residual-Free Finite Element Method (RFFEM) [10]
was implemented for the Helmholtz equation, etc. However, none of these methods eliminates the
dispersion in a general two-dimensional case, see [8] for a complete analysis.

Nevertheless, most authors seem to agree that it is very advantageous to use a set of plane wave
solutions of the homogenised Helmholtz equation as the local function basis. A natural and very
efficient way to achieve this is to use a meshless formulation. I. Babuska and J. Melenk [3] suggest the
partition of unity method while, in the present paper, the Element-Free Galerkin Method (EFGM)
is investigated and seems particularly well suited for that purpose.

The EFGM is based on the Moving Least Square Approximation (MLSA), first introduced by
Lancaster et al. [17] in the field of surface and function smoothing. Recently, it has been extensively
investigated by T. Belystchko et al. in the fields of elasticity and crack propagation problems [4, 5].
The main advantages of the formulation are well known, namely no connections by nodes and easy
pre- and post-processing tasks. For the particular case of the Helmholtz equation, we also take
advantage of the fact that the shape functions are non rational, see [7], and the local basis can
naturally contain terms which are solution of the Helmholtz equation.
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Our approach is closely related to the Trefftz approach, [12], because the main feature of both ap-
proaches is the approximation of the solutions in terms of functions satisfying exactly the governing
homogeneous equations. Very interesting results using a Trefftz approach for vibro-acoustic simula-
tions have been reported in [9]. Yet, our method has the additional advantage of being meshless.

The paper is organised as follows. Sections 2 and 3 present the strong and variational forms of the
acoustic problem. In Section 4, the EFGM shape functions are defined and the method is applied to
acoustics. Section 5 gives the definition of the dispersion error. Section 6 presents numerical results
obtained with polynomial and frequency dependent function bases, the latter leading to the exact
solution of the problem for some directions of propagation of a plane wave. Finally, tests on a 2D
real-life problem are reported in Section 7 showing the improvement in terms of accuracy on the
numerical solution.

2. STRONG FORMULATION OF THE ACOUSTIC PROBLEM

The topics described in Sections 2 and 3 refer to strong and variational formulations of the harmonic
forced response of the acoustic problem. They are recalls from [19].

Consider the fluid inside a domain Q with boundary I', let ¢ be the speed of sound inside this
medium and p the specific mass of the fluid. If p’ denotes the field of acoustic pressure (small
perturbations around a steady uniform state), the equation of wave propagation (1) is derived from
the fundamental equations of continuum mechanics,

18
P =252 (1)

If the phenomena are assumed to be steady harmonic,
p' = p exp(jwt) (2)

where w is the angular frequency. The spatial distribution p of the acoustic pressure (which is a
complex variable) inside 2, is a solution of Helmholtz equation

Ap+Kk’p=0 (3)

where the wavenumber k is defined by the ratio between the angular frequency and the speed of
sound

Another important quantity of the acoustic analysis is the particle velocity v linked to the
gradient of the acoustic pressure through the equation of motion,

jockv +Vp =0. (5)

In order to completely define the acoustic problem, the Helmholtz equation (3) has to be asso-
ciated with boundary conditions on I'. The boundary is split into three parts,

I =TpUlyUTkg, (6)
corresponding to different types of boundary conditions:
e Dirichlet boundary conditions (the acoustic pressure is prescribed)
p=p onlp, (7)
e Neumann boundary conditions (the normal component of the velocity is prescribed)

Up = Un or n'Vp = —jpckvy, on I'y, (8)
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e Robin boundary conditions
n'Vp = —jpckAnp  on Tg, (9)

where Ay, is the admittance coefficient modelling the structural damping.

Neumann boundary conditions correspond to vibrating panels while Robin boundary conditions
correspond to absorbant panels. Conditions (7)-(9) have been defined for interior and exterior
problems. For an infinite medium, the boundary condition at infinity is reduced by a DtN mapping
on a fictitious sphere around the studied domain of the medium, leading to a boundary condition
similar to (9).

3. VARIATIONAL FORMULATION OF THE ACOUSTIC PROBLEM

The variational formulation corresponding to the strong form presented in Section 2 is well known
and in the following only the main aspects will be emphasised. For more details, see [7].
The space of admissible trial functions p is defined as

Hp@)={peH'(Q) | p=5 on I'p} (10)
and the space of homogeneous test functions w is :
Hy(Q)={weH(Q) | w=0 on I'p}. (11)

They are both subspaces of H'(Q), the Sobolev space of functions square-integrable together
with their first derivatives. We define the functional II,

i 5 .
= 3 a(p,p) — () (12)
with
a(p,9) : HLI)XH})—*(|G(P,15)=/Q(3ip5iﬁ*k2pﬁ) dQ+/F jpekAsppar (13)
R
() : H};—+(Is0(;5)=—/r ook ol (14)
N

where the notation @ stands for the complex conjugate.
The variational form corresponding to the Helmholtz equation (3) and boundary conditions (7)-
(9) is expressed by

Find pe€H} | 6lI=0 VipeH;. (15)

It is shown in Section 4 that, in the case of the Element-Free Galerkin Method, the approximation
does not interpolate the nodal values. The variational formulation has to be modified accordingly
to take into account the Dirichlet boundary conditions (7) by introducing Lagrange multipliers A
in functional (12)

H*=n+/F A(p—p) dT (16)

and the variational form (15) is reformulated as
Find pe H' | 6lI*=0 Vépe H}, 6é)e HO. (17)

Note that the Dirichlet boundary conditions and their treatment by Lagrange multipliers have
been mentioned only for completeness. In real-life acoustic problems, this kind of boundary con-
ditions rarely appears. It is also interesting to mention that other and more recent techniques
than Lagrange multipliers exist in order to take into account Dirichlet boundary conditions for
EFGM [4, 16].



458 S. Suleau and P. Bouillard

4. ELEMENT-FREE GALERKIN METHOD APPLIED TO ACOUSTICS
4.1. Element-Free shape functions: the Moving Least Square Approximation

A complete report on the construction of the shape functions defining the EFGM can be found in
many papers [4, 5, 7]. This paragraph gives only a brief overview of the main steps in the particular
case of 2D problems.

The MLSA is defined on a cloud of n nodes, which are not connected by elements as it is
required for the Finite Element Method (FEM). The nodes are located at ®; = (zr, yr) inside
(I =1,...,n). For each node I, we define a domain of influence characterised by a typical dimension
size dip s (for two-dimensional problems, the domain is a disc of radius dipg r or a square of half
lengthside ding,r). These domains are defined to connect the nodes: two nodes are connected if their
domains of influence intersect (see Fig. 1).

din Minf 1.

connection of
nodes [ and J

Fig. 1. Circular domains of influence and connection of nodes

We also define a weight function wy for each node, which is representative of the influence of
the node x; at a given point £ = (z,y). This function is equal to unity at the node, decreasing
when the distance to the node increases and zero outside the domain of influence of the node. For
all the computations reported in this paper, we have used an exponential weight function, that can
be defined either on a square domain of influence as the product of two one-dimensional weight
functions,

z—z1 |2 -1 )2
e—(zdinﬂ,l) — 6_4 e_(2 ;’in:‘l’,l) = 6_4
wr(z,y) = iy e (2 < din,r and Yy < dinfi,1), (18)
0 (z > dina,r Or Y > ding,1),

or on a circular domain as a function of d, the distance between point  and node x;,

d 2
e_(2dinﬂ,1) il e_4

’U)I(-'E,‘y) = 1—e+4 (d < dinﬂ,I): (19)
0 (d > ding,1)-

The construction of the MLSA and the corresponding shape functions is based on the choice of
a basis P(z) (dimension m) of functions which, in the case of 2D polynomials, are

P(z) = P'(z,y) = {1,z,y} (linear basis, m = 3), (20)
PY(z) = Pi(z,y) = {1,z,y,zy, z2,y%) (quadratic basis, m = 6). (21)

It is important to notice that polynomial bases are not the only choice: non-polynomial bases
can also be chosen, as it will be seen in Section 6. For example, the basis can contain some terms
a priori satisfying the homogeneous governing equations of the problem; this procedure can be seen
as a parallel to the Trefftz approach. This introduces for instance functions better suited for solving
the Helmholtz equation.
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The unknown p” (acoustic pressure, the upper h stands for numerical solution) of the problem
is built from

p"(z) = P'(z) a(x) (22)

where the a(z) coefficients are non constant and are determined by minimising a given norm
(see [4, 5]), leading to

a(z) = A7 (z) B(z)p (23)

where p is the array of the nodal values p;. A(z) and B(x) are the matrices defined by

A(z) =Y wi(x) P(zr) P'(zr) (24)
I=1
B(z) = [wi(z)P(z1), ..., wn(x)P(z,)] (25)

where n is the number of nodes. Equation (22) can then be written as

where N (z) contains the shape functions and is defined by
N(z) = P'(z) A} (z) B(z). (27)

Figure 2 represents a shape function as well as its first z-derivative, in the two-dimensional case,
for an interior node of a regular distribution of nodes (the internodal spacing is called h and is
constant). The linear basis (20) is used and the sizes of the domains of influence are chosen identical
for all nodes (the value considered for Fig. 2 is ding = 3h). Note that for square domains and for
the limit case,

ding — h, (28)

the EFGM shape functions tend to the standard FEM bilinear shape functions defined on a regular
mesh (Fig. 3).

Fig. 2. EFGM 2D-shape function and its first z-derivative (linear basis, regular distribution of nodes,
square domains of influence with dina = 3h)
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Fig. 3. With a linear basis, a regular distribution of nodes, square domains of influence with dina—h,
the EFGM shape function tends to the standard FEM bilinear shape function

4.2. Application to the acoustic problem

The application of the EFGM to the acoustic problem formulated in Sections 2 and 3 is completely
detailed in [7]. We choose to approximate the acoustic pressure field and its variation by

p"=Np,  &"=Nép, ' (29)
while the Lagrange multipliers and their variation are chosen to be
M =N) "= N, (30)

where NN is a Lagrange interpolant.
Introducing Egs. (29)-(30) into the variational form (17), we obtain a linear system of equations
similar to the system obtained for a problem of structural dynamics,

K + jpck C — k*M K, P 1 =ik (31)
K!, 0 Aj b

where the matrices and vectors are defined as follows,

e the “stiffness” matrix K,
= / (VN)t (VN)dS, (32)
Q
e the “damping” matrix C (Robin boundary conditions),

C=1 N'NA Il : (33)
Cr

e the “mass” matrix M,

M= ig / N'N dQ, (34)
cJa

the vector p of nodal pressure unknowns,

the vector A of nodal Lagrange multipliers unknowns,
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e the matrix K,) , coupling the two types of unknowns,

K, = [ N!'NdIL, (35)
I'p

e the vector f, containing the prescribed normal velocities (Neumann boundary conditions),

f= 3 N 5 dl, (36)
N

e the vector b, containing the prescribed values of the pressure (Dirichlet boundary conditions),

b= / N'pdr. (37)
I'p

5. DISPERSION ANALYSIS FOR 2D HELMHOLTZ EQUATION

The numerical computation of waves always encounters a major problem: the dispersion effect. The
numerical wave does not propagate at the same speed as the exact one, the dispersion can thus
be observed as a difference of phase between both waves. For a given numerical Galerkin method,
the difference can be predicted, depending on the wavenumber k. This a priori computation of the
dispersion has first been developed for standard FEM and other modified finite element methods
(GLS, QSFEM, RFFEM, ...) in [8]. It is also detailed in [19] for the one dimensional EFGM case,
and is presented in [20] for the two dimensional EFGM computations. The dispersion is measured
by the error,

k—kP  kh—kth
By sk

(38)

£==

defined as the relative phase difference between the exact (k) and numerical (k") wavenumbers.
When computing the dispersion error, we have to consider a regular distribution of nodes of
internodal spacing h. All the domains of influence have the same size diyq (defined in Section 3).
They will be rectangular domains of influence, the square domains being a particular case. This
assumption is in no case a restriction: the equations are also valid for circular domains of influence
when replacing by zero the contribution of points located outside the circle but inside the square.

6. NUMERICAL RESULTS FOR THE DISPERSION

We present here a set of two-dimensional results of dispersion obtained for the EFGM. For more
numerical results and comparisons with other numerical methods, the reader will refer to [20]. Here,
we will present in Section 6.1 a few dispersion results when a polynomial basis is used to build the
EFGM shape functions. Moreover, Section 6.2 presents dispersion results for special bases, leading
to frequency-dependant shape functions. As mentioned in Section 4, the shape functions are built
from a basis containing terms which are solution of the governing homogeneous equations, which
is similar to a Trefftz approach. They enable us to obtain an improved accuracy for the numerical
solution.
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6.1. Study of EFGM dispersion with a polynomial basis

Throughout this whole section, we will focus on the EFGM built with polynomial bases. Some
results (linear FEM and EFGM with a linear basis (20) and an optimum value of the size of the
domains of influence di,g = 3.0h) are plotted in Fig. 4. For three different values of 8, the computed
value of kh is presented as a function of kh, and compared to kh.

It can be seen, from Fig. 4, that the dispersion error increases when kh increases. But it has
to be noticed that EFGM with dinq = 3.0h has a much better behaviour than FEM. These results
show the advantages of the EFGM as compared to the standard FEM when it is applied to the
resolution of the Helmholtz equation.

The size dipq of the domains of influence is an important parameter of the EFGM. Dispersion
computations can be performed for different values of this parameter [7, 20], and the conclusions
are that there is an optimal range given by 2h < djug < 3h.

We will now examine the evolution of the dispersion error with the angle of propagation 6 of
the plane wave. This is done in Fig. 5, where we compare FEM and EFGM solutions (di,a = 2.5h,
linear basis), for two values of the non-dimensional wavenumber (kh = 1.0 and kh = 2.5). We
can note that for both methods, the dispersion is maximum for # = 0, while a minimum for the
dispersion is reached when the angle is equal to 45 degrees. We can also already notice the significant

(ahosd AT STIGH R (TR ESE
s 5 et
35 | (basis Pi(x) = {Lx,y}) K'h, © =0 deg.
' *h, ©= 30
’ 45
3 -
25 | dpp=1.0h
(FEM)
b 2
15 F
1 -
05 F
0 - .
0 0.5 1 1.5 2 1.5 3
(e Fsl
55 | (basis P'(x) = {1.x,y}) K'h, © =0 deg. -
: *h, ©= 30 deg. 2
'h 5
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2 -
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1 -
05 F
0
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Fig. 4. Dispersion wavenumber of the EFGM wave, for § = 0, 30 and 45 degrees; (a) linear FEM (b) linear
EFGM with dina = 1.5
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Fig. 5. Dispersion error as a function of §. Comparison of standard FEM and EFGM with dinq = 2.5h;
(a) kh =1.0, (b) kh=2.5

improvement of switching from standard FEM to EFGM in terms of dispersion: it is reduced by a
factor around 50, which is even larger for some values of 6.

6.2. Further reduction of the dispersion: frequency-dependant shape functions

As it has already been mentioned in Section 4, it is possible to construct shape functions that are
better suited for the wave representation, especially for high wavenumbers. These shape functions
include an oscillatory behaviour and are frequency-dependent: they make use of a basis including
sine and cosine terms, which are solutions of the governing homogeneous equations, as it is the case
in a Trefftz approach.

We remember that the 1D basis used in [19] was given by

P'(z) = {1, cos(kz), sin(kz)}, (39)

enabling us to completely eliminate the dispersion in 1D: the waves of wavenumber & can be exactly
represented by the basis functions, and the EFGM solution is exact everywhere.

For the 2D case, it is not possible to eliminate completely the dispersion for every € by the use
of a numerical method, as it can be theoretically proved [1]. But it is possible to eliminate it for
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some values of #, and minimise it for the close values. Consider for example the use of the following
basis

Pi(z) = {1, cos(kz cos 0 + ky sin @), sin(kz cos 8 + ky sin6),

cos(—kz sin @ + ky cos §), sin(—kz sin 6 + ky cos é)} 3 (40)

The MLSA built from basis (40) is able to reproduce exactly plane waves of wavenumber £,
propagating in directions € and 6 + /2. The corresponding shape function and its first 2-derivative
are represented at Fig. 6, for the particular case kh = 4.0 and 6 = 30 degrees.

As the EFGM leads to the exact solution for § and 6 + /2, the dispersion for these directions is
zero. The dispersion error can be computed as a function of 6, so we have made the computations
for # = 0 (Fig. 7a) and 6 = 45 degrees (Fig. 7b).

As expected, we can observe in Figs. 7a and 7b that the dispersion error is zero when 6 = 0
and 6 = 6 + 7 /2, because the EFGM shape functions are able to exactly reproduce the plane waves
propagating in those directions. The error for angles close to these values is relatively low. However,
the dispersion for the wave of angle § = 6 + 7 /4 is rather high, and higher than the corresponding
one obtained with a linear basis (refer to Fig. 5b): this is obviously due to the fact that the basis
and the corresponding shape functions are not well suited for this angle of propagation.

The remedy to this last problem can be easily found. The frequency dependent basis can be
enriched with other basis functions, corresponding to other angles of propagation. Consider for
example the following basis:

Pi(z) = {1, cos(kz cos 0; + kysin @), sin(kz cos ) + kysin6;),
cos(—kz sin 01 + ky cos 0,), sin(—kz sinf; + ky cos 6, ),
cos(kz cos 0 + kysin 6y), sin(kz cos 0y + ky sin 6,),
cos(—kz sin Oy + ky cos 03), sin(—kz sin 0, + ky cos 52)} . (41)
It leads to the exact solution for 0y, 05, 0,4+ /2 and g+ - 2.~Figuré 8 shows the dispersion results
obtained with kh = 2.5. The two angles chosen are §; = 0 and 6, = 45 degrees. The dispersion error
is zero for the directions of propagation contained in the basis, and it is kept at a very low level for

other directions (smaller than 0.002 for kh = 2.5, while the corresponding error for standard FEM
is in the range 0.10 to 0.15, Fig. 5b). However, we have to keep in mind that adding functions to

Fig. 6. Frequency-dependent shape function and its first z-derivative, built from basis (40), with kh = 4.0
and 6 = 30 degrees
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Fig. 7. Dispersion error ¢(kh = 2.5) for the frequency-dependent shape functions built from basis (40);
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the basis implies increasing the size of the domains of influence, and consequently the number of
computations.

We can conclude from this subsection that the shape functions including a priori knowledge
on the solution lead to an improved accuracy. It is shown in [20] that the EFGM is better than
stabilised the FEM and leads to dispersion errors comparable to the QSFEM [1], while remaining
more general: the EFGM can be applied on irregular distributions of nodes.

7. NUMERICAL TESTS ON A MODEL PROBLEM

We consider a real-life problem to show that the EFGM is really efficient and contributes to the
reduction of the dispersion in cases where the solutions are not plane waves. The problem (see
Fig. 9a) is a 2D-section in the bodywork of a car [18]. The air inside the cabin is excited by the
vibrations due to the engine through the front panel (Neumann boundary conditions). The roof
is covered with an absorbant material (Robin boundary conditions). As an example, we study the
acoustic response inside the car at a frequency of 500 Hz.

Three computations have been performed. We consider first a FEM discretization of linear el-
ements and 279 nodes (Fig. 9b). The EFGM computation with a linear basis is performed on the

Absorbant panels

vibrating
panel

:

va=1mm/s

(a)

HiH

g
8

Q000000000

T

(b) ()

Fig. 10. Distribution of the real part of the acoustic pressure at 500 Hz;
(a) reference solution (FEM 17859 nodes), (b) FEM solution (279 nodes), (c) EFGM solution (279 nodes)
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Fig. 11. (a) Distribution of the real part of the acoustic pressure at 500 Hz along the straight line,
(b) definition of the straight line

same distribution of nodes as FEM. In order to compare both methods, we use as reference the
FEM solution on a highly refined mesh (17859 nodes).

Figure 10 presents the results of the three computations for the distribution of the real part of
the acoustic pressure inside the car at a frequency of 500 Hz. The graph in Fig. 11a presents the
same results, computed along the straight line defined in Fig. 11b.

These figures show the advantages of the EFGM as compared to the FEM, for the numerical
wavenumber as well as for the amplitude of the wave. Considering the plots of Fig. 10, we can easily
observe the wavefronts, especially in the region above the seat. The EFGM solution exhibits a good
behaviour, while the FEM wave presents an important phase lag, when compared to the reference
solution. This is confirmed in the cut view of Fig. 11a, where we can also see that the amplitude of
the EFGM wave is really much than the FEM one.

We can conclude from this that the EFGM is applicable to real-life acoustic problems, and in
this case, when compared to the standard FEM with the same number of nodes, the EFGM is really
more efficient than the FEM, leading to a lower error in terms of wavenumber and amplitude. As
it has already been said in Section 7, the EFGM combines two advantages: it is very efficient in
terms of reduction of the dispersion, and its formulation is general and easily applicable to real life
problems, where its behaviour reveals to be very good.

8. CONCLUSIONS

The focus of the computations presented here is on the dispersion error. Because the control of this
error leads to uneconomical meshes, we are looking for a method for which the dispersion error
is very small and negligible as compared to the local error. We show that a meshless approach,
based on the Element-Free Galerkin method, gives very accurate results. In comparison with the
stabilised finite element method, it is shown that the EFGM is almost as accurate as the QSFEM.
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However, it has to be noticed that the QSFEM is not adapted to non uniform meshes and irregular
boundaries, which is not the case in the present paper. This is further illustrated by a 2D industrial
computation.

Moreover, we observe, just like I. Babugka and J. Melenk [3], that it is possible to use a basis
containing the exact solution of the Helmholtz equation. This approach is similar to the Trefftz
formulation, as it includes in the formulation some terms that are solutions of the governing ho-
mogeneous equations. This allows us to completely cancel the dispersion effect for some particular
directions of propagation.
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