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The paper deals with a strategy of reliable application of the Trefftz elements in the linear analysis
of complex engineering structures with stress concentrators. The standard p-adaptivity is suggested in
the low gradient areas. For selected large-gradient local zones certain specific T-element substructures are
proposed. The h-p adaptive procedures for optimization of parameters of the substructures are numerically
investigated.

1. INTRODUCTION

An accurate approximation of a solution with large local gradients is one of the major difficulties in
the reliable finite element modelling of stress/displacement fields in any linear structural analysis.
Such gradients occur in the vicinity of singularities and strong stress concentrators in the great
majority of real engineering structures. In the standard finite element solutions the increase of the
accuracy in the regions of large local gradients results mainly from the element mesh refinement.
In the contemporary FE systems the improvement of the mesh (h-adaptivity) is introduced auto-
matically, without any intervention of a user. This leads, however, to a large number of unknowns
(degrees of freedom) and considerably increases the CPU time. If the structure consists of numerous
concentrators and the basic solution must be repeated many times, e.g. in optimization loops, then
the final numerical problem can be too large even for a high-performance computer.

The increase of the approximation degree of the applied elements (p-adaptivity) is another pos-
sibility of improvement of the solution accuracy. This is especially convenient in the case of the
hierarchic elements [2] in which the high accuracy is achieved by increasing degree of their shape
functions without the change of the nodal grid. The Trefftz-type finite elements (T-elements [9]),
discussed in the present paper, also belong to this family. Additionally, according to the idea of
Erich Trefftz [13], their shape functions fulfil exactly the differential equations of a given boundary
value problem [15].

Unfortunately, the typical large hierarchic finite elements with high-degree polynomial shape
functions do not model local singularities in a correct way. The application of the polynomial
with the degree higher than p = 3 or 4 results in strong oscillations in the vicinity of the singular
regions [11]. Also the investigations carried out for the T-elements [5] exhibited the similar behaviour
(pollution effect) in this case. On the other hand, it was noted that the element boundaries attenuate
the stress oscillations. This observation suggested introduction of a specific local mesh design in the
singular region, advisable for the hierarchic or Trefftz-type elements.

Further investigations of the authors, continued for regular problems with strong concentra-
tors [12, 14], proposed a global h-p algorithm ensuring highly accurate results in the whole region.
The present paper, summarizing this research, introduces the way of proceeding for complex struc-
tures with numerous singularities and strong concentrators. Because of their variety this procedure
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is more general than the application of the special T-elements [9] with the local analytical solutions
for each type of the concentrator.

2. SELECTIVE ADAPTIVITY IN TREFFTZ-ELEMENT SOLUTIONS
The notion of the selective adaptivity is known in the commercial finite element codes. As we can

see in Fig. 1 [1], it serves for elimination of the singular regions from the adaptive mesh refinement.
Without such a selection it would be difficult to obtain reliable results in the vicinity of the hole.
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Fig. 1. Selective adaptivity used in ANSYS

This way of proceeding is, however, dangerous, decreasing large local gradients and excluding
from the engineering analysis the regions of the highest effort.

A similar, wrong elimination of the strong local effect would exist in the Trefftz finite element
approach if we divided the considered structure into large subregions, like in Fig. 2a. In spite of the
fact that the T-elements should in principle be large, as substructures filled by analytical series-type
solutions, in this case that ‘natural’ division would result in thoroughly false model of the structure
even for a high approximation degree. The answer would be even worse than in the case of the
standard h-elements because the concentrators would not only be reduced but would also cause the
pollution oscillations inside the structure. To avoid this danger, we should in the very beginning
select the local regions suspected of the large solution gradients (Fig. 2b).

g R SIS Lo A

1] B % ’ s

s %) | | I NN

¢ | | | [ gt g [ r
V] | | | iz N | | [reil |

| | | /| 24 | 7234 |

r/ ; o %\ e A ! |

4

U A

Fig. 2. Substructuring in T-element approach. Large elements degenerating strong local concentration
effect (a); proposed mesh, prepared for the selective h-p adaptive refinement (b)
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Fig. 3. Energy test for selection of local concentrators

These effects caused e.g. by concentrated forces, reentrant corners, fillets with small radii, changes
in material properties or boundary conditions etc., can easily be defined by the system in an auto-
matic way.

After the preliminary selection we should finally distinguish the local concentrators from the
regions of small effort. In most cases the difference is obvious for an experienced engineer, however,
to avoid a wrong choice and to automate the whole procedure the energy control is suggested.

Figure 3 explains the way of proceeding. In this example we considered a skew, Kirchhoff-type
plate, uniformly loaded in the whole domain (element HTD [4]). The selected corner elements were
suspected of the local concentrators. The comparison of the element average energy density p¢, with
the total average energy density pLOT of the whole object evidently indicated the concentration
regions. As we can also observe comparing Figs. 3a and 3b, the value of the energy measure in the
corner elements did not practically depend of the substructuring.

The energy measure defined as

Pay = ﬁ(l——lum /Qe f(M)dQ (1)
where

F(M) = M2 + M2 — 2vMy M, + 2(1 + v)MZ,,

0% — element area,

D - plate bending stiffness,

v — Poisson ratio,

M , My, My, — components of plate bending moment tensor,

was here calculated in a standard numerical way, because it served only as an indicator of the
concentrated energy. In the second stage of the proposed strategy, this integration was eliminated
and replaced by nodal error estimators, cheaper and more natural for the Trefftz-type solution.

3. ADAPTIVE PROCEDURE FOR LOCAL CONCENTRATORS
3.1. Nodal error estimators and indicators

The selection presented in the previous section divides the investigated object into regions of low
gradients in which the standard p-extension is recommended, and the local zones of concentrated ef-
fects, where a special h-p procedure is necessary. In both cases the specific features of the T-elements
should be taken into account — a large zone of superconvergence in the central part and the extreme
errors in the element corners (Fig. 4)
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Fig. 4. Distribution of energy density error in plate T-element

In the classical hybrid-Trefftz finite element HTD [3] the analytical Trefftz-series solution u is
residually fitted to the boundary ‘frame’ function u in the integral way:

/ T(u—u)dl' =0 (2)

€

where T is the matrix of generalized traction weights. This type of the element was used in the
present investigations, however, the other formulations like the least square element HTLS or the
traction frame element HTT exhibit similar features [10]. The solution properties resulting from
Eq. (2) presented in Fig. 4 suggested introduction of the corner error measures and estimators.
In the T-element field the corner results are different for the particular elements meeting in this
corner. The jumps of these results can be considered as an indicator of the error. Their measure is
introduced below.

The corner results can be improved by taking their arithmetical average [6] or by different forms of
smoothing with the help of data calculated from the Trefftz field inside the central, superconvergent
element zone. Until now the smoothing was mainly done by quadratic polynomials and a procedure
called ‘krigeing’ [6]. However, this complex procedure based on the probability calculus and used
in cartography and treatment of experimental data occurred to be not very convenient in the
practical application. Other smoothing procedures, also using Trefftz functions instead of standard
polynomials, are now in the authors’ research.

In the finite element solutions of linear elastic problems (also in the T-element approach) the
displacement results are usually well convergent and sufficiently accurate. Therefore the quality of
the approximation should be measured by stress-type quantities. In a complex stress state it is
necessary to introduce a kind of an equivalent stress o representing the local effort of the structure.
it can be based e.g. on the von Mises hypothesis, strain energy density measure or any other effort
representative. Using og we can introduce the general jump measure in a point C in which n elements
meet

o =3 e, ©)
i=1

Add|c
(m)c = % ; (4)

where o}f is a certain normalizing reference value and Ao} can be defined as

Ao} = op(Act), i=1,2,...,n. (5)
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The vector Ac® of differences of the stress tensor components is calculated from the direct corner
T-element results and the improved (smoothed) solution. In our case, for the Kirchhoff plate problem
we applied the equivalent stress based on internal elastic energy density,

f(M)
o= e (6)
where f(M) was defined by Eq. (1), and the reference value o represented the average energy of
the whole structure.
The authors’ investigations [12] show that the jump measure (3) is considerably bigger (more
than one order of magnitude) than a similar real error measure,

EX & 00(0553 = UEX) 7
% = ref ’ ( )
09

in which the equivalent stress oy is calculated from the difference between the average corner moment
values of}" and the exact solution o®X known for the particular test. However, the measure (3)
served very well as an error indicator in the adaptive procedures, signalizing the necessary local
improvement of the solution. Indeed, more accurate finite T-element solutions have evidently smaller
corner jumps. The error estimators defined in [7, 8] in which the difference in (5) was taken between
the average corner values and the results smoothed by ‘krigeing’ were not so reliable. By coincidence

they could sometimes be smaller than the real solution errors.

3.2. Adaptive schemes

The large gradient zones selected in Section 2 should be filled by the special T-element substructures
(Fig. 5). The parameters of the substructures — proportions of the element layers, mutual relations
of the approximation degree of the layers, suggested number of the layers etc., should be carefully
investigated before their application. The form of such investigation is presented below.

Of course, in certain cases, when a series-type analytical solution for a particular concentrator
or singularity is known, one can introduce this solution into one special element and apply it to the
selected zone [5]. However, taking into consideration a great variety of different concentrators, the
procedure proposed in the present paper seems to be much more general.

A skew plate defined in Section 2 was chosen as a numerical example. For angle o > 129° the
obtuse corner causes here singular effects. We investigated plates for o < 129°, when the solution is

o]

Fig. 5. Special T-element substructure
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Fig. 6. Two proposed T-element substructures for selected concentrated zones

regular but strongly concentrated near this corner. Two different T-element substructures (Fig. 6),
in which the h-adaptivity was possible, were taken into account.

Simultaneously, the p-adaptive procedure was introduced (Fig. 7). In this figure, M means the
number of degrees of freedom in the mid-side node of the element, i.e. the number of nonlinear
hierarchic frame functions defined along this side. Increasing M we also suitably increased the
number N of the Trefftz shape functions in the internal element field. In our investigations, for
quadrilateral elements, it was equal to

4
NZMTOT:4'MC+ZM1' (8)

=1

where M was the number of degrees of freedom in the corner nodes (M¢ = 3) and the number M;
changed for the particular element sides.

The investigation of the special T-element substructures started from the local element propor-
tions. Figure 8 presents the influence of 7 parameter (in the scheme II — Fig. 6) on the error
estimator (4). As it was already noted earlier for hierarchic elements and a singular problem [5, 11]
also here, for the strong concentrator (o = 125°) and the Trefftz elements, a certain optimal range
of the parameter 7 could be determined (v = 0.1-0.2). However, for changing <y the position of the
point D’ (Fig. 8) also changed (approached the corner) which should be taken into account. In the
scheme I the similar mesh refinement would result in strongly distorted, long rectangular elements.
Therefore, for further investigations of this scheme the regular ‘natural’ element division (Fig. 6)
was applied.

The most characteristic results for the h-p adaptive schemes are presented in Figs. 9-10. In
all the numerical examples the best results were obtained for the approximation degree degressive
towards the concentration point, near which M = 3 appeared to be optimal. This agreed with the
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Fig. 9. Results of skew plate test — scheme I, mesh 3 Fig. 10. Results of skew plate test — scheme II, mesh 3



476 B. Szybiniski, A. Wréblewski and A.P. Zielinski

preliminary suggestions of B. Szabo [11] for the standard p-elements. However, in the element sides
not touching directly the corner, the suitable increase of the polynomial degree M was profitable.

The objective choice between the h-p schemes I and II was difficult because the error estimators in
both cases were not calculated in the same points. However taking into consideration the additional
‘free’ parameter y and the fact that the estimator values were taken in the second scheme (Fig. 6)
much closer to the corner, observing the results we can suggest the irregular scheme II for the
T-element substructures discussed.

4. CONCLUSIONS AND FINAL REMARKS

The adaptive rules of the T-elements are very different from the standard finite element approach.
To obtain reliable results near strong concentrators it is necessary to improve simultaneously both,
mesh and the approximation degree. The latter change consists in the increase or decrease of the
polynomial degree in the frame function along the particular sides of the T-element. This change,
against the intuition, should be degressive towards the point of singularity or strong concentrator
not to cause the solution oscillations.

The authors propose the following general strategy for the Trefftz element linear analysis of
a structure with large local stress gradients:

1. Preliminary topological division of the structure indicating possible large gradient areas (Fig. 2b),
2. Final selection of the concentration zones using energy criterion (Fig. 3),
3. Insertion of the special T-elements substructures into the prescribed zones,

4. Further improvement of the solution if the error estimator 7 is larger than the admissible value
(e.g. division of elements in the low gradient zones and/or addition of the element layers in the
T-element substructures).

Taking into consideration that the majority of the structural volume can be approximated by the
low-cost large T-elements with high accuracy, the above procedure will result in a not expensive
and reliable modelling of engineering structures.

The present paper obviously does not close the necessary investigations of the discussed algo-
rithm. The following problems should still be considered:

e different, more optimal forms of smoothing of the corner results, .
e better error estimators/indicators,

e optimal dimensions of the selected, large gradient zones,

optimal internal T-element topology (after the selection of the concentration zones),

particular engineering problems (e.g. 2D and 3D elastic objects), etc.

However, the general strategy of proceeding proposed in the paper seems to be inevitable in the
fully automated, commercial code while applying to real complex engineering structures.
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