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In a large class of linear, mathematically modelled engineering problems the Trefftz algorithms give ac-
curate solutions in a relatively short computational time. Moreover, the Trefftz functions, fulfilling the
governing differential equations, can be used as shape functions of finite elements (T-elements), also with
openings and notches. This suggested the authors to investigate the advantages and limitations of the
method in optimization of structures with the stress concentrators, e.g. perforated plates. Certain auxil-
iary object functions, which included simultaneously the objective of the optimization and the constraints,
were introduced and investigated. Different optimization strategies were also taken into consideration. To
improve the optimization task in case of a large number of variables the authors suggested an algorithm,
which used the engineering sensitivity analysis to eliminate less important variables in the particular stages
of the procedure.

1. INTRODUCTION

The paper deals with the strategy of optimization of complex engineering structures. The general
theory of structural optimization considerably developed in recent years [2, 16]. However, the great
majority of works concern design of relatively simple objects — plates, shells, arcs, trusses, frames
in which the shape, thickness, configuration, reinforcements etc. are optimized [2]. The present
work takes into consideration more complex, real engineering structures the geometry of which is
in principle defined (Fig. 1). In such structures, however, numerous design parameters — certain
dimensions, angles, local thickness, position of holes, corner radii etc., can be optimally modified.
The objective functions and constraints include many different structural features like volume,
strength, stiffness, dynamics (eigenfrequencies) or stability.

The above variety enlightens complexity of the engineering optimization problem. However, it
should be underlined that the optimization algorithms based on numerical modelling of any structure
are incomparably easier and less expensive than its experimental modifications. Therefore, it is
necessary to improve the optimization procedures in different aspects, the most important of which,
in opinion of the authors, are presented below.

1. Decreasing of the computer time in a single solution inside the optimization loops.

In the standard numerical engineering analysis, the CPU time is less important than the effort of
the engineer preparing the data. Therefore, the contemporary commercial finite element systems
do not attach primary importance to the decrease of the computational time. In optimization
algorithms the situation is very different. The basic, gradually modified solution must here be
repeated even thousands times inside the optimization loops. In this case the Trefftz approach [6,
7, 15] seems to be a very convenient tool at least for linear models of the considered structures.
The application of the Trefftz finite elements (T-elements [8, 10]) to optimization procedures is
one of the most important aspects of the present paper (see also [14]).
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Fig. 1. Examples of complex engineering structures

2. Modifications of the objective functions and constraints.

The contemporary trends and also the numerical experiments carried out by the authors suggest
introduction of the constraints in the weak, weighted form into the objective function. The
discussion of different modifications of this function for a strength/stiffness problem is presented
in Section 3.

3. Decreasing of the number of variables in a particular stage of the optimization algorithms.

In more complex structures the number of potential optimization variables can be very large.
Also, as it was mentioned before, they are of different types and have different constraints. In this
situation to successfully search for a global extremum of the objective function, it is necessary
to eliminate (to fix) a certain number of variables in a particular stage of the procedure. This
can be done with the help of the engineering sensitivity analysis, which is discussed in Section 4.

4. Improved search for extrema of the objective function.

Even after elimination of the majority of the potential variables from the optimization process,
the stable search of a global extremum of the objective function can be difficult. The algorithms
usually include partly stochastic, partly gradient-type procedures. In recent years, most success-
fully developed is the family of evolution methods including the genetic algorithms [3, 5]. This
aspect of improvement of the optimization procedures is not considered in the present work.

2. EFFECTIVE APPLICATION OF THE TREFFTZ ELEMENTS IN THE OPTIMIZATION
ALGORITHM

The T-elements are large finite elements or substructures, the shape functions of which (called
T-functions) identically fulfil the governing differential equations of a given problem [17]. The neigh-
bouring fields of the T-functions are non-conforming.

The minimization of the functional jumps disturbing the solution on the T-element interfaces can
be achieved in different ways [4, 9, 11]. However, in most cases a certain boundary “frame” function,
common for the neighbouring elements, is introduced [8, 10]. In our numerical investigations we
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considered mainly 2D elastic structures and applied the well-established hybrid-Trefftz displacement
(HTD) element [7]. The stiffness matrix of this element has the characteristic form (symmetric and
positive definite),

k=GTH'G,

G=] @RI, . B= | N"E4E, (1)
§ 5 Te
where N and T are Trefftz function matrices of displacements and tractions, respectively, and N
contains polynomial frame functions of hierarchic character. The relation between the coefficients
(degrees of freedom) d of the boundary frame function U and the Trefftz coefficients ¢ of the internal
displacement field u is defined by the residual equation,

/ TT(u — §)dl = 0, ' (2)

where u = 1 + N¢, & — particular solution, 1 = Nd, which leads to

c=HYGd-g), g= / TTadr. (3)

As we can see, all the matrices in (1) and (3) are calculated only along the element boundaries I', .
The finite element system SAFE used in the numerical investigations includes also certain “spe-

cial” T-elements in which the Trefftz shape functions fulfil not only the governing differential equa-

tions of the problem but also the boundary conditions on certain internal boundaries I'y (Fig. 2).
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Fig. 2. Different types of special T-elements
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In the case of an arbitrary contour I'y (Fig. 2d) the least square element HT'S must be defined [18].
Unlike in the elements with the circular holes, the boundary conditions on s —u=uort =t
— cannot in general be satisfied exactly. To ensure symmetry of the stiffness matrices, the following
functionals should be introduced [18],

J1=/(u—ﬁ)zdF-I—a/(u—ﬁ)QdI‘:min (4)

or

J2=/ (u—u)2dl + o ] (t = t)° dF = min, | (5)

where o influences the relative accuracy of the fit on ', and I’y , and f equalizes dimensions of both
terms in Js .

The standard T-elements were carefully examined showing evident superiority over the conven-
tional FE formulation [8]. Therefore the authors paid more attention to the special Trefftz elements,
very important in structural optimization. Their numerical investigations started from determina-
tion of admissible relations between the circular opening and the element dimensions [12]. For the
diameters d larger than 0.7c the solution error increased which could partly be diminished by the
application of the higher order of the Trefftz approximation (Fig. 3). The above phenomenon is
a certain limitation of the special T-elements while applying to structures with systems of holes
very near to each other.
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Fig. 3. Special T-element — influence of hole/element proportions on approximation accuracy; K¢n —
concentration factor, a = 600, b = 300, ¢ = b/3
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The approaching of the element boundary by a relatively smaller hole is less dangerous. Figure 4
presents the comparison of the stress concentration factor Ky, calculated by SAFE and analytically.
Good accuracy (error less than 0.75%) was obtained for ¢ > 5 and arbitrary s.

The authors also carried out a series of examples comparing the efficiency of the special
T-elements and the popular commercial FE codes. Figure 5 shows relations of numbers of degrees
of freedom in the case of SAFE, ANSYS and ALGOR while solving the example defined in Fig. 3.
The relations of the computer time were obviously not so spectacular because of more complex form
of the stiffness matrix (1), however, the gain up to nine times was observed (it depended on the
mesh design in the commercial codes).

Figures 6 and 7 present an example of a cantilever, which was also used in further investigations
of the optimization procedures [13, 19]. The advantages of the application of the T-elements are
here clearly visible. It should be underlined that the ALGOR mesh in the concentration regions was
individually designed. And even in this case the CPU time was seven times smaller while applying
the T-elements. Obviously, with the automatic h-adaptive mesh improvement the ALGOR computer
time would be much larger.
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Fig. 4. Effect of distances ¢ and s (see Fig. 3) between hole and element boundary
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Fig. 5. Convergence of results for different FE codes (example defined in Fig. 3)
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Fig. 6. Two investigated models of cantilever; in model II stiffness of clamped element was 10 times greater
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3. DIFFERENT MODIFICATIONS OF OBJECTIVE FUNCTIONS

The second aspect of improvement of the optimization procedures is connected with different modi-
fied forms of the objective functions and constraints. In our investigations mainly the strength- and
stiffness-type linear structural problems are considered. The classical strength formulation minimizes
a certain global stress functional, for example

W, = / (2>K dQ2 = min for Vg = const (6)
0 k P

where p is the vector of optimization variables, o, is an equivalent stress (according e.g. to the

von Mises hypothesis), k is an admissible stress and Vg is a volume of a thin-walled structure

with the area Q (for 2D problems). If the exponent K — oo the integral (5) transforms into the

Chebyshev-type norm and the formulation changes to

W, = mgx(ao) =min  for Vg = const. (7
P

The above optimization approach, the first one investigated by the authors, introduces depen-
dence of one optimization variable on the others, which is in general not very convenient. Also, in
most of standard engineering problems it is rather more optimal to keep the extreme equivalent
stresses near the admissible value, while decreasing the volume of the structure. Therefore, the
second approach introduces a direct minimization of the volume Vg with the constraint o, < k,

Wy = / d2 = min fors a5k (8)
Q P
In the large majority of structural problems the greatest effort occurs on a boundary or a char-
acteristic edge, fold, reinforcement etc. of a structure (exception: contact problems). Additional
numerical examples for atypical loads and structures confirmed the above observation. Therefore
the authors changed the volume (area) measures of o, in (6) and (7) considering them only along
the structure boundary (for a cantilever see Fig. 8).
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Fig. 8. Stresses oo along boundaries of rectangular cantilever loaded like in Fig. 6 (model I)
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It should here be underlined that the calculation of all the stress tensor components (not only
tractions) is in the Trefftz approach very quick and simple, which seems to be a considerable advan-
tage in comparison to the boundary element method.

The formulation (7) of the objective function also occurred not to be convenient in the numerical
algorithm because of the very different measure of the constraint. Therefore, the authors introduced
the auxiliary functional W3 including both the optimization objective and the main constraint

S oo\ B|” e
W3—§/Qn-1—(?) dQ = min 9)
where
_1+a l—a . To
n——2—+ -s1gn(1—?>. (10)

The weighting constant a minimized here the stress exceeding the admissible value k.

The interpretation of the functional (8) is illustrated in Fig. 9. The concept of minimization of
the integral W3 assumes that the structure is more optimal from the strength point of view when the
effort measure o, of the material is more uniformly distributed in the whole object and possibly close
to the admissible value k. In this sense the idea is analogical to the concept of the fully stressed
design [1]. Of course, in most structures the uniform effort is impossible. Hence, the difference
existing in statically indeterminate frames between the optimal and fully stressed construction does
not play here any important role.

The influence of the constant « in formulation (1) is presented in Fig. 10. It can be observed that
the introduction a = 100 is practically equivalent to the constraint o, < k. For a = 10, the stress
slightly crossed the admissible value. Obviously, this constant influences the final solution and can be
problem dependent. However, the engineer who observes the final result of the optimization process
can easily decide whether the small crossing of the admissible limit is in his opinion acceptable.
Therefore, the exact choice of the penalty constant o is not so important.
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Fig. 9. Idea of functional W3 — minimizing shaded areas with different weights (=100, 8=y=1, Q — )
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Fig. 10. Stresses (in MPa) along upper boundary of cantilever. Minimizing cantilever volume with objective
function W3: a) a=1, b) a=100; =2, y=2; 3 Trefftz elements with 127 DOF
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The constants 3 and <y obviously also influence the behaviour of the functional W3. The higher
values of these constants turned out to be not acceptable because they decreased the effect of
the constant o as a penalty-type constraint (Table 1). Practically, 8 = 2 and v = 1 or 2 can be
recommended.

The introduction of the functional W3 divided the optimization variables into two groups:

I. variables directly changing the structure volume (e.g. diameters of holes),

II. variables influencing the optimal shape of the structure without the direct change of the volume
(e.g. positions of holes).

The definition (8)—(9) concerns the variables of the first kind (k = &j). In the optimization
process they should be taken into consideration in the first stage. The variables II, introduced in
the second turn, should rather maximize the functional W3 to make the variables I more effective
in the consecutive stage. However, the constant o penalizing the crossing of the admissible stress
should be maintained. Hence, the definition (9) in the case of the variables II should have a form

a—-1 ao+1 o
K saEvanekic gy -s1gn(1—?°). (11)

Table 1. Influence of parameters # and < on optimization results in the first stage; r1opt is optimal value of
the radius, 0o max 1S maximum equivalent stress calculated along the structure boundary

,3 % Tlopt 00 max — k
1 1 44.94 0.0
2 1 44.94 0.0
4 1 44.94 0.0
4 2 46.59 1.9
2 2 47.31 2.8
J: 2 48.29 4.0
4 4 49.33 5.4
2 4 51.85 10.1
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Fig. 11. Influence of vertical shifting of a hole on stress distribution and the functional W3
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The introduction of the functional Wj (with k = kq1) is justified in Figs 11, 12. For W3, the
vertical shifting of a hole caused a local maximum in the central, optimal position. The exchange
of k1 — for kyr corrected the functional behaviour (Fig. 12). Figure 13 presents the results of the
optimization of the rectangular cantilever (analogical to one defined in Fig. 6 model I) after the

second stage. The functional W3 includes the penalty constant (10). As we can see, this stage of
optimization process requires shifting of the boundaries of the T-elements.

4. ENGINEERING SENSITIVITY ANALYSIS DECREASING NUMBER OF OPTIMIZATION
VARIABLES

Any objective function W (e.g. W3 or Wg) is not equally dependent on its optimization variables
pi . If the number of components of the vector p is large, some of them usually could be removed
from the searching process without any considerable effect on the optimum. Therefore, at least at
some stages, it is profitable to eliminate such variables from the optimization algorithm. Figure 14
introduces certain sensitivity factors (numerical derivatives) estimating the local influence of the
particular variable p; on the objective function W. They are defined as

33 -1 4 e 1
o T L/ 1 il g 49
i Apl p.:p?‘l A . * Al
AW w!-w1
s; = olerwepur gl (13)
Apz p-=p‘? A = Al
AW Wl —aw? g
S = it L8 T 2 (14)
Apz p.=p! A i Al

where A~! or A! are small steps of the variable in the closest vicinity of its current value. Using
the three values of the objective function and observing the sign of the second derivative,

Fw AT . (Wl oW Wt
Z; = sign ( Apzz )p.:p() = si1gn < (A1)2 ) ) (15)

we can also indicate whether the curve W (p;) is convex or concave.

The local behaviour of the function W (p;) is not always sufficient to decide about the elimination
of the particular variable. Therefore it is profitable to add the sensitivity factors “in large” (A72 >
A hand A2 AL,

W w2
o) L
% = AmraT (16)
w2 —-wo

LS

e v )
w
2\
p* pitp! p! pf

Fig. 14. Numerical estimation of sensitivity factors — defining scheme
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which introduce more information about the global behaviour of W (p;) (compare Fig. 15).

Figure 16 presents different cases of the objective function W classified due to the SY, S; 1 or
S} (denoted as S¥) and also Z;. For the sensitivity estimation we usually apply the average angle

1
et Iarctan S;! + arctan S? + arctan Szll ) (18)

However, the specific value o; = 0 should be investigated carefully — here the factor Z; decides
whether we are near maximum or minimum on the curve W (p;). If S; 2 and S2 confirm e.g. a distinct
maximum then the value o; = amax (equal for instance 90) should instead be taken — we are far
from the optimum.

As an example let us take a cantilever plate, Fig. 17, with 4 holes changing their radii and
positions and with its lower edge defined as piece-wise linear contour. We have 16 optimization
parameters: 8 of them are variables directly changing the structure volume and the remaining 8
are variables of the II-nd kind. The estimation (18) of the sensitivity of the objective function on
the optimization variables was calculated and the “top variables” were first taken to minimization
process. Fig. 18 presents bar diagrams with the ST values for some of the I-st kind variables with
the initial values: p; = p2 = p3 = ps = 50 mm and p13 = P14 = P15 = p1s = 0. Maximum value of
a; was obtained for the variable py : 10.6.

Figure 19 presents bar diagrams with the ST values for the II-nd kind variables. The diagrams
were plotted after reaching the minimum for the first kind variables. Here, the maximum value
ag = 29.8 was obtained for the variable pg . The co-ordinates ps and pg practically did not influence
the objective function, so only the paths of the remaining variables pg and p; were searched at the
current stage of the optimization. The results of the optimization are presented in Fig. 20.
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Fig. 18. Sensitivity Ectors for I-st kind variables at start of optimization process
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5. CONCLUSIONS AND FINAL REMARKS

The paper proposed certain improvements of the optimization procedure in case of complex engi-
neering structures. The visible progress was observed while applying the Trefftz-type elements on
each step of the optimization loops. The specific objective function W3, including the main con-
straint in a weak form, appeared to be very convenient in the optimization process. Also a new form
of the sensitivity analysis was proposed, which enabled elimination of less important optimization
variables.

The diagrams and figures presented the characteristic features of the introduced procedures.
However, they need further investigations to prove their applicability to a possibly large class of
problems. In this stage of the study the optimization of complex engineering structures can be con-
sidered rather as a computer aided design in which the “on line” control of an engineer is necessary.
However, the authors are convinced that, after several stages including the procedures proposed,
the final form of the designed structure will be to a large extent optimized.
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