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The paper contains a review of problems connected with numerical analysis of elastic-plastic surface
structures. Given is detailed information about finite elements as well as about the algorithm of physically
non-linear analysis using the incremental-iterative Newton-Raphson method with the consistent modular
matrix. The main goal of the paper is to compare numerical results obtained with elements based on
either the volume or area approach to the formulation of physical relations. The presented examples are
obtained with the use of computer code MANKA. They illustrate some numerical problems induced by
elastic-plastic deformation of chosen types of plates.
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NOTATION

B.SEP — the level of analysis: structure (body), cross-section, element, point,
respectively,

GPLY — Gauss point with co-ordinates (¢,7,¢) in a layer { = const,

LBPT — Lobatto point with co-ordinates (£,7,() on a thickness director,

GPMS — Gauss point with co-ordinates (£,7,0) on the midsurface,

=100 NE — numbers of finite elements,

ILY =1,...,NLY - numbers of layers,
ILB =1,...,NLB - numbers of Lobatto integration points,

IGLY =1,...,NG - numbers of Gauss integration points over a layer surface,
IGMS =1,...,NG - numbers of Gauss integration points over the midsurface,
[m] — number of an increment of a control parameter (time-step),

(4)
(k)

— number of a global equilibrium iteration,

- number of an iteration for integration of constitutive relations,
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& n — isoparametric co-ordinates in a parent finite element,

F¥a — co-ordinate along the thickness direction (dimensional and dimensionless),

Xp, X - position vector of a point on a reference surface (midsurface), orientation of a vector
initially normal to the reference surface,

> — position vector of a point with co-ordinates (¢,7,(),

dg,d - displacement vector of a midsurface point; relative displacement vector of point Z,

d — displacement vector of a point with co-ordinates (§,7,{) — GPLY or LBPT point,

Jo,J - Jacobian transformation matrices from local to global co-ordinate system for

a midsurface point or a distant surface point, respectively,

o, Ao - stress and stress increment vectors at ILY layer or at ILB point,

€, Ae - strain and strain increment vectors at ILY layer or at ILB point,

AgP! — plastic strain increment vector,

S, S — dimensional and dimensionless resultant stress vector at IGMS point,

e, € — dimensional and dimensionless generalised strain vector at IGMS point,

E — elasticity matrix,

D — constitutive resultant matrix,

P — plasticity matrix,

P, €p, Kp — hardening parameter, the Odquist parameter, equivalent plastic curvature,

AN — plastic multiplier,

q, Aq - nodal displacement vector and its increment on level E,

Q, AQ - nodal displacement vector and its increment on level B in R space,

T=A, 7=(Q; - control parameter (load or displacement control),
A — load parameter (multiplier),
p* — reference load,

*

pcn — reference external nodal load vector,

Fint(Q) — vector of internal forces dependent on current displacements,
R(Q,A) = Fin(Q) — AFy,; - residual forces vector,

Kr — tangent stiffness matrix,

t — control vector.
Y1

y vector is a one-column matrix, y = : = { Y1 o YN }
Yn

1. INTRODUCTION

The aim of the paper is to present all steps of a numerical analysis of elastic-plastic surface struc-
tures. Hence, we describe the strategy of the incremental-iterative solution on the level of discretised
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structure, which is coherent with integration of the incremental physical relations on the point level
where the consistent tangent matrix is employed. Three types of finite elements are used within
the displacement finite element formulation. Two approaches are compared in the paper — volume-
based and area-based — each referred to a different definition of stress vector or resultant stress
vector. The volume approach means that the constitutive equations are formulated and solved at all
discretization points along the thickness and then stresses are integrated to obtain the generalised
stresses on the middle surface. The area approach means that the constitutive relations are formu-
lated and solved in terms of the resultant stresses directly and no along-the-thickness integration
is performed. The degenerated-continuum-theory or the plate theory is applied for finite element
formulation. For the latter case the Reissner—Mindlin formulation is applied to moderately thin
surface structures with transverse shear included. The presented description of finite elements gives
a complete set of definitions and relations which are necessary for computational implementation
(i.e. approximation of geometry, displacement field, strains, stresses). The displacements, rotations
and strains are assumed to be small and material non-linearity is only analysed. The plastic flow
rule associated with the Huber—von Mises plasticity condition is employed. The plastic hardening
is included in models based on the volume approach whereas for those based on the area approach
perfect plasticity is assumed. The employed formulae and flow charts of algorithms are collected.
The collections are intended to make the computer implementation straightforward. The described
elements are implemented in the MANKA code. Numerical examples deal with either the bending
state or coupling of bending and membrane states.

The authors realise that there are many other problems to be encountered when the class of prob-
lems is broadened beyond linear elasticity. This paper, addressed mainly for ‘beginners’, puts a stress
on some problems connected with non-linear, elastic-plastic physical laws and known algorithms of
solving them. For more details and discussion of geometrical nonlinearities (large displacements,
large strains), relaxing the Reissner-Mindlin assumption, thermal effects, numerical problems of
different types of locking and other related problems, the reader is referred to literature — for ex-
ample [6, 13, 14, 30] and lists of references therein. However, one should realise that there are a lot
of books, papers and conference proceedings dealing with these subjects, not invoked here.

2. THEORETICAL BACKGROUND
2.1. Strategy of numerical analysis of elastic-plastic surface structures

The numerical analysis of non-linear elastic-plastic surface structures combines computational tech-
niques with surface structures mechanics, theory of plasticity and finite element method algorithms.
The authors have been involved for some years in numerical analysis of such structures [1-3, 10, 17,
28].

Aiming at lucidity of the presented computational algorithm the different levels of analysis are
named after the monograph [31]: i) point P, ii) cross-section S, iii) finite element E, iv) assembled
system of finite elements also called body B. Using the incremental-iterative algorithm for the non-
linear analysis one deals with repetitive transitions between the levels: B +E -+ S =+ P —- S —
E—-+B— ...

Tracing the deformation of a structure is based on the formulation and solving of the initial-
boundary value problem. Implementation of the FE method demands both spatial and time dis-
cretization. For the incremental formulation of the materially non-linear problem the sequence of
following states of a structure is determined for the increasing value of a time-like parameter [ml .
For a sequence of increments A7 the Newton method is applied on the structure level B, as well as on
the point level P while integrating the elastic-plastic constitutive relations. Various formulations of
finite elements are possible for the analysis of surface structures. Even for the elastic range the anal-
ysis of plates and shells (thin, moderately thick, thick) is based on either two- or three-dimensional
treatment. Beyond the elastic range, in general, one deals with the three-dimensional discretization,
despite the assumption that the thickness is considerably smaller than the midsurface dimensions.
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That is the result of the fact that the along-thickness stress distribution is not known in advance.
Moreover, it is usually necessary to determine the spread of the plastic zones with respect to all
three dimensions of a structure.

The transition between two following states of a structure is described by the incremental rela-
tions coming up from the virtual work principle [26, 27, 28]

NE NE
>3 / (6Ae)T (0 + Ac)d2 = 3 / (6Ad)” (p + Ap) d€2. (1)

When using the displacement-based finite element method it is assumed that incremental kine-
matic and physical relations are satisfied, Ao = Ao (Ae(Ad)), whereas finite element approxima-
tion relates to the generalised displacement field d = d(q). Combining translational and rotational
nodal degrees of freedom the vectors q and Q together with their increments are built on the element
level E and the structure level B, respectively. The solution of so-called extended set of incremental
equations is sought for in the displacement-load subspace of RV+! [27]

Kr AAQ =R, (2)
where the following notation is used:

AAQ = {AAQ, AA}, R =({R, A7},

AAQ - subincrement of displacements,

AT - increment of a time-like control parameter,

AA - increment of a load parameter.

The extended set consists of equations for finite elements

Kr-AAQ - AAF,, =R (3)
completed with the constraint equation

tT AAQ +tyy1 AN = AT, (4)

The structure of the extended set of incremental equations is illustrated in Fig. 1.

_Fe*xt AAQ
Kr R
1+ NI AA AT
RT - AAQ = R

Fig. 1. Structure of extended set of incremental equations

The continuation process is controlled by means of the control vector £ = {t, tn4+1}. Usually,
either a specified nodal displacement or the load parameter is chosen.

For the discrete continuation method we use, the iteration procedure induces intermediate con-
figurations, which in turn implies introduction of subincrements for the generalised displacements
(Fig. 2). Hence, on level B one starts from known displacements ™ Q for a given [m]-th equilibrium
state in order to obtain a new displacement vector [mH]Q in an iterative way

Q= MQ + AQ = [MIQ + AAQW T AAGR) 1.0 AAQUD 4 AAQ®
= [mHQt-1) 4 AAQ®. (5)
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Fig. 2. Notation for calculations with Newton-Raphson method

b) mlg
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Fig. 3. Sketch of iteration process; a) on structure level B, b) on point level P

Two different increment schemes are illustrated in Fig. 3a,b. The first relates to level B (and
simultaneously, to the displacement space) whereas the second — to level P (stress space). The
latter scheme is employed to update stresses basing on the obtained displacement field for the
[m]-th equilibrium state. The scheme is constructed in order to ensure the path-independence of
the calculated deformations during the iteration process. The incremental equations on level B are
coupled with the incremental physical and kinematic relations Ao = Ao (Ae(Ad)) formulated on

level P. The iterative scheme for updating stresses is

(6)

1] g6) — [mlg 4 A,

It is emphasised that all level P variables are only updated after the iteration process for level B is
completed.

The general incremental-iterative algorithm is shown by the flow chart in Box 1. It presents
the sequence of calculations performed between levels B and E for a sequence of incremental steps
[1,2,...,m,(m+1)] and iterative steps (1,2,...,1%, (i +1)). The matrix K7 and vector Fint used in
the Box 1 are calculated according to a finite element model applied.
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Box 1. Flow of computations between B — E levels

INPUT: data for discretised structure (geometry, material, boundary conditions, loads),
the way of control for continuation process (time-like parameter),
data for control parameter increments ™7, m =1,2,. ..,
admissible errors for displacements and residual forces e , g .

 GLOBAL LOOP ON LEVEL B OVER INCREMENTAL STEPS 1,...,m,m +1
For [m + 1]: Compute the actual time-like parameter [m+1l7 = [mlr 4 m+1 A7
Recall from memory the vector F},,
Compute the actual external force vector and its increment (if 7 = A)
[riige <t i (AR ste M AL o R0
[m+1]Fext S [m]Fext + [m+1]AFext

— GLOBAL ITERATION LOOP ON LEVEL B, 1,...,i,i+1,...

Recall displacement vector [™Q(2st) for § = 1 or [m+1UQU-1) for > 1

Compute the actual tangent stiffness matrix [m“]Kgf)
loop over finite elements IE = 1,..., NE
recall information on previous [m]-th element state

Box 2, 3 or 4 — OUTPUT a) k{y),,

assemble k(qf(e) — Kg) (E—B)
end of loop over IF
Compute the actual residual force vector R
(mHIR(D) = mIp{last) for (i) =1
[m+RG) = [m+1]p . F2 — [mHURE-D - for () > 1
Build and solve the set of incremental equations (indices [m + 1], (i) omitted)
Kr ARQZFY, “ARER
tT - AAQ+tn41 - AA = AT
Calculate the subincrement of the displacement vector [m+HAAQ(®
Add subincrement to the total displacement vector
m+1]Q() = [m+1]Q(i-1) 4 [m+1]AAQ®X

Compute the actual internal force vector [m“]Fi(ﬁjl)

}AKT-AAQ:R

loop over finite elements IE = 1,..., NE
use information on [m + 1]-th element state

Box 2, 3 or 4 — OUTPUT b) £{})

assembling f((:;rl) — [m+URGE+) (E - B)
end of loop over IE

Check convergence

[m+1AAQW| <eq and ||RI| = ™+ F ey — " HUFSVN < en
0 ] 1
l {

Inext iteration () — (2 + 1) ] store information on current

[m + 1]-th structure state

go to next increment
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2.2. Finite element discretization of surface structures

Even within the frame of displacement finite element models various approaches to the foundations
of plate/shell elements are possible. For example, there are either three-dimensional or continuum-
based plate and shell elements or continuum-based resultant elements [11, 22, 25, 29]. Also, two-
dimensional elements based on a chosen surface structure theory are possible. So, various elements
based on so-called ‘volume’ or ‘area’ approaches are distinguished.

In the present paper three types of elements are described in detail. They are referred to as:
1. CBSE-V - continuum-based surface element/volume approach, 2. RSE-V — resultant surface
element /volume approach, 3. RSE-A — resultant surface element/area approach (Fig. 4). The de-
tailed explanation of the above models is given below in Subsections 2.2.1 through 2.2.3. For com-
pleteness, all definitions and relations which are an important supplement of this point are collected
in Boxes I-VII in the Appendix.

The basic items different for particular models are discussed below, whereas the schemes of
calculations on the level E are presented as flow charts in Boxes 2, 3 and 4. The charts in boxes are
recalled in the main algorithm of numerical analysis. The calculation schemes for element matrix k.
€

and vector f£, are also given in the boxes.

Fig. 5. Description of geometry and kinematics
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For all three elements presented in the paper the eight-node base in the middle surface is assumed.
Five degrees of freedom are used at each node. Elements of each type employ the base of serendipity
shape functions (Box 1). Linear functions of co-ordinate z are employed for the thickness direction
for the geometry as well as for displacements and strains. In all types of elements the membrane,
bending and transverse shear effects are included.

The mapping from a parent element with (§,7,() co-ordinate system onto the current geometry
of an element with (z,y,2) co-ordinate system is used, regardless of the element model. For the
description of curved elements additional thickness directors Xy are necessary beside the standard
position vectors xgpn .

The integration over volume or area is performed in various ways and hence the precise notation
for discrete points (Gauss or Lobatto) is introduced (see notation and figures).

The merit of integration of the incremental physical relations together with a form of plasticity
condition in appropriate stress space (various for different element types) is discussed below and
illustrated in Boxes 5, 6.

2.2.1. Model 1

The element CBSE-V is based on the volume approach (Fig. 4-1). It is to be seen as a pile of layers,
each with membrane stresses completed with transverse shear stresses. Despite the relations with
the three-dimensional continuum typical surface structure degrees of freedom are used here. This
means that three translations and two rotations of nodes in the midsurface are taken into account.
The rotational degrees of freedom are to be understood as relative displacements of bottom and
top surfaces with respect to the middle one (Fig. 4). In order to describe the displacement field in

Box 2. Flow of computations on level E for model 1 - CBSE-V

. =}
EILY. IGDY.
e e
"I e N
E ILY T e e L
{ 1 [ 1 [GLY ¢ _/,/ L j,/

Extract the vector ™ +1q(®) out of the vector [m+11Q()
— Loop over all layers ILY =1,...,NLY
calculate co-ordinates (;ry and zry = oy - t/2
Loop over the Gauss points for each layer IGLY =1,..., NG
r calculate co-ordinates &, 7

compute current strain vector [ *+e(@® and its increment [m+1Ag()
on the basis of matrix B(¢,n, {;,y) and vector q

integrate incremental physical relations
|Box 5 — OUTPUT: ["+llg(), [n+iEG |
add contribution of point IGLY from a layer ILY to

OUTPUT a) tangent stiffness matrix [m+1]k¥ze)
OUTPUT b) current internal force vector ['”H]f((g

‘— End of loop over IGLY
'— End of loop over ILY
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a particular layer the superposition of two fields is employed. The one is a field dg defined on the
middle surface (z = 0) and the other is Ad — relative displacements of two external layers z = +i
(Box III, Fig. 4).

The integration over an element volume is performed numerically. At first, the area integration is
performed in each layer, then the summation over all layers is done. Hence, a set of the NG x NLY
Gauss points is regarded as the element representative. At each point of each layer (GPLY) we deal
with five-element stress and strain spaces (Box IV). Components of the resultant stress vector are
calculated be means of summation over the layers at each Gauss integration point of the middle
surface (GPMS) after the stresses in layers are updated.

The derivatives of displacements with respect to the local co-ordinates (present in kinematic
relations, Box V) are calculated at the Gauss points IGLY in a standard way: derivatives of shape
functions are computed, reverse Jacobian matrix Jg is used (calculated on the middle surface for
thin shells) and transformation matrices T and T gy are employed for translational and rotational
degrees of freedom, respectively.

The complete information about the material state is to be memorised for NG x NLY points.

2.2.2. Model 2
In the present paper model 2 is confined to flat, rectangular elements only and hence the description
of geometry, kinematics and stress field is simplified. In the two-dimensional middle surface the eight-

node base is used with position vectors and generalised displacement vectors attached to it. The

Box 3. Flow of computations on level E for model 2 — RSE-V

— —
E IGMS ILB Petl St B T J
e B / I / I /

Extract the vector [m*+1q(® out of the vector [m+1Q)
— Loop over the Gauss points on midsurface ( =0, IGMS =1,...,NG
calculate co-ordinates &, 7

compute current generalised strain vector [™+1e(? and its increment [m+1Ae(d)
on the basis of matrix B(&,n,0) and vector q

— Loop over the Lobatto points ILB = 1,..., NLB
calculate co-ordinate ¢

compute increment of strain vector [m+1Ag(?)
integrate incremental physical relations

Box 5 — OUTPUT: m+llg®  [mHIE®

add contribution of the Lobatto point ILB connected to the Gauss point IGMS to:
local modular cross-section stiffness matrix [m+1D®
current total generalised stress vector [m+1]g(%)

‘— End of loop over ILB

Add contribution of the Gauss point IGMS to:

OUTPUT a) tangent stiffness matrix [m“]kgfze)
OUTPUT b) current internal force vector [m+1f (:‘)

(e)
— End of loop over IGMS
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process of volume integration is different for the RSE-V model (Fig. 4-2) than for the CBSE-V one.
A set of Lobatto integration points is used here instead of the pile of layers in order to discretize
along the thickness direction. The Lobatto points are spread along the normal at each Gauss point
of the midsurface.

Starting from the nodal displacements the generalised strains (membrane, bending and transverse
shear) on the middle surface are calculated. They, in turn, are used for the calculation of strains at
every Lobatto point according to the geometrical hypothesis. Here, the ‘straight-director’ hypothesis
is applied which means the normal to an initial middle surface remains straight but not necessarily
normal to the deformed surface. In the next step the physical relations are integrated at each
Lobatto point with the five-element stress and strain vectors (note the variants in treating the plane
stress state condition discussed below). This results in updated stress vectors as well as consistent
modular matrix at each point. Finally, the integration is performed over all Lobatto points to give
the resultant stresses and constitutive resultant matrix at the midsurface Gauss points. Hence, all
volume integrals are transformed into surface integrals (over the midsurface as reference surface
area) with all z-dependence embodied in the calculation of stress-resultant vector and constitutive
resultant matrix. So, pre-integration over the thickness is followed by integration over the middle
surface. Complete information about material state is to be memorised for NG x NLB points.

2.2.3. Model 3

The element to which we refer as RSE-A (based on area approach) is constructed in two-dimensional
middle surface (Fig. 4-3). The generalised strains coupled with the stress-resultant vectors are used.
The incremental physical relations together with a plasticity condition are formulated globally i.e.
directly in terms of these vectors. The integration over the thickness is thereby avoided which makes
significant difference when compared with models 1 or 2. All information about the deformation
process is memorised for the NG middle surface Gauss points only.

Box 4. Flow of computations on level E for model 3 - RSE-A

—
BT 8t foyabiimaialy sl @i
/ 7 /
o . [ ] . [ ] £
E A o STl g
761 B Ak et g
T R I Dt (G IO wand S8 U s 7

Extract the vector [™+1q(® out of the vector [m+1Q()
™ Loop over the Gauss points on midsurface ( =0, IGMS =1,...,NG
calculate co-ordinates &, 7

compute current generalised strain vector [™t1e(?) and its increment [+ Ae(?)
on the basis of matrix B(¢,n,0) and vector q

integrate incremental physical relations
Box 6 — OUTPUT: [m+1g(i) [m+1]p()
Add contribution of the Gauss point IGMS to:

OUTPUT a) tangent stiffness matrix [mH]kE}ze)
OUTPUT b) current internal force vector [m“]f((g

'— End of loop over IGMS
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2.3. Algorithms for integration of the elastic-plastic constitutive relations

The integration of the elastic-plastic constitutive relations is performed at each discretization point
for every global iteration step (Box 1). Stresses, strains and process parameters on point level P
are updated only after the convergence on level B is achieved. Such a treatment results in the
iteration-independent integration, which for plasticity is crucial and enables us to avoid spurious
plastic deformations. The presented approach is the implicit one, hence all the relations are satisfied
at the end of the incremental step.

The procedure starts with a given increment of the generalised displacement vector AQ on level B.
After the transition is done to the element level E and then to point level P the strain operator results
in determining the strain increments at the discretization points. Then, the incremental constitutive
equations are integrated for given strain increments to result in the stresses (or generalised stresses)
at these points. The integration consists of two steps. First, an elastic predictor is calculated with
the linear material behaviour assumed. Then, if a plastically active process occurs i.e. the yield
surface in the stress space is exceeded, a return mapping is performed to the updated yield surface.
The Huber-von Mises plasticity condition is applied. For volume formulations the linear strain
hardening is adopted. Material is assumed to be homogeneous and isotropic.

In the paper several approaches to the problem are applied. The first approach is called lo-
cal formulation or volume approach. This means that the constitutive equations are solved at all
discretization points along the thickness and then stresses are integrated to result in the gener-
alised stresses on the middle surface. The layer model or the Lobatto quadrature is employed for
along-thickness integration. In such a case the yield function is expressed in terms of stresses and
(possibly) a hardening parameter. In the frame of this formulation still two different algorithms are
possible. The first algorithm is based on the assumption of degenerated plane stress and plane strain
state. This means the normal stress and normal strain in thickness direction are simply neglected.
However, in plasticity the plane stress condition is a non-trivial one. Namely, different points in
stress space are encountered on the yield surface with or without plane stress condition enforced.
Hence, the second algorithm is applied in which the normal strain €, is iteratively chosen at each
integration point in order to satisfy the plane stress condition o, = 0. The detailed and lucid dis-
cussion of the possibilities of including or neglecting the plane-stress condition in the algorithm can
be found in [7] and references therein.

Another possible approach is to formulate the yield function in terms of the resultant stresses
directly and thus to avoid integration along the thickness of an element. Such an approach is referred
to as global formulation or area approach and is based on an approximation of the yield surface in
terms of stress resultants [12, 20, 21]. Again, two different formulations are possible. The first is
the original one (Ivanov’s approach) with the assumption of full yielding throughout the thickness,
which means that an element is regarded as either purely elastic (until limit capacity is reached) or
purely plastic — no elastic-plastic stages are possible. The second formulation, introduced in order
to moderate the above effect, is due to Crisfield [8] and enables the approximate examination of the
yield zone throughout the thickness. To this end a hardening-like parameter (namely, an equivalent
plastic curvature) is employed.

Details of flow charts for the computation are given in Boxes 5-8 and VI-VII. In what follows
vector o is either the stress vector or the stress resultant vector, depending on the formulation
applied. Similarly, € stands for either the strain vector or the generalised strain vector whereas p
denotes either the hardening or the hardening-like parameter.

For all the cases the basic scheme of solution is similar [24, 19]. The elastic predictor for the
stresses is calculated as

o) = g* = Mg + E. (¢ — M), (7)
Then the yield condition is checked whether

(I’*(i) (ael(i), [m]p) <0. (8)
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Box 5. Integration of the elastic-plastic relations at GPLY or LBPT points
INPUT: strain increment vector m+1Ae( (¢, 7, ¢)
stress vector from last converged step ™o (¢,7,()
hardening parameter [mle,(€,m,¢)
Iteration loop k£ =1,2,...
compute: first approximation Asgo) = 1_—V (Asg) + Aaz(f))

expanded strain increment vector Ae = [M+UAe(® 1+ {00000|AM}

elastic predictor ot =I"g 4 B Ae

Check plasticity condition $ o*" P o — 1 02 (I™le,) < 0

1 0
1 {

elastic (passive) increment  plastic (active) increment
o

Calculate o, e},i), AX9 solving the set of equations

plastic relaxation o = (I+ ANVEP) 1o*
hardening param. €{) = AX() \/g cWTpg() 4 Imle,

yield condition

Box 7: OUTPUT AX®)

check plane stress condition agi) =0

o =o* 1 [ 0
Eer(d) = | 1 T
calculate: calculate:
4.2 ¢ (i) d
5 G A0 ol i k> 2
33; (1) (k) (k—1) (k)
d ; &
1-2 TZ;L: " AN Re(FH), o8] s P (Asz Ae; )
# z £ (1) (k—1) (1) (k)
: -1 (op T2
E* = (I+ A/\“)EP) E =
, , ;
sty _ B* = B'PegOTPE" Al = —(Ac) +Ay)
 A*+ oc(TPE*Po() ) ¢
go to next iteration, (k) — (k + 1)
OUTPUT: stress vector m+1]g () (¢, 7, ¢)

consistent tangent matrix [ +UEP(®) (¢ 5 ()
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Box 6. Integration of the elastic-plastic relations at GPMS points

INPUT: generalised strain increment vector m+1]Ae( (£, 7)
resultant stress vector from last converged step mS(&,n)
equivalent plastic curvature (hardening-like parameter) [™lk,(¢,7)

Calculate dimensionless quantities S, &
Compute: elastic predictor
dimensionless quadrature stress intensities

Crisfield’s parameter

§* = M5 1+ B As
Pny Pm s Pmn, Pt
a = a(mk,)

check plasticity condition ®(p, , pm , Pmn, Pt, &) <0
1 | 0
4 l

elastic (passive) increment plastic (active) increment

!

plastic relaxation

evolution law of Crisfield’s param.

yield (plasticity) condition

S() — §* =i : v
sw( ) _SE Box 8: OUTPUT S®), AX®, o9
Calculate:
G(i)T - aq,(z) 6fCrzs

Calculate S, AX®)| ng) solving the set of equations:

" s i e\ !
50 _ (S*m _Em(n__) ~0
a5

o — fo,5(8D ANDY = 0
3§D o) =

L 929

1- afCTls 8% ’
da oS

ai ? L 52\ !
DeP) — [E-1 4+ AND 2
(B eann Bg

|

return to dimensional quantities

|

fa 8BS

239 &7
I- -
c®T a<1>( i) oty 85

gt B Y 1 [l
( . 952

85 ~ T8a 9(AN)

OUTPUT: resultant stress vector

consistent tangent-resultant matrix

Im+1g({(e, n)
[m+1]Der(d) (¢, n)
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Box 7. The Newton method algorithm for computation of AX®)

Notation: A)\gj) =A)\,, k=0,1,2,... (superscript () omitted in expressions below)

First approximation Alg =0

Iteration loep: k=1, 2. .~ 4+———
B(AN,
Akt BN —a-i—’”)
(BN |y,

until |®(AM;)| < tolerance
with

®(AN) = %O'*T(I + AXEP)"!T.P.(I+ AXEP) 'o*

2 %‘7;2:1 ([m]ep - A)\\/ga*T(I FAXEPHIT . P-(I+ A)\EP)"la-*)

3 3
2\ * d AN 1 =
_@;z[l_(_) } 15 (3o%) = (2) w2t Voo
P

dan 3) " de, VoTPg| dAN 3 d
d (1 7 ORI

AN (2" P") =0 A

K = (I1+ AXEP)™!

Box 8. The Newton method algorithm for solving the set of non-linear equations F(X) = 0

Notation: X® = {S§() AX® (D}
XEJ) =Xy (superscript (9 omitted in expressions below)

First approximation Sp =S*, Al =0, ay=["a

Iteration loop: k =1,2,...

dFe\ !
Xk+1=Xk—<d—Xk) 3

until [|F(Xk+1)|| < tolerance

with linearization (Jacobian) matrix

82<I>k 3‘I)k 62<I>k
I+A —— E— A =
+AME T 5 “ME3Ea,
dF, _ 021" 0 0%,
dxX = oS Oa
e afCris] a o afCris T afC’ris
a5 8(AN) dax ey
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[m+1] 5 (5)

Fig. 6. Elastic predictor and return mapping

If it is not satisfied the plastic relaxation relations are built for the associative plasticity and the
backward Euler scheme to give a return mapping algorithm (Fig. 6)

: £ N[00
o = g _E AN 880' ’ 9)
where
) (2) )
Ax® 9B _ A riti) (10)

o

is the increment of plastic strains, and finally one comes to the set of non-linear equations in the
form

26 _ oo g ax® 98 _
Jo

0,
&* @ (o® pd) = 0, (11)
f®,0®, A00) =0,

where the last equation is an evolution law for the hardening or hardening-like parameter p. The
unknowns are the stresses (or generalised stresses, depending on formulation), plastic multiplier AX
and (if any) parameter p.

If the local formulation is chosen the above set is reduced to one non-linear equation with AN@)
as unknown (Box 7). For the global formulation the entire set is solved simultaneously (Box 8). The
particular forms of vectors o, functions @ or f are different for the cases discussed.

What remains is to calculate the tangent stiffness matrix for non-equilibrated configuration. To
this end the plastic relaxation relations are consistently linearized with respect to o and AXD,
Additionally, the plasticity condition is linearized and the consistency is required

de® = 0. (12)

Then, after some algebra, one comes to the so-called consistent tangent matrix [23, 19] that gives
the relation between increments of stresses and strains for non-equilibrated states

do® = B de®. (13)

After the set (11) is solved and for the local formulation the stresses are integrated along the
thickness to give the resultant stresses on the middle surface, the latter ones are used for the
calculation of internal forces vector and residuals in global equilibrium equation. The matrix E®
is used for updating the stiffness matrix of the global structure for the next iteration step. For the
local approaches EP is integrated along the thickness to give such a relation for the generalised
quantities on the middle surface. If the global approach is applied the latter integration is avoided.
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3. NUMERICAL EXAMPLES

In the present paper examples are confined to plates subject to a transverse load with possible
coupling with a membrane load. The numerical examples chosen are rather simple. Their aim is
to illustrate some problems with material elasto-plasticity only. Also, the special-purpose studial
code MANKA directed to the non-experienced designer of an element introduces restrictions for
the size of a problem. Several other numerical examples obtained with the use of MANKA [28] and
ANKA [16, 28| codes are published in [4, 5, 18].

The first example (Fig. 7a) is related to the results published in [19]. A plate is discretised with
3 x 3 serendipity plate elements. The equilibrium paths (Fig. 8) are built in the displacement-load
space (A-wc) with the displacement control applied (7 = w¢ , we denotes central point deflection).
The efficiency of the algorithm based on the consistent linearization of the incremental physical
relations and the Newton-Raphson iteration applied on level B is confirmed. It enables us to use
relatively large time-like steps in the plastic range with an acceptable accuracy and a small number
of global iterations. The figure collects equilibrium paths obtained for various formulations. Symbol
‘** denotes the results from [19]. The small differences observed, in particular in the range of initial
yielding, are due to the differences in discretizations on levels B, E, P, applied here and in [19].
Two groups of paths relate to either volume or area approach. The latter group, based on the
Ivanov or Crisfield formulation, indicates an overestimation of the plate load carrying capacity. The
Crisfield modification reduces the error with respect to the elastic limit. Here and below ‘p.s.s.’ is
the abbreviation for ‘plane stress state’.

Another numerical example deals with a plate in bending (Fig. 7b), made of elastic-perfectly
plastic material, discretised by various models of finite elements. The slenderness of a plate (de-

a)

|
Rheh L =0.508 m

: 1

1 1

' pn =iconst 1 t = 0.00254 m
s A 4 = 3

™" L E=69-10"kPa

! .

3o 5w W v=03

I | 0o = 2.48 - 10° kPa

b)
L LALLLY
|
// Pn =const ¢ = 0.025, 0.050, 0.100 m
Aol sl Sinpa 0 9V 100 ¥R By 010 V109 kPd
|
7 7777 oo = 2.0-10° kPa
b=
!
c) /L4
: i L,=10 L,=05m
|
: i t=0.05m
| pn|= copst ! Ly E =2.0-10° kPa
T i
: ! v=03
o0 = 2.0 -10° kPa
Py

Fig. 7. Examples: loads, boundary conditions, material constants, discretizations
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scribed by the ratio t/L) is a parameter that influences the differences between various formulations
(Fig. 9). For the case of thin plate all the formulations (element models) lead to almost the same
results. The discrepancies become larger for thicker plates. Attention is drawn to the equilibrium
curves obtained for the ¢/L = 0.1. One can observe that in the range of developed plastic deforma-
tions the accuracy is not satisfactory, in particular for elements based on the area approach. The
reason is that the allowable number of iterations for a particular incremental step is kept fixed in
the code for comparison purposes and turns out to be insufficient for some cases. Also the element
mesh seems to be too coarse for the case considered, which may result in artificial limit points which
involve ‘snap-through’ effects, cf. [9].

4 —

1
simply supported square plate
under uniform lateral load;

| comparison with [19] |
L

load [0.1 MPa]

results from [19]

degenerated p.s.s. - volume approach
plane stress state - volume approach
Ivanov’s area approach

Crisfield’s area approach

£ I ' I ! [ ’ |
0.0 0.1 0.2 0.3 0.4 0.5
central point deflection [m]

Fig. 8. Volume vs. area approach — equilibrium paths
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/— e e T m—— T =~
= e ST sy
Lot e
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| /
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f.. = s p
=
o
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® 10 — - - - - - plane stress state - volume approach
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—— - - - - Crisfield’s area approach
e /; s —
// t/L=0.050
‘__/__,__{:«—_:::f:—-:;v—.-—-—f—f
0.0 ""‘I ; i ’ I t/[L=0.02]5 ] :
0.000 0.002 0.004 0.006 0.008 0.010

central point deflection [m]

Fig. 9. Load-displacement curves for various element models and various values of plate slenderness
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Figure 10 collects the equilibrium paths (load—deflection curves) for a plate of moderate thickness
(t/L = 0.05/1.0). Perfect plasticity models are compared with linear hardening ones. Two formu-
lations are considered: the one based on the degenerated plane stress assumption (normal stress
in thickness direction is neglected) and the other based on the true plane stress condition o, = 0
satisfied in a way of iterative choice of the normal strain €, . One should note that the degenerated
plane stress assumption leads to significant overestimation of plate capacity if hardening is present.
This is due to inexact value of the hardening parameter €, when no normal strain in the thickness
direction is included into the analysis.

0.8 — o

0.6 — -

K P
= 4
o 04 =
o
(3]
¥
0.2 — degenerated p.s.s, perfect plasticity
————— plane stress state, perfect plasticity
------- degenerated p.s.s., linear hardening
B —— - - - —— plane stress state, linear hardening
oo =i e T g S —— N
0.000 0.002 0.004 0.006 0.008 0.010

central point deflection [m]

Fig. 10. Volume approach, various plane-stress conditions

0.3 =
0.2 —
<
ks
=3
5 o
£
o
8 ; .
- > plane stress state - local formulation
0.1 — (O degenerated p.s.s. - local formulation
| A Ivanov's global formulation
A divergence encountered
X elastic limit
e G TV A
0.000 0.002 0.004 0.006 0.008 0.010

central point vertical deflection [m]

Fig. 11. Equilibrium paths for plate in bending and membrane extension



FE-analysis of elastic-plastic surface structures 35

The last example deals with the superposition of bending and membrane extension of a plate
(Fig. 7c). This means, in general, that on point level P all components of the stress vector or
resultant stress vector are non-zero. Figure 11 presents the equilibrium curves in the load—deflection
co-ordinates. The true transverse load and in-plane tension load are determined as a product of load
parameter A and the reference load: p, = A - 10* kPa, py=A-2- 10*kN/m. The curve obtained
with the global approach is cut because of the divergence encountered on a point level iteration.
Also, one can observe an overestimation of the elastic limit capacity when compared with local
approaches and a non-smooth load—deflection relation. The latter is due to too coarse discretization
which induces accuracy problems for global approaches although it is good enough for the local
approaches.
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Fig. 12. Along-thickness normal stress redistribution; a) o, (y tension direction), b) o,
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The along-thickness redistribution of normal stresses ¢, and o, for increasing values of the
load parameter is presented in Figs. 12a and 12b, respectively. The stresses are taken at the most
stressed point of the middle surface (closest to the clamped edge and to the symmetry axis), where
first yielding occurs. Note the displacement of the neutral surface of the plate, which is due to the
tension in the y direction imposed on the transverse bending.

4. CONCLUSIONS AND REMARKS

The elements CBSE-V and RSE-V differ from each other in the manner of numerical integration.
The set of layers, each discretised with the Gauss points, for the CBSE-V is replaced with sets of
the Lobatto points, each connected with the Gauss point in the middle surface, for the RSE-V. The
element CBSE-V enables a broader class of implementations. For example thick structure analysis
or composite structure description may be ‘naturally’ done using the former element.

The elements RSE-A based on area approach are restricted in applications: there is no direct
way to include material hardening, there are only approximate ways to describe the evolution of
the plastic zone along the thickness. On the other hand they require less memory, which is not a
crucial issue nowadays. Hence, these types of elements are ‘forced out’ by those based on the local
formulation of the physical relations.

The numerical strategy based on the consistent linearization of the incremental constitutive
relations together with the Newton-Raphson method applied for the iteration of global equilibrium
is proved to be an efficient numerical tool. It provides results independently on the length of the
time-like step. Moreover, even for larger steps the iteration process converges fast.

The global formulation of the constitutive relations leads, in general, to an overestimation of the
structure load carrying capacity when compared to the local approach. The Crisfield modification
allows to decrease the error of the elastic carrying capacity, but for developed plastic deformations
the differences between two global approaches vanish.

For the local formulation of the constitutive relations the neglecting of zero-normal- stress con-
dition also leads to an overestimation of the capacity in the cases when plastic hardening is present.
Hence, it is recommended to satisfy iteratively this condition in spite the fact it requires more
computational effort.

For an increasing thickness of the structure the number of iterations required for a given-accuracy-
solution increases. This is especially the case for the global-approach elements. If the maximum
number of iterations is kept limited, the accuracy in the plastic range noticeably decreases. Also,
the discretization based on the global-approach elements turns out to be more sensitive to the coarse
mesh effects.

For developed plastic deformations together with a strong interaction of bending and membrane
loading the global formulation requires many more iterations both on the level B of the entire
structure and the level P of a single discretization point (where even divergence may be encountered).
Hence, the numerical effort is paradoxically greater and local formulation turns out to be more
efficient.

The incremental-iterative algorithm applied makes it straightforward to include geometrical non-
linearities through a generalization of the geometrical relations (not included here). The discussion
and comparisons of different approaches to the problem can be found in [29] and papers cited there.
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APPENDIX

Box I. Serendipity shape functions

dx = (1+&€x) (A + k) (E€x +mmx —1)/4 for K =1,3,5,7
By = [0+ &) —7?) + L+ mn)(1 = €)]/2 for M =2,4,6,8

Box II. Description of geometry

Model No. 1.
Input data: x}, , xb for nodes N =1,...8

Calculations for nodal points:
Position vector of a point on reference surface  xon(&,7,0) = (x4 +x%)/2
Orientation of a vector initially normal to reference surface % (£,7,0) = xt, — x4
Position vector of a point with co-ordinates (¢,7,¢)

xn(&m,¢) = Xon + A%on = Xon (§,7,0) + (XN (€, 7,0)/2

Isoparametric description of geometry:
8
x(&,m,0) = Y (Nor - xn)
N=1
Nor = diag( ®y ®x Pn ) - shape functions

‘Box I: Serendipity shape functions ®x(&,7) |

Model No. 2. or 3.

Input data: xon for nodes N =1,...8

Isoparametric description of geometry:
8
xo0(€,1,0) = D (Nor - Xon)
N=1
Nor = diag (®ny ®n Py ) - shape functions

IEX I: Serendipity shape functions ®n(&,n) I

Box III. Description of displacement fields (continued in the next page)

Nodal generalised displacements at nodes N = 1,...,8 on midsurface:

av={u v w | o1 @2 }ovn={ qon Qon }
FE approximation:

Model No. 1.:

Displacement vector of a point  d(§,7n,() = v ow

{
d(&,n,¢) = do(&,7,0) + Ad(¢,n,¢)

8
FE approximation of displacements  do(¢,7,0) = T% [Z (Nor - qON)]
) N=1
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Box III. (continued) Description of displacement fields

8
Along-thickness displacement increment Ad (80, 0= Z { [ TRN qON)]}

Transformation from local to global cs. Tr=[z' y' 2']
A .’L‘l VIN :E’ VaonN
Transformation from local to global c.s. at a node Tgy = ; ;
Yyvin Y Von
Nor = diag( &y ®ny Py ) - shape functions
V= (Ctn/2) [ —von Vin ]
[ vin van | — base vectors at a node

[ 2 y' 2] - base vectors at a point

IBox I: Serendipity shape functions ®x(¢,n) |

Model No. 2. or 3.:

Displacement of a midsurface point d(§,7,0)={ v v w 6; 6 }
8
FE approximation of displacements do(&,7,0) = Z (Norr - 9on)
N=1
Shape functions Norg =diag( @y @y Py | v Pn)

Box I: Serendipity shape functions ®y (¢, n)]

Box IV. Description of strain and stress fields, kinematic and physical relations (continued in the next page)

Model No. 1.
For every ILY =1,...,NLY — at every GPLY point with co-ordinates (¢,7,¢)icLy

Definition of strain vector: €= {ez €y Yoryr Yoz Yoo }
Strain—displacement relation:
{Ezl €yl ’yzlyl "yzlzr ’Yylzl }:{U:m/ Ufy, U:yl'i"l):z, U:z,+’w:z, 'Ufz,'i'w:y:}
m+11e® = B¢, ,() - Im+1lq®)

Strain increment vector: [MHUAg(®@) = [m+1]() _ [m](last)

Definition of stress vector: o = {0, 0y Toy Toz Tys }

Stress—strain incremental relations: ["+tUAg() = [m+1E®E) . [m+1]A ()
Stress vector [m+1] 5 (0) = [m]g(last) 4 [m+1] A 5 (3)

Constitutive matrix: ™ +IE® (¢ 9, ¢)

For every GPMS with co-ordinates (£,7,0)

Resultant stress vector: [ +1s() = Z {imﬂ]tf(i) (& n,¢) - Ay ‘t/2}
Ly
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Box IV. (continued) Description of strain and stress fields, kinematic and physical relations

Model No. 2.
For midsurface at every GPMS point with co-ordinates (£,7,0)

Definition of generalised strain vector: e ={e; €y Yoy Kz Ky Xay Yoz Vyz }
Strain—displacement relation:

{ex €y Yoy Kz Ky Xzy VYzz ’sz}
:{u,z Vy U,y+’U,;,; 02’1 —gl,y 92,y—01,z 02+w,z _'01+w,y}

[m+1]e(":) = BO(E"’]; 0) . [m+1]q(i)
Strain increment vector [MTHAe() = [m+1lg(i) _ [m]gllast)

For every LBPT point with co-ordinates (¢,7,()1ems for { = 2z/t

Definition of strain vector: € = { €z €y Yay Vzz Yy }
Strain increment vector: Ae(€,n,0) =H(C-t/2) - Ae(&,n,0)

1 0 04270.07°0::0
01 002000
‘Hypothesis’ matrix H(z)=| 0 0 1 0 0 z 0 0
0:0,0:0:-0:0.1:0
0 00O0O0OT 0?1

Definition of stress vector: o = {0y 0y Tay Tzz Ty: }

Stress-strain incremental relations: [MTUAg() = [mHUE®) . [m+H1]A ()
Stress vector: [m+1] (1) = [m]g(last) 4 [m+1] A ()

Pre-integration through the thickness
Constitutive-resultant matrix:  [™+UD® (¢ n,0) = / (HTEH) dz
t

Resultant stress: ™S (¢ 5, 0) = /(HTO') dz
t

Model No. 3.
For midsurface at every GPMS point with co-ordinates (£,7,0)aums

Definition of generalised strain vector e ={e; €y Yoy Kz Ky Xay Yoz Vyz }
Strain—displacement relation:

{ea: €y Yzy Kz Ky Xzy Vzz 'sz}
={tz Uy UytVz O2o —O1y O2y—b01s O2+w, —61+w,}

(m+11g() = By(£,7,0)lm g

Strain increment vector [Mt1Ae() = [m+1lg(i) _ [m]gllast)

Definition of stress resultant vector S ={n; ny Ngy My My Mgy ty ty }
Stress-strain incremental relations: [M+UAS() = [m+1p() . m+1] Ag(d)

Constitutive-resultant matrix:  [™+1D®)
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Box V. Matrices k and vectors f of elements (continued in the next page)

Model No. 1.

Stiffness matrix

kr = // 4 (BTEB)dV » ) Aty {//Q (BTEB) dﬂm}

ILY
=3y {Amy > [(B"DB) - detJ - W]}
ILY IGLY IGLY
Internal force vector

f= ///v (BTo)dV ~ ) Aty {//Q (B"o) dQILY}

ILY
= Z {AtILY Z [(BTG') -det J - W]}
1LY IGLY IGLY

WiarLy — Gauss quadrature weights

Model No. 2.

S= [HT() o()dzm 2 3 (BT () - 0(2) - Wiy
¢ ILB

t
D= [H”(2) E(z) H(2) dz ~ = > [(HT(2) E(2) H(z2)) - W]is
¢ ILB
with z = %C LB, ¢ — Lobatto quadrature nodes, Wjrp — Lobatto quadrature weights

Stiffness matrix kg = // (BTDB) dQ ~ Z [(BTDB) - det Jy - Wliems
Q0o IGMS

Internal force vector f = // (BTS)dQ, ~ Z [(BTS) - detJ, - Wlieus
Qo IGMS

Wiraems — Gauss quadrature weights

Model No. 3.

Stiffness matrix kg = / (BTDB) d) ~ Z [(BTDB) - det J, - Wlicums
S IGMS

Internal force vector f = // (BTS)dQy ~ Z [(BTS) - det J - Wliems
¥y IGMS

Wirems — Gauss quadrature weights
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Box VI. Definitions and formulae (volume approach)

Elasticity matrices (E — Young’s modulus, v— Poisson’s ratio):
1 Lapcash 0 0
B v 1 0 0 0
for degenerated plane stress state (o, neglected) E = 0 0 32 0 0
1-02 2
00 0 X% o0
0 w0270 0 =
1-v v 0 0 0 v
v 1-v 0 0 0 v
E 0 0 & 0 0 0
. E=———— 2
for 3D stress state (v # 0.5) T+ (1=2) 0 0 0 iz 0
0 0 0 0 & o
v v 0 0 0 1-v
100 0 00
0. 1:.:0, .0; 8.0
E 1
for 3D stress state (v =0.5) E = e 8 8 8 (%) g 8
0000 O
0207507 07 07
Plasticity matrices:
2
2 -1 ooo
12 900
for degenerated plane stress state P = 0 0« 240440
0 0 0 20
0 50 07072
2 1
mfonsg Valal domg
. i Qlasti() a2: #0mifs 10
for three dimensional stress state P = 0 B B 189017
O U TeEgh 2.0
4 -b oo 3
Material hardening description (in uniaxial tension with oo — yield point stress):
d
perfect plasticity: op = 09, bact S 0
de,
linear hardening (with E, — hardening module): o, = 0o + Epi€p, % = Eg
€p
. . s 1+ kpe dopy p
'l tot h d o & k Vs = L P =
non-linear asymptotic hardening (o, 00):  Opi = 0 remnd 3o, TR
(with k, p — parameters)
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Box VII. Definitions and formulae (area approach)

Dimensional: resultant stress vector, generalised strain vector and elasticity matrix
8= Vi 8 = my iny Aey Ma My By t,ily. )

e:Ve-é:{ez €y VYay Ka Ky Xzy Vzz 'sz}

1
v 1
0 0 L% sym
" £t |0 tol &
E=V;'EV,= —— i
o *T1-»| 00 0 % &
o0 0 o0 o G
0 0 O 0 0 0 L
0 0 O 0*530 0 0 L
with dimension diagonal matrices
I el 1 i} bisdp
=di 1, 1 -, =,=, 11 Vs =opt-di e
Ve dlag(, ’1’t’t’t’ 5 ) 5§ =00 d1ag<1,1,1,4,4,4,1,1>

t — thickness, E — Young’s modulus, v — Poisson’s ratio, oo — uniaxial yield point stress

Dimensionless quadrature generalised stress intensities

— 52452 _ & & =2
P, = iy + Ny — fig iy + Mg,

P, =32 +38

Yield function

P; 4 fr2 (Pn + P,)Py — P2 P\ P
® =P+ B+ 05] 2 4 a4 aP2 | - ma__ _ gogyf=tlzmal 4
B s ( v m”) a2 (Py + P;) 1 0.48Py)] a

Evolution law for the Crisfield parameter

& = foris(p) = 1- 0.4 exp (~2.6v/k + )

i s g <a<1> 2+ a<1>>2+ 0% 90  1( 0% 3
R By By ) | Om, 0my 4 \Oiay

[ — small parameter
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