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The paper concerns a method of implementation for the numerical modelling of the solidification process in
which the finite element method was used. Modern techniques of software engineering were applied to reach
the aim. The decomposition of the problem domain, for the needs of object-oriented analysis, was carried
out. The relationships between parts of the analysed problem were discussed. At first, the object-oriented
analysis was investigated in general for the wide range of problems solved by the finite element method, e.g.
thermomechanic problems of castings, and then it was investigated in detail for the solidification process.
The most important specialisation of classes for object implementation of the solidification model were
also discussed. The enthalpy solidification formulations were used in the numerical modelling. The three
models of solid phase growth, used for solidification modelling of two-component alloys, were described.
The method for determining the dependence of enthalpy in relation to temperature and the formula for
calculating the solid fraction were shown for each of the three models.

1. INTRODUCTION

The development of information systems, including systems for physical phenomena simulation,
requires a growing number of factors to be taken into account. This causes an increase in the
difficulties of implementing such systems.

Nowadays, the object-oriented methodology is the most commonly used technique to compre-
hend the complexity of the problem domain [7, 12, 16, 23]. It allows the gap between reality and
the reasoning of data and processes to be greatly reduced, being an intuitive tool for conceptual
modelling purposes. The basic objectivity mechanisms are:

e abstraction mechanism; this is convenient for building larger and larger software units and for
operating them without penetrating their internal construction,

e composition and decomposition mechanism; this allows the details of the project to be enclosed
into larger and larger units, and complex structures to be decomposed into their fragments,
which allows them to be considered separately from each other and the total,

e reuse mechanism; this allows earlier created project components to be made use of.

The object-oriented methodology has its own notation, as with every other kind of methodology.
A system of notation, which is in accordance with the Unified Modelling Language (UML) [21, 24],
is the most often applied. It is a way of overcoming hitherto disorder, and it is considered to be the
standard method to visualise object-oriented analysis results. The basic component of this notation
are object diagrams. These include object classes (the attributes and methods are specified using
classes), generalised relations, associated relations as well as the number of these relations. The
object diagram arises at the stage of problem domain analysis and takes place independently of
programming language, which ensures better problem domain mapping [5, 27].
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2. MATHEMATICAL DESCRIPTION OF SOLIDIFICATION

The description of phenomena occurring during the transition from the liquid to the solid state can
be made on two levels: micro — which applies to single crystals, or macro — which applies to all solid
phase growth. In the first case, we talk about crystallisation, in the second — about solidification.
We can take into account some of the effects connected with the microscale in the solidification
description, but without going into detail, e.g. the size of grains, the distance of secondary arms in
dendrites, etc.

Solidification can proceed at a constant temperature or at a range of temperatures. If solidifi-
cation proceeds at a constant temperature, the so-called “Stefan problem” or solidification problem
with a zero-width phase-change interval should be addressed. A sharp separation between liquid
and solid phases occurs in the Stefan problem. The two phases are in contact with each other form-
ing a solidification surface (front). The solidification of metal alloys generally proceeds at certain
temperature intervals, so-called “temperature solidification intervals”. There is no sharp separation
between liquid and solid phases in this case as both phases are separated from each other by a so-
called “mushy zone” in which both liquid and solid phases appear at the same time. It is said that the
solidification front is dispersed. The width of the mushy zone depends on the chemical constitution
of the solidifying alloy and on the velocity of solidification (solid phase growth), and therefore on
the conditions for carrying away heat.

Because of the complexity of the calculation, numerical methods are most often used to model the
solidification process. Analytical ones are hardly ever used. The finite element method [6, 17, 18, 22]
is the most commonly used numerical method, but the boundary element method [2, 3, 8, 9] and
the finite difference method [14] can also be applied.

Solidification is stated by a quasi-linear heat conduction equation

oT
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containing the term of heat source ¢, which describes the rate of latent heat evolution and is equal
to
Ofs

] = psL —, 2
where ) is the thermal conductivity coefficient, c¢ is the specific heat, p is the density (subscript s
refers to the solid phase), L is the latent heat of solidification and fs is the solid phase fraction.
This equation, together with suitable initial and boundary conditions, forms the basis of the thermal
description of solidification.

Taking into consideration the enthalpy, defined as follows [6]

T
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where T, is the reference temperature, one can pass to the so-called enthalpy description of the
solidification process. The prevailing ones are [6, 17, 22]:

1. the basic enthalpy formulation

v-ovn) =22, (@

which is obtained by differentiating the enthalpy, given by Eq. (3), with respect to time

o0H oT dfs
R -
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2. the apparent heat capacity formulation

VOV & (1) % i (6)

which is obtained by differentiating Eq. (3) with respect to temperature
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One can distinguish four types of boundary condition in the modelling of solidification — these
are the same as those found in thermal conductivity modelling:

1. in the first type of boundary condition (Dirichlet condition), the temperature (Tgiy) is given on
the boundary I" of {2 domain

PR 4 (8)

2. in the second type boundary condition (Neumann condition), the heat flux (ggiv) is given on the
boundary I" of €2 domain ,

hocs q = Qgiv (9)

3. in the third type boundary condition (Newton condition), heat exchange with environment takes
place on the boundary I' of €2 domain

g= T —Teny), (10)

where « is the heat exchange coefficient, T' is temperature in the body on the boundary I', and
Teny is environmental temperature,

4. in the fourth type boundary condition (continuity condition), on the boundary I', which separates
2y and €2 domains, where the heat flow takes place, two cases are possible:

e ideal contact

% 72 e - e
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and n is the normal vector to I' boundary, while ¢ indicates spatial directions,
e shortage of ideal contact (contact through additional layer)
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where f3 is the thermal conductivity coefficient of the material in the separating layer, and §
is the thickness of this layer.

The heat radiation, which performs a crucial role when the mould cavity is filled with liquid
metal, is introduced to the mathematical description through the third type boundary condition.
The « coefficient in Eq. (10) is in this case composed of two parts: convectional and radiant.



82 N. Sczygiol

3. ENTHALPY FORMULATIONS OF SOLIDIFICATION BY THE FINITE ELEMENT METHOD

The equations describing particular types of solidification formulations are transformed into the
finite element method equations. The weight residue method is used for this purpose. This method
is based on finding an approximate solution to the differential equation which describes the phe-
nomenon of solidification in the region . This is done by multiplying this equation by a certain
weight function and then by integrating over the region (2. The Bubnov-Galerkin method is one
of the most popular methods used for further investigation. This method uses the same weight
and shape functions which describe the behaviour of the sought quantity in the finite element. The
application of the Green—Gauss theorem enables the transformation of the discussed equation into
an ordinary differential equation (containing the time derivative). The procedure described above
is called semi-discretisation because it is applied only to the discretisation over the space. The
equations are usually represented in a matrix notation.

The semi-discretisation of Eq. (4), which determines the basic enthalpy formulation of solidifica-
tion, gives [6, 17]

MH + K(T)T = b(T), (14)

where M is the mass matrix, K is the conductivity matrix, H is the enthalpy vector, T is the
temperature vector and b is the right-hand side vector, whose values are calculated on the boundary
conditions basis. The values of the matrix and vector coefficients, for single finite elements, are
calculated according to the following equations

M¢ = [ NTNdQ, (15)
Qe

Ke(T}y= / MT)VIN - VN dQ, (16)

bS(T) = | NA(T)VT-ndT, (17)
l“e

where N is the shape functions vector.
In the case of the apparent heat capacity formulation, Eq. (6), semi-discretisation results in the
following equation [6, 17]

M(T)T + K(T) = b(T), (18)
in which
M¢(T) = / ¢NTNAQ, (19)

while matrix K and vector b are calculated according to Egs. (16) and (17).

The ordinary differential equation (containing the time derivative) received as a result of semi-
discretisation, is integrated over time using one of the linear multi-step schemes [25]. Because prop-
erties of the casting material depend on temperature, it is the best to apply an appropriate time
integration scheme which eliminates the necessity of finding the actual values of the material prop-
erties for the calculated temperatures. The two-step Dupont II scheme can be applied for this
purpose [6, 17]. However, the application of a two-step scheme requires the use of a one-step scheme
as a first calculation. For this purpose the modified Euler-backward (EB) scheme [18, 25] can be
applied.

The application of the modified Euler-backward scheme to the basic enthalpy formulation
gives [18]

MH"! + AtK"T"! = MH" + Atb™t!, (20)
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while its application to the apparent heat capacity formulation brings in turn
(M" + AtK™)T"+! = M"T" + Atb™*. (21)

Value of the coefficient a = 1/4 was assumed for use in the Dupont II scheme. This assures the
greatest accuracy and solution stability [6]. Moreover, it was established that matrix and vector
coefficients are calculated for extrapolated temperature as follows

3 1

T = _Tn+1 = _Tn’ 29

5 5 (22)
and was denoted by superscript (°) in the following equations. As stated above, this allows long-time
iterative calculations to be avoided in each time step. The application of Dupont II scheme to the
basic enthalpy formulation gives [18]

1
MH"2 + %At K°T"*+2 = MH"t! — iAt K°T" + %Atb"” + 7 Atb", (23)

while for the apparent heat capacity formulation one can obtain

(MO e Z—At K°> T = MO %At K°T" + %At b"t? 4+ iAt bl (24)

The function describing the relationship between enthalpy and temperature plays a basic role
in the enthalpy solidification formulations from the pouring temperature to the temperature at
which the casting is removed from the mould. It is possible to obtain analytical equations which
describe the dependence of solid phase fraction on temperature for two-component metal alloys.
These functions will be discussed for the succeeding models of solid phase growth in two-component
alloys. Three models of solid phase growth for two-component alloys: equilibrium, non-equilibrium

and indirect were taken into account in both formulations.

4. THE SOLID PHASE GROWTH MODELS FOR TWO-COMPONENT METAL ALLOYS

The behaviour of metal alloys in terms of the temperature and chemical constitution is presented
with the help of phase diagrams. A fragment of a phase diagram for a two-component alloy with
eutectic transformation is displayed in Fig. 1. The chemical constitution of the alloy is stated on the
z-axis and temperature on the y-axis. The melt temperature of the basic component equals T},
and eutectic temperature is T . The beginning of alloy solidification is marked as 77, . The end
of solidification is marked as Ts . This temperature is not shown in Fig. 1 because it depends on
the solidification model. The temperatures of the beginning and the end of solidification are called
the liquidus and solidus temperatures, respectively. The pressure can also have an influence on the
shape of the phase diagram, but this kind of influence is omitted in all forms of casting, except for
pressure die casting.

Three methods for numerical modelling the solid phase growth can be distinguished when consid-
ering two-component alloys with eutectic transformation. In the case of non-equilibrium solidification
model, given by Scheil equation, the eutectic temperature is always reached by the solidifying alloy
(line 2). This means that a certain last portion of the metal solidifies at a constant temperature.
For the equilibrium solidification model the temperature at which solidification ends depends on the
chemical constitution (line 1). The model is described by the lever rule [10]. The temperature at
which solidification ends equals the eutectic temperature only for alloys in which the solute con-
centration is bigger than its maximal solubility in solid phase. The solidification run depends on
the diffusion path length of solute and so on the grain size in the solidifying microstructure, in the
indirect solidification model (line 3), the limits of which are determined by lines illustrating equilib-
rium and non-equilibrium solidification models. For this reason it is called the between solidification
model. The average grains size in the casting microstructure depends on cooling velocity [19].
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Fig. 1. The solid phase growth models in the two-component alloys. 1 — equilibrium solidification model
(lever), 2 — non-equilibrium solidification model (Scheil), 3 — indirect solidification model (between)

4.1. The solid phase growth according to the equilibrium solidification model (lever)

The solid fraction equation can be obtained from the solution of a diffusion equation for the solute,
after introducing some simplifications [10, 11, 15]

1 T, -T
fs_l—kTM—T’ (25)
where k is the solute partition coefficient, defined as
C*
k=22, 2
& (26)

where C?¥ is the solute concentration on the solidification surface in the solid phase, and Cj' is the so-
lute concentration on the solidification surface in the liquid phase. The solute partition coefficient is
strictly connected with liquidus (77,) and solidus (Ts) temperatures in the equilibrium solidification
model. Two cases are possible there, depending on the initial solute concentration:

e solidification ends without reaching the eutectic temperature T ; whole solidification process
takes place in some temperature interval,

e solidification ends after reaching the eutectic temperature; the solidification process takes place
at a constant temperature from the moment eutectic temperature is reached.

4.1.1. The apparent heat capacity formulation

Substituting the final solidification temperature into Eq. (25) shows if the solidification will take
place in the temperature interval, or if the constant solidification temperature will be reached

fs=

{ =iy solidification in temperature interval, (27)

< the final solidification stage takes place at a constant tempetature.

The solid phase fraction is calculated according to Eq. (25), if the solidification proceeds without
reaching the eutectic temperature. The diagram of enthalpy, as a function of temperature for this
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Fig. 2. The relationship of two-component alloy enthalpy to temperature (the range of solute full solubility)
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Fig. 3. The relationship of two-component alloy enthalpy to temperature (alloy with assumed fictitious
solidification range)

case, is shown in Fig. 2'. The beginning of the solidification (fs = 0) and the end of solidification
(fs = 1) are additionally shown on the y-axis.

If the solidification proceeds reaching the constant solidification temperature (eutectic tempera-
ture), the relationship of enthalpy to temperature is modified by assuming that a certain fictitious
range of temperatures exists. Its width is £ (Fig. 3). Obtaining identical temperatures in every node
of one finite element is avoided in this way, which means indeterminacy during calculating effective
heat capacity c* is avoided (compare Eq. (7)). In fact the solidification at a constant temperature

1To construct the enthalpy to temperature diagrams it was assumed that the heat capacity in the solidification
temperature interval is an average of the solid and liquid phase heat capacities. Between the beginning and end of
solidification temperatures the enthalpy was interpolated linearly.



86 N. Sczygiol

is modelled by solidification in a certain narrow range of temperatures. The solid phase fraction at
the moment of reaching eutectic temperature is equal to

fE= o iR (28)
—k1iIm—1E
The linear dependence between the solid phase fraction and temperature is assumed in the
temperature range between T and T + € (Fig. 4). According to this assumption the equation for
calculating the solid phase fraction in relation to temperature after reaching eutectic temperature
can be educed. Its form is

(Tg+¢)—-T
SR T

fo=1—(1-fF) (29)
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Fig. 4. Approximation of the solid phase fraction in relation to temperature in the fictitious solidification
range

4.1.2. The basic enthalpy formulation

The relationship of enthalpy to temperature is shown in Fig. 2. This takes place for solidification in
the temperature interval, and was tested by Eq. (27). If solidification finishes at a constant tempera-
ture, then the relationship of enthalpy to temperature is subject to modification as shown in Fig. 5.
The solid phase fraction is calculated according to Eq. (25) until eutectic temperature is reached.
The linear relationship between the solid phase fraction and enthalpy (Fig. 6) is established for
constant solidification temperature. According to this assumption, the equation used for calculating
the solid phase fraction can be educed, but this time in relation to enthalpy, after reaching the
eutectic temperature. The equation is as follows

fr=1-0- IR (30)
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Fig. 5. The relationship of two-component alloy enthalpy to temperature (alloy with eutectic

transformation)
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Fig. 6. Approximation of solid phase fraction as the function of enthalpy at the eutectic temperature

4.2. The solid phase growth according to the non-equilibrium solidification model
(Scheil)

Again, one can obtain the following solid phase fraction equation from the solution of a diffusion
equation for solute, but after introducing different simplifications [10, 15]

1
Ty —T \*T1
et (neom) o)
The equation describing solute distribution, from which the above equation is educed, is called the

Scheil equation. This equation is characteristic because it always gives the eutectic composition.
This means that part of the solid phase always solidifies at a constant (eutectic) temperature.
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4.2.1. The apparent heat capacity formulation

The solid phase fraction, until reaching eutectic temperature, is calculated according to Eq. (31).
At the moment the eutectic temperature is reached the solid phase fraction is

1
Tig = F k-1 .
E _ 1 _ M E
T <TM—TL) ' 5

The procedure, after the eutectic temperature is reached, is analogous to the solid phase growth
according to the equilibrium solidification model. It is established that solidification takes place
in the temperature range from Tg to Tr + ¢ instead of at a constant temperature. The linear
relationship of the solid phase fraction to temperature is assumed in the above range. The solid
phase fraction in this range is calculated from Eq. (29).

4.2.2. The basic enthalpy formulation

The relationship of enthalpy to temperature always has the form shown in Fig. 5 because the
solidification always finishes at a constant temperature. Until the moment the eutectic temperature
is reached, the solid phase fraction is calculated according to Eq. (31). At the moment the eutectic
temperature is reached, the solid phase fraction is given by Eq. (32). The linear relationship is again
established for the constant solidification temperature. The solid phase fraction, after the eutectic
temperature is reached, is given by Eq. (30).

4.3. The solid phase growth according to the indirect solidification model (between)

For the solution of diffusion equation it is assumed that solute diffusion in the solid phase depends
on the size and shape of the grain. For this one can obtain the following solid phase fraction
equation [17, 19]

l—-nka
1 Ty —T k—1
o e i e
Is 1—nka< <TM—TL) ) (33)
where
D
o= r_gtf’ (34)

and D; is the solute diffusion coefficient in the solid phase, t; is the so-called local solidification
time, 7y is characteristic grain size and n is a coefficient engaging the grain shape

2, for plane grain,
= Ll for cylindrical grain, (35)
6, for spherical grain.

The Dty product can be treated as a material parameter. The application of Eq. (33) gives
physically unreal results for a wide range of coefficient o values above a certain value depending
on grain shape. This means that the solid phase fraction is equal to 1 for the temperature higher
than solidus temperature. One can avoid this inconvenience by introducing appropriate correction
for the « value. In this paper correction was introduced only for the plane grains, this means for
n = 2. It equals [4]

Higsnme (1 e (-é)) 2 %exp (—%) . (36)
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The coefficient o can accept any positive value after the application of the above correction. The
correction () replaces the coefficient « in Eq. (33).

If the numerical solidification model assumes the possibility of different grain sizes occurring
in the casting, then according to Eq. (33) some of the grains can solidify without reaching the
eutectic temperature. Some of the grains can reach the eutectic temperature during solidification,
assuming the initial concentration of the solute is smaller than the maximum solubility of the solute
in the solid phase. If the initial concentration of the solute is equal to or bigger than the above
concentration, then all the grains will reach the eutectic temperature during solidification. In the
first case (the initial concentration of the solute is smaller than the maximal solubility of the solute
in the solid phase) the grain size has a crucial importance. Solidification can take place between
limits determined by the equilibrium and non-equilibrium solidification models.

4.8.1. The apparent heat capacity formulation

The solid phase fraction, until eutectic temperature is reached, is calculated according to Eq. (33).
At the moment the eutectic temperature is reached, solid phase fraction is equal to

l1—nka
1 Tif =Tg\ *1
PSR S S . R
fs . 1 —nka (1 (TM —TL) ) ' (37)

The procedure, after the eutectic temperature is reached, is analogous to the solid phase growth
according to the equilibrium solidification model. It is established that solidification takes place
in the temperature range from Tg to Tr + € instead of at a constant temperature. The linear
relationship of the solid phase fraction to temperature is assumed in the above range. The solid
phase fraction in this range is calculated from Eq. (29).

4.8.2. The basic enthalpy formulation

Subsequent procedure is analogous to the equilibrium solidification model because the solidification
can end with or without reaching the eutectic temperature. If solidification ends without reaching
the eutectic temperature, then the solid phase fraction is calculated according to Eq. (33). When
eutectic temperature is reached the solid phase fraction is calculated according to Eq. (37). Again the
linear relationship of the solid phase fraction to enthalpy is assumed for a constant temperature of
solidification. The solid phase fraction, after reaching eutectic temperature, is calculated according
to Eq. (30).

5. OBJECT-ORIENTED ANALYSIS OF THE FINITE ELEMENT METHOD

After analysing the system for physical phenomena modelling using the Finite Element Method, a
certain abstract part was isolated and grouped in the FEM Core software package. The basic classes
of FEM, apart from the problem tackling type, are collected in this package. The classes, describing
real modelling problems, are created using an inheritance mechanism (Fig. 7).

5.1. FEMCore package

The basic FEM components (Fig. 8): a node — Node class, a finite element — Element class,
boundary conditions — BoundaryCondition class, material properties for a group of elements —
Region class and class solving system of equations — SystemOfEquationsSolver are included in
FEMCore package composition. They are abstract classes, this means that the number of node
coordinates, the number of nodes in an element and interpolation functions, type of boundary
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Fig. 8. FEMCore package content
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conditions, material properties and methods of solving system of equations are not given in them.
All this information is detailed at the real problem modelling stage.

The Solver class, through aggregation relation, is the consolidation class. It stores all object
classes of nodes, elements, boundary conditions and material properties occurring in the task. Node,
Element, Region and BoundaryCondition classes describe in turn: a single node, a single finite
element, properties for a single domain and introduced boundary conditions for a single element or
a node. The objects collections of those classes are created as the task is solved. Their number is
readjusted to the task size, this means to the number of nodes, elements, boundaries and domains.
The attributes and methods associated with the structure and solution of the task are contained
in the classes. The initial-boundary task is assumed and hence, the solver class components are
connected with a time loop.

The Element class was designed in such a way that it creates a system of equations for only
one finite element. The construction of a global system of equations for the whole task relies on
calling BuildSystemOfEquations method for all the objects in the finite element collection. The
identical treatment of different geometry elements, different interpolation functions and elements
from domains of different material properties is possible in this way. This identical treatment of
the collection of elements has also been used for the BoundaryCondition class, where boundary
conditions are introduced by using the same ModifySystem OfEquations method, independently of
the type of boundary condition.

The collection of objects describing the material properties goes into the Region class. Those
objects have inherited attributes and methods from the Property class and can be described by
a constant value or by a one parameter function (e.g. temperature). The situation in which the
function describing material property values is unknown or very complicated was also foreseen. It
can be represented in a discrete form and the values between discrete points are interpolated linearly.
The access to particular properties is achieved by using appropriate methods inherited from Region.

The problem of solving a system of equations is left open in FEMCore package. The SystemOfE-
quationtsSolver class is the common interface for direct and iterative methods. This makes it possible
to choose a suitable solving method and a suitable preconditioner for the system of equations for
implementing task. Moreover, it is possible to choose a method to store the system of equations
coefficients matrix: as a full matrix (square), a band matrix (rectangle) or a sparse matrix (only
non-zero coefficients and their matrix subscripts are stored) [1, 13].

5.2. The operation of FEMCore package

The state/activity diagram showing the methods of classes included in the package should be used
to illustrate the operation of the package. Many figures need to be inserted with such diagrams,
which could make reviewing difficult. Despite this, it was decided to present a short description of
an operation which illustrates package functionality.

First the Solver class object is created in the computer memory and the Initialize method is
started. The aim of this method is to read in the model parameters, e.g. time-step, steps number etc.
Afterwards, the method reads in information about regions which produce the Region class objects,
aggregating objects of particular material properties. The next operation stage of the Initialize
method is to read in the finite elements mesh. The nodes whose objects are initialised by coordinate
values ( Coordinates) and by the node number (Indez) are read in first. The node number determines
the position of the corresponding equation (or equations) in the global system of equations. Next,
Element class objects are created in the computer memory and connected with the region objects
and node objects on which they are described. Then the boundary conditions are read in creating
BoundaryCondition class objects and joining them with suitable region and node objects. The
initial values are read in for non-stationary tasks. These are introduced into the vector solution in
the earlier formed System OfEquationsSolver class object.
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After all the information is read in, the Solver class object starts to solve the problem by calling
TimeLoop method. The first step is to set to zero matrix A and vector b of the SystemOfEqua-
tionsSolver object. Then, the MakeSystemOfEquations method is called. Its function is to start the
BuildSystemOfEquations method in all the Element class objects. This method, using material in-
formation obtained from the attached Region class objects and Node class objects, builds the global
system of equations. As a next step, the boundary conditions of the task are introduced into the
TimeLoop method. This is done by the SetBoundaryConditions method which starts the ModifySys-
tem Of Equations method in all the BoundaryCondition class objects. The coefficients’ values in the
global system of equations are suitably changed. These changes are based on the material prop-
erties information and on the place of their introduction (node number). The system of equations
formed in this way is solved by the SystemOfEquationsSolver class object. The obtained results are
recorded by the SaveResult method. These steps, from setting to zero of the system of equations
coefficients to the recording of results, are repeated until the Time attribute reaches the FinishTime
value. Then the Solver object, during the ending of the task, releases the memory assigned to all
the objects of the task.

6. OBJECT-ORIENTED ANALYSIS OF SOLIDIFICATION MODELS

The specialisation of FEMCore package classes is the next stage for the considered problem. The
specialisation of FEMCore package abstract classes for the modelling of solidification are shown
in the following diagrams. The obtained class hierarchies are closed in the Solidification package
(Fig. 7).

Modelling in the problem domain was restricted to two solidification formulations: the appar-
ent heat capacity formulation and the basic enthalpy formulation. The abbreviated notations of
those formulations: AHC — for apparent heat capacity formulation and BEF — for basic enthalpy
formulation, were used during analysis. Two regions, which were the subject of modelling, are distin-
guished: Cast — representing the solidifying casting and Mould — representing the casting mould
(possibly containing casting cores). It was also assumed that the distribution of cooling velocity,
solidification kinetics and the temperature field will be results of the calculation.

6.1. Solver class specialisation

The SolidificationSolver class was worked out from the Solver class (Fig. 9). It inherits all the
Solver class properties expanding to the requirements of the solidification simulation system. The
system should model the solidification process according to one or other of the two formulations
together with three models of solid phase growth. It gives six different procedures to describe the
solidification process. This requires the Model attribute in SolidificationSolver class to be loaded.
The Model attribute identifies the classes of objects created. The objects of classes describe finite
elements, boundary conditions, material properties and method for introducing initial conditions.

The inheriting TimeLoop method is completed by calling the service of velocity cooling calculation
which was realised by the Calculate Velocity method. This method calls the Cooling VelocityInNodes
method (Fig. 10) in all the Element class objects (specialised for solidification modelling needs).
The Cooling VelocityInNodes method determines the solidification velocity value in the finite element
nodes.

The unknowns in the system of equations for AHC are temperatures, while for BEF — enthalpies.
The temperature field is a common initial condition for both formulations. The SetInitialConditions
method recalculates the temperature field to enthalpy field for BEF.

The action of the SaveResult method was developed by calling: Save Velocity — to save cooling
field velocity, SaveTemperature — to save temperature field (for BEF recalculated from enthalpy),
and SaveSolidFraction — to save solidification kinetics.
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The three level time integration, according to Dupont II scheme, needs an extra vector z0 to be
introduced to store “earlier” calculation results. Substituting the resulting values of solution vector z
from the SystemOfEquationSolver class into 0 vector was realised by a suitable widening of the
TimeLoop method.

6.2. The Element class specialisation

The system allows the introduction of any type of finite elements. The specialisation of Element class
will be discussed using one chosen finite element as an example. It is a triangular element with linear
interpolation. Elem2D31 abstract class was educed for these types of elements from the Element
class. It contains the CalculateMeAndKe method which calculates the values of mass matrix M
and conductivity matrix K coefficients. At present adaptive methods have not been implemented
in the system, so it was decided that, once determined, the matrix values would be stored as class
attributes in Me and Ke, respectively. It was also decided to access the possibility of determining
the constant components of the nodal function derivatives with respect to suitable directions. This
is realised by the CalculateC'123 method.

The class hierarchy for triangular finite element modelling was educed from the Elem2D31 class
for both formulations. TriBEF class models the triangular element for the basic enthalpy formu-
lation independently of this element’s attachment to the casting domain or the casting mould.
All details, connected with this were moved to the classes modelling material property domains.
The finite elements were discriminated between casting ( TriCastAHC') and mould (TriMouldAHC')
modelling for apparent heat capacity formulation because of the specificity of determining effective
heat capacity. Determining effective heat capacity makes use of the derivative components of node
functions C21, C22 and C23 as well as C31, C32 and C33.

TriBEF, TriCastAHC and TriMouldAHC classes were expanded through the BuildSystemOf-
EquationsForEB method, to determine a global system of equation coefficients in the first calcula-
tion step according to the EB time integration scheme. Furthermore, the BuildSystemOfEquations
inheriting method builds systems of equations for the remaining time steps of the task according to
Dupont II scheme. Those classes were provided with methods which enable the solid phase fraction
(SolidFractionInNodes) and cooling velocity (Cooling VelocityInNodes) to be determined in finite
elements nodes.

6.3. Region class specialisation

For the solidification modelling needs, the following alloy material properties were selected from
the problem domain: solid phase density (Density) and liquid phase density (DensityL), effective
heat of solid phase (SpHeat) and liquid phase (SpHeatL), latent heat of solidification (LHeat),
solidus temperature (TempsS), liquidus temperature (TempL), solidification temperature of basic
(pure) alloy component (TempM), thermal conductivity coefficient of solid phase (Lambda) and
liquid phase (LambdaL), solute partition coefficient (PartCoeff) and two relationships — enthalpy
to temperature (Entalphy) and temperature to enthalpy (Zemp). Moreover, three services were
specified to determine: cooling velocity (CoolVel), solid phase fraction (Fs) and (average) grain size
(GrainR).

As the system should model the solidification according to six described procedures, six modelling
classes of phenomena, occurring in the solidifying casting, were obtained. Additionally, two classes
which model the casting mould domain were defined (one for each formulation). The SolidRegion
abstract class was worked out from the Region class to make for easier management of the class
hierarchy describing material properties (Fig. 11). The methods, stored there, make a common
interface for all classes modelling particular domains. The inheritance from this class was taken in
two paths: for solidifying casting, and for casting mould and casting cores.
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The MouldAHC class contains the casting mould material properties description for the apparent
heat capacity formulation. The methods, stored there, enable necessary material properties to be
determined for this type of domain. The MouldBEF class was worked out from this class. It contains
the material property description for the domains of this type, but only for the basic enthalpy
formulation. It was expanded using the conversion possibility of temperature to enthalpy and vice
versa. The method for determining the value of the temperature derivative with respect to enthalpy
(dTdH) was also added.

The CastAHCLever class models the casting domain, taking into consideration the equilibrium
solid phase growth model. The methods which calculate values of solidifying alloy material prop-
erties are grouped in it. The classes with the remaining solid phase growth models for apparent
heat capacity formulation: non-equilibrium (CastAHCScheil) and indirect (CastAHCBetween) are
worked out. The method of educing the solid fraction was modified in those classes, according to the
model. The class hierarchy modelling casting domain for basic enthalpy formulation is educed from
CastAHCLever class. The CastBEFLever class, modelling the casting domain with the equilibrium
solid phase growth model, inherits as the first class. It was supplied with the methods determining:
the temperature derivative with respect to enthalpy (dTdH), the solid phase fraction derivative
with respect to temperature (dFsdT) and the method determining the temperature on the basis
of the alloy enthalpy (7Zemp). Analogously, like for AHC, classes modelling the casting domain for
BEF with other solid phase growth models, are educed from the classes, modifying the functioning
of methods connected with this quantity.

6.4. BoundaryCondition class specialisation

The classes realising particular boundary conditions (Fig. 12) are educed from the BoundaryCon-
dition abstract class. The boundary condition of first type (given value on the boundary) for the
apparent heat capacity formulation is realised by the FirstAHC _BC class. The mechanism for intro-
ducing that boundary condition into the global system of equations is general to such a degree that
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ConvertTempToEntalphy

ModifySystemOfEquations
ModifySystemOfEquationsForEB

ModifySystemOfEquations
ModifySystemOfEquationsForEB

Fig. 12. BoundaryCondition class specialisation
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there was no necessity to modify the ModifySystem OfEquations method for the FirstBEF BC child
class. The additional ConvertTempToEntalphy method was introduced for the basic enthalpy for-
mulation, for which the basic quality is enthalpy. The ConvertTempToEntalphy method recalculates
the boundary node temperature for enthalpy.

The mechanism for introducing the second type boundary condition (heat flux given on the
boundary), as for the first type condition, does not depend on the solidification formulation or on the
time integration scheme. For this reason it is modelled by one, common SecondBC class. On the other
hand, the third type boundary condition (heat exchange with environment) and forth type (heat flow
through thin layer separating domains) needed independent consideration for different solidification
formulations and time integration schemes. As a result ThirdAHC _BCand FourthAHC _BC classes,
realising third and fourth type of boundary condition for apparent heat capacity formulation, and
ThirdBEF _BC and FourthBEF BC inheriting from them for basic enthalpy formulation, were
formed. The ModifySystemOfEquationsForEB method was created in these classes. This method
is responsible for introducing the boundary condition into the global system of equations for the
first step of calculation. The performance of the ModifySystemOfEquations method was properly
modified for the remaining steps.

7. CONCLUDING REMARKS

The application of the object-oriented methodology to the finite element method started at the
beginning of 90ties [23] and it is the most commonly used software engineering tool for the mod-
elling and simulation of different physical phenomena. The use of object-oriented analysis enables a
macroscopic glance of the analysed problem and the capture of certain common features of the ap-
plied methods. It allows the problem domain to be divided into smaller parts, which in turn, at the
implementation stage, guarantees quicker localisation of possible errors, as well as the improvement
of existing models and the construction of new ones based on existing solutions.

Strong support for this methodology from contemporary programming languages is an argument
for using the object-oriented analysis in information system techniques. The record of system ideas,
as an analysis result, is directly transformed in the form of object diagrams into the source code
application.

On the basis of object-oriented analysis of the numerical modelling of castings solidification, pre-
sented in this work, a suitable computer program module [19] was implemented in C++ language.
This module is part of a bigger project. The results of computer simulation of solidification, ob-
tained with the help of this module, have been presented in the work [20]. The computer simulation
of solidification is a very time-consuming process. The calculation time can be shorten by applying
distributed and parallel processing. In the case of numerical solidification modelling this leads to
a considerable acceleration in calculating [26]. The object-oriented analysis of the numerical mod-
elling of castings solidification, presented here, can serve as a pattern for similar analysis of different
phenomena and thermomechanic processes taking place in solidifying and cooling castings.
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