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The paper deals with a numerical modelling of solidification in which enthalpy formulations were used.
The finite element method (FEM) was applied for computer simulation of solidification. This is the most
common numerical method used in the simulation of physical processes. The enthalpy formulations are
more convenient to use than temperature formulations in the multidimensional problems in which FEM is
applied. The paper concentrated on two enthalpy formulations: the apparent heat capacity formulation and
the basic enthalpy formulation. The time integration schemes and the numerical realisation of boundary
conditions were discussed. The models of solid phase growth and the implementation details used in this
paper were shown in work [15]. The presented results of computer simulations contain: temperature fields,
solidification kinetics, cooling velocities and calculated distributions of equiaxed grain size.

1. INTRODUCTION

Casting is one of the production methods for machine elements and equipment. The shapes and
properties of cast products are formed when liquid metal is passing to the solid state. The pass from
the liquid to the solid state is a process composed of many physical phenomena: heat flow, liquid
metal movement, evolution of latent heat of solidification, diffusion and so on. Other phenomena,
which have an influence mainly on functional value of casting and occur as a result of the phenomena
mentioned above, also have major significance. They include: microstructure formation, stress for-
mation, shrinkage and a variety of casting defects. If the description of the pass of metal from liquid
to the solid state is being addressed on the macroscopic level then modelling of solidification takes
place. If the description is being addressed on the microscopic level then modelling of crystallisation
takes place.

Solidification can proceed at a constant temperature or at a range of temperatures. If solidification
proceeds at a constant temperature (T) the so-called Stefan problem or solidification problem with
a zero-width interval of solidification temperatures should be addressed. A sharp separation between
liquid and solid phases occurs in the Stefan problem. The two phases are in contact with each
other forming a solidification surface (front). The solidification of metal alloys generally proceeds at
certain temperature intervals, so-called temperature solidification intervals. The initial stage of the
solidification of an alloy is called the liquidus temperature (77), while the end of solidification is
called the solidus temperature (T's). There is no sharp separation between liquid and solid phases
in this case as both phases are separated from each other by a so-called mushy zone (solidification
front) in which both liquid and solid phases appear at the same time. The width of the mushy zone
depends on the chemical constitution of the solidifying alloy and on the velocity of solidification
(solid phase growth), and therefore on the conditions of carrying away heat. The occurrence of
a mushy zone and its dynamics in the solidification process have an influence on the microstructure
of the solidified metal.

The finite element method is most commonly used in numerical modelling and numerical sim-
ulation. The above method was also applied in this paper with special respect to its suitability
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in connection with enthalpy formulations of solidification. One of those formulations, the so-called
basic enthalpy formulation, directly takes the forming microstructure into account in the numer-
ical model. This paper takes into consideration only the possibility of the formation of equiaxed
microstructure.

2. THE BASIC EQUATIONS OF THE SOLIDIFICATION PROCESS

Solidification is stated by a quasi-linear heat conduction equation containing the term of heat source,
which describes the rate of latent heat evolution

v-OvI) oL e = p T2 1)
where ) is the thermal conductivity coefficient, ¢ is the specific heat, p is the density (subscript
s refers to the solid phase, [ would denoted the liquid phase, f would denoted the pass from the
liquid to the solid state), L is the latent heat of solidification and f is the solid phase fraction.
These equations, together with suitable initial and boundary conditions (stated in Section 4) form
the basis of the thermal description of solidification.

Taking into consideration the enthalpy, defined as follows,

T
H(T) = /T co(T) dT + psL (1 — f5(T)), )

where T} is the reference temperature and cp is the heat capacity, one can pass to the so-called en-
thalpy description of the solidification process. A few types of enthalpy formulations of solidification
exist. The prevailing ones are:

1. the apparent heat capacity formulation (AHC)

V- (AVT) = ¢*(T) % (3)

containing the effective heat capacity (c*), which is obtained by differentiating Eq. (2) with
respect to temperature

dH _ dfs _ .
ar — P~ Pl gy =< (D), (4)

2. the basic enthalpy formulation (BEF)

oH
- (AVT) = —
V- OVT) ==, ®)
which is obtained by differentiating the enthalpy, given by Eq. (2), with respect to time

BH ,100.0F /s
ot =% Pl i

3. the source enthalpy formulation

of, _ oh

which is obtained by taking the source part from the total enthalpy and then by differentiating
it with respect to time

OH 0Oh afs
e A R ®)
This formulation is very similar to the temperature description of solidification.

The first two formulations will be discussed in this paper in detail.
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2.1. Enthalpy and the effective heat capacity

In the case of liquid metals or their alloys, the enthalpy contains both the apparent heat and the
latent heat (latent heat of solidification). Using Eq. (2) for the Stefan problem, the enthalpy could
be defined as follows [3, 18]

T
H= cps dT, for T < Ty,
Tref

(9)

Ty T
o= / cps dT + pg L +/ cp dT, for T > Ty
Trel' Tj

(the subscripts refer to the cp product), while for metal solidifying in the range (T;,~T') of tempera-
tures, assuming that latent heat of solidification can be evaluated in an arbitrary way, the enthalpy
is equal to [3, 18]

T
H:/ cps dT, for T < Ts,
Tref
Ts T d
H= cps dT +/ (cpf - psL-ﬁ) dT, for Ts << Ty, (10)
Trer Ts

Tg Ty, T
= cpsdT+p3L+/ cp_de-l-f cp dT, for T > 1Ty,
Truf Ts Ty

The heat capacity expression is obtained by differentiating the enthalpy with respect to temper-
ature. After differentiating Eq. (9) one can obtain

e =lep, for T'=<'T

Ps S (11}
' =cpp, for T'> Ty .
In the same way, after differentiating Eq. (10) one can obtain
et =lény, for T < Ts,
* df&' 12
c =Cﬂf“ﬁsLﬁs for Tp ST}, (12)
c=iepi, for T >1TYy,.

Equations (9) and (10) as well as (11) and (12) show that the courses of relationship of enthalpy
and effective heat capacity to temperature are different for pure metals (Fig. 1) and metal alloys
(Fig. 2). The above comparison shows that numerical calculation of the enthalpy derivative with
respect to temperature for metal alloys that solidify at a range of temperatures should not provide
any numerical problems, while calculating the same derivative for pure metals or metal alloys so-
lidifying at a constant temperature is not possible. The enthalpy formulations of solidification need
a different approach to solidification modelling at a constant temperature [6]. The above problem is
solved by substituting the solidification at a constant temperature with the solidification in a very
narrow range of temperatures [3, 16, 18].

The detailed description of the course of enthalpy shown in Fig. 2 requires enthalpy values to be
given for certain characteristic temperatures. These values can be calculated from relationship (10).
By assuming that the heat capacity of the transient zone, which contains liquid and solid phases,
is the following arithmetic average

1
cpy = 5(cps +cp), (13)
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Fig. 1. The functions of enthalpy and effective heat capacity for pure metal
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Fig. 2. The functions of enthalpy and effective heat capacity for metal alloy

one can obtain

H =e¢p,T, for T < Tg,

H = cp,Ts), for T="Tg,
1

H = cpsTs + psL + 5(eps + cpr) (Tr, = T), for T =Ty, (14)
1

H = cpTs + psL + 5(cps + ep) (T —Ts) + cpi(T — TL), for T > Trp,.

The linear relationship between enthalpy and temperature is assumed between Ty, and Ts tem-
peratures.
3. NUMERICAL MODELS OF SOLIDIFICATION

The models describing particular formulations are transformed using the finite element method to
build an algebraic system of equations. The semi-discretisation (discretisation only over the space)
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gives the ordinary differential equations with the time derivatives. In the next stage, that is to say
discretisation over time, the above equations are rearranged into algebraic systems of equations for
single finite elements. The global system of equations is obtained as a result of assembling all the
finite elements of the task.

The discretisation over time is carried out with one- and two-steps schemes in the numerical
modelling of solidification [3, 16, 18]. © scheme is one of the one-step schemes, and has the following
form [19],

u™t = + At [(1— ©)Lu" + OLu" ] (15)

where u is the integrated quantity, At is the time step, Lu is the derivative of the integrated quantity
with respect to time, obtained as a result of semi-discretisation, while superscript n refers to the
successive integration steps over time. The two-step scheme can be written as [19]

au™t? 4 (1 - 2a)u™! + (@ — 1)u"™ = At [ﬁﬁu“+2 + (% +a— 26) Lu™*T + (% i, o ﬁ) ﬁuﬂ]
(16)

where a and 3 coefficients must fulfil the conditions of solution stability.

In this work two schemes of time integration are used; the Euler backward scheme (one-step)
and Dupont II scheme (two-step). The Euler backward scheme (EB) is obtained after substituting
© =1 in Eq. (16)

u"t = o + At Ly (17)
while Dupont IT scheme takes the form
u? — ™ = At (3 +a) Lu™? + (} - 20) Lu™t +alu]. (18)

Coefficient a is chosen experimentally. The best results are obtained for a =  [3].

3.1. The apparent heat capacity formulation

The semi-discretisation of Eq. (3) gives as a result [11]

M(T)T + K(T)T = b(T) (19)
while

M = /n #NTN dQ, (20)

K = /Q,\VTN-deQ, (21)

b = /F N{Npdl'q”, (22)

where M is the mass matrix, K is the conductivity matrix, T is the temperature vector and b is
the right-hand side vector, whose values are calculated on the boundary conditions basis, while N
is the shape function vector in the 2 domain, N is the shape function vector on the I' boundary
and q is the vector of nodal heat fluxes.

For the Euler backward scheme Eq. (19) takes the form [12]

(Mn-i-l + At Kﬂ-l-l) Tﬂ+l = M™T" + At bﬂ-i-l (23)



104 N. Sczygiol and G. Szwarc

while for Dupont II scheme one can obtain

(MU + % AtK“) Tnt+2 — MOrt! lliAt DY %At b"t2 4 ;ll—m b". (24)

Superscript (°) denotes that material properties are calculated for extrapolated temperature ac-
cording to the equation

= 3 n+1 1 n
T=cl 5T (25)

The effective heat capacity is present in the mass matrix in the above formulation. It is calcu-
lated as an enthalpy derivative with respect to temperature (see Eq. (4)). However, because the
simple differential approximation can lead to considerable numerical errors and the oscillation of
the solution [3], the derivative needs suitable approximation. A few schemes of approximation of
effective heat capacity exist [1, 3, 18]. In this paper the Del Giudice scheme [3] is used, in which

¥ - H,QT:Q
© T Tyl (26)

where a and # are space coordinates. When enthalpies and temperatures are expressed by their
values in finite element nodes and shape functions

H = H;N;, T =T;N;, (27)
where ¢ = 1...w, and w is the number of nodes in a particular finite element, one can obtain

« _ HiNioTjN;q

= ; 28
Ty Ni,gTiNig (28)

c

It must be borne in mind that the sum of shape function derivatives is equal to zero, which could
lead to indeterminacy.

3.2. The basic enthalpy formulation
The semi-discretisation of Eq. (5) gives [11]
MH + K(T)T = b(T), (29)

where H is the enthalpy vector. For this formulation the mass matrix is calculated according to the
equation

M = / NTNdQ, (30)
Q

while the conductivity matrix and right-hand side vector are calculated according to Egs. (21) and
(22).

For the Euler backward scheme Eq. (29) takes the form [12]

MH"t! + At K" T = MH" + Atb™ !, (31)
while for Dupont IT scheme

1
MH"2 4+ gAtKOT“"‘z = MH" — im T 1 %At b2 4 Zm b™. (32)

The superscript (?) refers to material properties determined for the temperature according to
Eq. (25). Enthalpy and temperature are on the same time level in the last two equations. The
enthalpy is the basic quantity in that formulation, so temperature on the time level n+1 (in Eq. (31))
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and n + 2 (in Eq. (32)) should be substituted by some other quantities. The temperatures can be
expanded in Taylor series. The first two terms of that expansion are as follows

+
n+a+l _ mntoa E ki
ix s e AH, (33)
while
AH = Hn—!—ﬂ:+l - H:n+r:t1 (34)

where a takes 0 value for the time level n+1 and 1 for time level n+ 2. The temperature derivative
with respect to enthalpy is the diagonal matrix. In the Euler backward scheme by assuming that
the conductivity matrix is determined on the time level n (K™*! — K"), one can obtain

M+ AtK" | 9% Y = (M4 AtK® [SE ’ H" - AtK"T" + Atb"*t! (35)
dH dH )

The final form of the matrix equation for Dupont II scheme is obtained by substituting Eqs. (33)

and (34) into Eq. (32)

3 0 dT ke ) 3 0 dT 1 1
= e n — —“AtK PTiEL 1+
(M + 4AtK [ H] H M + H H

1 3 1
— %m Kot - 74t K'T" + 74t b2 4 Zmb". (36)

The product of the symmetrical conductivity matrix K and diagonal matrix dT/dH, occurring
in Eqgs. (35) and (36), is an asymmetrical matrix. As a result the global matrix of coefficients in the
system of equations is an asymmetrical matrix, too. This inconvenience can be avoided by averaging
the coefficients of the diagonal matrix. However, because the introduction of boundary conditions of
the fourth type also leads to a loss of symmetry in the global matrix of coefficients (see Section 4),
the averaging of coefficients of the diagonal matrix dT/dH is not carried out.

The coefficients of the diagonal matrix dT/dH are calculated on the basis of equations obtained
as a result of differentiating expressions (10) with respect to temperature. The transformation of
Eq. (12) leads to

dr 1

_—= for T' < T,

dH  cps’ = =

dT 1

— for Ts <T<T,

dH Cﬂf—PsL%‘%’ or g4 S4L, (37)
dT I

S Wl for T" > T,

aH o’ or 1 >1y,

It should be noted that the application of the above expression in Egs. (35) and (36) requires a
knowledge of the relationship of the solid phase fraction to temperature. However, it is possible to
take the forming microstructure directly into account in the above formulation. For two-component
metal alloys, if the possibility of solute diffusion in the solid phase is assumed, and perfect solute
solubility takes place in the liquid phase [7], then the solid phase growth is given by the relation-
ship [8, 13, 15]

1-nko
i i Ty =T\ F1
fs(T) = 1 —nka (1 (TM = TL) ) ! (38)
where
Dy
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and D, is the solute diffusion coefficient in the solid phase, ¢; is the so-called local solidification
time, 7, is the characteristic grain size and n is a coefficient engaging the grain shape (n = 2 for
plane grain (plate), n = 4 for cylindrical grain and n = 6 for spherical grain). The relationship
of solid phase fraction for both equilibrium and non-equilibrium solidification models [13] can be
educed from Eq. (38).

3.3. Comments on the assembly and solution of the system of equations

Equations (23) and (24), discussed above, for the apparent heat capacity formulation, and Egs. (35)
and (36), for the basic enthalpy formulation, serve to create a system of equations for finite ele-
ment meshes. The finite element meshes discretise the analysed regions. The systems of equations,
completed with the boundary conditions, are solved with appropriate methods. However, because
the system of equations are usually very large, iterative methods are applied to solve them. For
both solidification formulations discussed in this paper, different solution methods for the system
of equations should be used. In the case of the apparent heat capacity formulation, where the co-
efficient matrix is symmetrical, the conjugate gradients method can be applied. In the case of the
basic enthalpy formulation, where the coefficient matrix is asymmetrical, the bi-conjugate gradients
method can be applied. In both cases suitable preconditioning methods are used to accelerate the
solution convergence [10].

The coefficients matrix of the system of equations is created from the mass matrix and con-
ductivity matrix. For small time steps, temperature (or enthalpy) oscillations could sometimes be
obtained. These oscillations can occur near the regions contact places, where there are considerable
temperature differences, e.g. the contact of the alloy with the mould, the contact of the alloy with
the environment and near the mushy zone [2, 3]. The diagonalisation of the mass matrix is the most
effective method of avoiding those oscillations in the numerical solutions. It is especially easy for
triangular elements [19], but extra calculations for quadrilateral elements are needed.

4., THE NUMERICAL REALISATION OF BOUNDARY CONDITIONS

The boundary conditions can be constant or can change during the solidification process and cooling
of the casting. The variability of boundary conditions can be caused by the fact that material
properties can depend on some parameters of the process, i.e. temperature. One can distinguish
four types of boundary condition in the modelling of solidification, these are the same as those
found in thermal conductivity modelling:

1. the boundary condition of the first type (Dirichlet condition), where the temperature (T ) is
given on the I boundary of 2 domain

I':  T=Tgl(t), (40)

2. the boundary condition of the second type (Neumann condition), where the heat flux (ggiy) is
given on the I' boundary of 2 domain

I g=qg(), (41)

3. the boundary condition of the third type (Newton condition), where heat exchange with envi-
ronment takes place on the I' boundary of {2 domain

i q= G(T)(TH‘ - Ten\'(t)): (42)

where « is the heat exchange coefficient with the environment, Tjr is the temperature on the
boundary T' of the domain and Teny is the ambient temperature. The heat radiation, which
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performs a crucial role when the mould cavity is filled with the melt, is introduced to the
mathematical description through the above boundary condition. In this case the a coefficient
is composed of two parts: convectional and radiant,

4. the boundary condition of the fourth type (continuity condition), on the I' boundary, which
separates 0 and s domains, where the heat flow takes place

) i M an =_23n )

T £72)

BT(U X 8?1(2) ey E (T(l) __T(2)) ’
(43)

where 3 is the thermal conductivity coefficient of the material in the separating layer, d is the
thickness of this layer and n is the normal vector to the boundary. If there is no separating layer
between these two subdomains, then T(1) = 7'2)

The boundary conditions, apart from the first type, are introduced into the global system of equa-
tions through Eq. (22). The boundary shape functions, which depend on the type of finite elements,
should be replaced in the integrand of the above equation. When modelling two-dimensional prob-
lems using linear finite elements, expression (22) takes the following form for the local numbering
of nodes

{§2}=§[f ;]{32} (44)

where h is the distance between nodes on the boundary and subscripts 1 and 2 refer to the indices
of nodes in local numbering (Fig. 3).

Q

Fig. 3. Local boundary discretisation

The boundary conditions are introduced for the Euler backward scheme on the n + 1 time level,
while for Dupont II on the n and n + 2 time levels

potl. for Euler backward scheme,

3 1 (45
Zb""‘? + an’ for Dupont II scheme. )

The way of introducing the boundary condition of the first type into the global system of equa-
tions is the same in both solidification formulations and time integration schemes considered here.
The temperatures are introduced in the apparent heat capacity formulation, while enthalpies are in-
troduced in the basic enthalpy formulation. The second type of boundary condition is introduced in
both time integration schemes in the same way. The third and fourth type of boundary conditions
are introduced in both solidification formulations and both time integration schemes in different
ways. However, it should also be noted that the application of the fourth type of boundary con-
dition causes a loss of symmetry in the coefficient matrix in the basic enthalpy formulation. This
effect doesn’t occur in the apparent heat capacity formulation.

b=
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4.1. The first type of boundary condition

The introduction of the first type of boundary condition relies on suitable modification in the
right-hand side vector and in the global coefficient matrix. This means that b vector, defined by
Eq. (45), is not introduced into the global system of equations in this case. The modification of
the coefficient matrix relies on putting the value 1 on the main diagonal in the equation where the
number corresponds to the node number on the boundary, and then transferring every coefficient
from the column with the same number — multiplied by a given temperature (for AHC) or enthalpy
(for BEF) — to the right-hand side of the system of equations, and finally putting the value 0 in
their places, in both the row and column. The modification of the right-hand side vector relies
on putting the given temperature value (AHC) or enthalpy (BEF) to the right-hand side of the
equation where the number corresponds to the node number on the boundary.

4.2. The second type of boundary condition
Only the modification of the right-hand side vector proceeds independently of the type of solidifi-

cation formulation or time integration scheme. By assuming that a different value of heat flux is
given in every boundary node, the above modification equals

h
by = E(ZQI + q2),

h (46)
by = =@ +22).
4.3. The third type of boundary condition
Apparent heat capacity formulation
Substituting Eq. (42) into Eq. (44) for the EB scheme, obtains
by = %(—22“{‘“ — T 4 3T,
ha n+1 1 (47)
b’z = 'E'('_Tl - 2T-2 + 3Te]-“,-).

While for Dupont II scheme, according to Eq. (45), fluxes (42) should be substituted into Eq. (44)
for n and n + 2 time steps. This obtains

b = %"f(—mﬂ? —~yt %%"»mm + %%“(—2&“{‘ = T3 + 3Teny),
by = %%(-T{‘” - 2TP%) + %%C—"mm + %%(—Tf‘ = 215" + 3Ten). B
Basic enthalpy formulation
For EB scheme, as for the apparent heat capacity formulation, we have
b= Aot g g,
(49)

h
= ?“(_rp“ —2T8H 4 3T).
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Substituting Eqgs. (33) and (34) into the above equations leads to
_ _2ha[dTi]" o ha | dTy " i
n=-28 2w R =
h dT dTy 1"
+ _ﬁg (—2T1 — T3 + 3Teny +2 [dHll] H + [d—HZ] Hﬁ‘) (50)
and
g==3 [dH] - 6 [de] a
8 Ll R L % L
On the basis of Eq. (45) for Dupont II scheme, it can be written
31 1h
b= "60‘( ST PR AT e ;" (—2T0 — T8 + 3Tons),
3h o (52)
by = 32 (~T{+ — 2T34 4 3Teny) + 36 (=TT — 208 + 3Ten).
Substituting Eqs. (33) and (34) into Eq. (52) obtains
3ha [dT ™! 3 ha [dTy "
Mt < boadi e i A il (e N n+2
n=TES [dHl] H 46 de H
Eh_‘l n+1 n+1 dTl n+1 dT; i n+1
*16 ( Ll R T 7 H
1h
+ Z?ﬂ (=27 — TP + 3Tony) (53)
and
3ha [dTy ™' 1o 3ha, [dT 1™ .
”"Z?[THI] i 3 de H2
3 he nt1 ntl a2 Lol el
g 6 ( =P <20 i H +2 i, H2 + 3Teny
1 ho:

4.4. The fourth type of boundary condition

If 2, and §2, domains are separated from each other by a certain layer, then that layer can be
covered by a finite elements mesh. The separating layers are normally very thin (in comparison to
casting or mould dimensions) so the generation of finite elements is difficult in them. The application
of a virtual separating layer characterised by heat exchange coefficient x is a more effective solution.
However, while the finite element nodes in the contacting domains can have the same coordinates,
they must have different indices. The local numbering of nodes in elements which are in contact
is shown in Fig. 4. The coordinates of nodes 1 and 3 as well as 2 and 4 are the same in the finite

element mesh. These meshes are easier for automatic generation.
The heat fluxes flowing through the virtual separating layer equal

a1 = —k(Th = T3),
g2 = —k(Tz — Ty).

(55)
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Q, Q,

Fig. 4. Local discretisation of two contacting domains

Apparent heat capacity formulation

The equations for the Euler backward scheme are obtained by substituting Eq. (55) into Eq. (44)

by = _’;_’“(21*{‘“ + Tyt — ot — T,

B (56)
b2 = —?(T{H-l 4 2T2ﬂ-+1 — T;-H o 2T‘;1+1),

while for Dupont IT scheme we have

h 1h

by = Z 6’“( —QTTH2 4 o2 _ 2 |y g2y ZFK&TI = D 478 ).
(57)

by = 2"6’“( T2 4 T2 o724 oTn+2) 1%(2} —TF + 273 — 2T7).

Basic enthalpy formulation

The relationships (56) are also valid for the Euler backward scheme, but Egs. (33) and (34) should
now be substituted into them. This obtains

by = __h_n (2 [ﬂ]ﬂﬂnﬂ + [dTQ] H.?'H —9 [ﬂ]nﬂéﬁl = [ﬂ]nﬂg+l

6 dH, dH, dH, dH,
dt; 1" 4 d73 1" dT3 n ﬂ B n n n n n
(58)
and
- hx dT; n n+1 dTs g n+1 ﬂ ntl dT4 il
AT ([dHl] BT 42 o) ™ ams) M 7% am,) M
dTl n dT2 = de n . dT4 T = y : !
N [d_m] B2 [dH2] He ' [dHa HY +2 | g | HE+T7 + 205 — 10 217 ).
(59)

The relationships (57) are also obtained for Dupont II scheme according to Eqgs. (45) and (55).
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Substituting Eqs. (33) and (34) into Egs. (58) and (59) finally obtains

B 3h.‘€ dTl n+1 i de n-+1 e dT3 n+1 i qu n+1 _—

46
dT] n+1 adh de n+1 s dT3 n+1 e de n+1 —-_
_z[d—fﬁ] BT lam| BtEam| BT t|a,| H
1h
+2TPH 4 TP+ o+t TT+1) -3¢ (I + T -2y - 17) (80
and
B 3}15 dT]_ n+1 it de n+l1 Ly dT3 n+1 i qu n+1 42
b2~—ﬁ([d—m] Bt B lam] B @ &
257 e e A% 1% s TG T™ sy AT 1™
_[d_Hl] Hi*' -2 | o B+, 2\ am| . He
h
B LG o] @

Equations (56), (58), (59), (60) and (61) are valid for ©; domain, which contains boundary
nodes 1 and 2. Analogous equations, as mentioned above, are used for 3 domain, which contains
boundary nodes 3 and 4, but the signs in these equations must be reversed. As a result, from the
formula for by one can obtain a formula for by , while from the formula for by one can obtain a formula
for by .

5. THE MODELLING OF EQUIAXED MICROSTRUCTURE

To simulate the numerical microstructure formed in castings is one of the most difficult tasks in the
computer simulation of solidification. The extent of zones with different types of microstructure as
well as the characteristic dimensions of grains in these zones, depend on the degree of undercooling
of the melt at the beginning of solidification [5, 9, 17]. The undercooling depends on the velocity of
carrying away of heat, i.e. the cooling velocity.

All possible cooling velocities are contained between the limits of infinitely large and infinitely
small (Fig. 5). The higher limit refers to obtaining glassy microstructures [4], while the lower refers
to equilibrium solidification. In real castings solidification proceeds well within these limits, but the
cooling velocities can vary widely in any one casting.

Directly taking into account the melt undercooling leads to many numerical complications in the
solidification model. Assuming that solidification starts at the liquidus temperature, and that the
undercooling quantity, represented by the cooling velocity, decides the characteristic dimension of
the created microstructure is a much better solution.

In the paper it was assumed that only one type of microstructure is formed, namely equiaxed
microstructure. It was also assumed that the final grain radius is a characteristic dimension, the
value of which depends on the cooling velocity according to

e (1 iy (--;:)) ; (62)

where 7 is the maximum grain radius in the calculated microstructure, while 7" is the average
cooling velocity, calculated from the beginning of the cooling process till the liquidus temperature
is reached. In Eq. (62) the maximum grain radius depends on the constitution of the casting alloy
and should be established experimentally. The curve course of the equiaxed grain distribution is
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Fig. 5. The cooling curves for different cooling velocities

Y

Fig. 6. The relationship of equiaxed grain radius to cooling velocity

in accordance with an experiment [5, 17]. A fine-grained microstructure is received for very large
values of undercooling (for high 7 values), including the outer equiaxed grains. The equiaxed grains
radii are not much different in the internal regions of the casting, where undercooling is smaller
than undercooling in the layers in contact with the mould.

6. EXAMPLES OF COMPUTER SIMULATIONS

A suitable computer program module was created on the basis of previously conducted object-
oriented analysis and previously worked out models of solid phase growth [15], as well on the basis
of the numerical models presented in this paper. This module, named Solidification, is a part of the
NuscaS computer program, which has been developed over the past few years by the Institute of
Mechanics and Machine Design at the Technical University of Czestochowa. The NuscaS program,
as well as modules included in it, has been created on the basis of the object-oriented technique.

Examples of computer simulations were carried out for Al - 4,5 % Cu alloy solidifying in a metal
mould. The above alloy was chosen because of its wide range of solidification temperatures. The
assumed values of the material properties, are taken from work [1], and temperatures, taken from
the Al-Cu phase diagram, are shown in Table 1.
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Table 1. The material properties

liquid phase | solid phase | mould
p [kg/m?| 2500 2800 7200
¢ [J/kgK] 1100 900 736
A [W/mK] 90 200 24
L [J/kg] 390000
Ts K 853
Ty, K] 923
Tk (K] 821
T (K] 933
k 0.125

It was assumed that the maximum grain radius equals 10~% m. The initial casting (melt) tem-
perature was 960 K, while the initial mould temperature was 660 K. The analysed casting together
with the mould, is shown in Fig. 7. The regions were divided into 16 994 triangular finite elements,
receiving 9 183 nodes. The chosen nodes, for which cooling curves diagrams were made, are also
shown in Fig. 7. The fourth type of boundary condition with non-ideal contact between the casting
and the mould was assumed. The conductivity of the separating layer was equal to 1000 W/m?K.
The third type of boundary condition was established on the remaining boundaries. It was assumed
that the ambient temperature equaled 300 K, while the heat exchange coefficient with the envi-
ronment equaled 1000 W/m?K. A time step equal to 0.05 s was applied in the calculations. The
computer simulations were carried out for linear dependence of enthalpy to temperature [14].

130

>
40

160 &

250

Fig. 7. Analysed casting in mould

The results of computer simulations are shown in the following figures. Figures 8 and 9 illustrate
the temperature fields in castings after 30 s and 60 s from the beginning of cooling. The temperature
fields in both figures were obtained using the indirect model of solid phase growth, for the apparent
heat capacity formulation (Fig. 8) and for the basic enthalpy formulation (Fig. 9). In calculations,
where the indirect model of solid phase growth was used, it was assumed that the Dyt; product (of
solute diffusion coeflicient in the solid phase and local time of solidification) is equal to 31072 m?.
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Fig. 8. Temperature fields in casting 30 s after pouring determined by the apparent heat capacity
formulation with the use of indirect model of solid phase growth
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Fig. 9. Temperature fields in casting 60 s after pouring determined by the basic enthalpy formulation with
the use of indirect model of solid phase growth

It was also assumed that the coefficient engaging the grain shape equals 2. This assumption was
made because the 2 correction is known only for that case [15].

The cooling curves in chosen casting nodes are displayed in two successive figures (see Fig. 7).
The cooling curves of all shown nodes were compared for the three considered models of solid phase
growth. The lever denotation corresponds to the equilibrium model, while scheil — to the non-
equilibrium model. The liquidus, solidus and eutectic temperatures are shown in the diagrams by
dashed lines. The results of calculations, in which the apparent heat capacity formulation was used,
are shown in Fig. 10, while results of calculations, in which the basic enthalpy formulation was
used, are shown in Fig. 11. For both solidification formulations analysed here the cooling curves
are different. It seems that these differences come from the different ways of evaluating systems of
equations. In the basic enthalpy formulation the solid phase fraction (exactly talking its derivative)
is introduced into the coefficients calculation, while in the apparent heat capacity formulation the
calculation of solid phase fraction is a purely postprocessor operation.

The basic enthalpy formulation together with the indirect model of solid phase growth allow
the grain sizes to be directly taken into account in the calculations. This is significant because
depending on the cooling conditions and grain sizes, the solidification can end either at the eutectic
temperature or at a temperature higher than the eutectic one but lower than the equilibrium solidus
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Fig. 10. Cooling curves in chosen casting nodes (apparent heat capacity formulation)
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Fig. 11. Cooling curves in chosen casting nodes (basic enthalpy formulation)
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temperature [14]. For example, the final grain radii in nodes 1875 and 2400 equal 0.164 mm and
0.067 mm, respectively, and the solidification in these nodes ended at the eutectic temperature.
The final grain radius in node 6020 equals 0.036 mm and solidification in that node ended at a
temperature higher than the eutectic one (Fig. 11).

The calculated distribution of grain sizes (their average radii) are shown in Fig. 12 for the indirect
model of solid phase growth for AHC, and for BEF in Fig. 13. The maximum radius for AHC was
equal to 0.258 mm and the minimum was equal to 6.41 - 1072 mm. For BEF it was 0.351 mm and
6.42 - 1073 mm, respectively.

The grain size distributions, shown in Figs. 12 and 13, were calculated on the basis of the
average cooling velocities at the moment the liquidus temperature was reached. The calculated
cooling velocity distributions are illustrated in Fig. 14 (for AHC) and in Fig. 15 (for BEF) for the
indirect model of solid phase growth. In the case of AHC the maximum calculated cooling velocity
was equal to 155.37 K/s, while the minimum was 3.35 K/s. For BEF the cooling velocities were
155.74 K/s and 2.33 K/s, respectively.

In the following three figures the distributions of solid phase fractions for the AHC formulation
30 s after pouring are displayed. These distributions were obtained using the different solid phase
growth models. The results concern the equilibrium model (Fig. 16), the non-equilibrium model
(Fig. 17) and the indirect model (Fig. 18).

Fig. 13. Distribution of average final grain radii (BEF, indirect model of solid phase growth)
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Fig. 15. Average cooling velocities distribution (BEF, indirect model of solid phase growth)

Fig. 16. Solidification kinetics 30 s after pouring (AHC, equilibrium model)
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Fig. 18. Solidification kinetics 30 s after pouring (AHC, indirect model)

Fig. 19. Solidification kinetics 60 s after pouring (BEF, equilibrium model)
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Fig. 20. Solidification kinetics 60 s after pouring (BEF, non-equilibrium model)

Fig. 21. Solidification kinetics 60 s after pouring (BEF, indirect model)

The analogous comparison for the BEF formulation 60 s after pouring is presented in the last
three figures. The results shown there concern the equilibrium model (Fig. 19), the non-equilibrium
model (Fig. 20) and the indirect model (Fig. 21) of solid phase growth.

7. CONCLUDING REMARKS

Numerical models used in the computer simulation of solidification and the results obtained from
them are presented in this paper. The possibility of computer simulation of grained microstruc-
ture creation is analysed. It was revealed that the basic enthalpy formulation allows the created
microstructure (grain sizes) to be directly taken into account in numerical simulations. A method
to estimate the average sizes of equiaxed grains, on the basis of cooling velocities at the moment
the liquidus temperature is reached, was proposed. The most interesting results were received by
using the so-called indirect model of solid phase growth. This model, depending on solidification
conditions, makes it possible to receive a spectrum of cooling curves. This spectrum is bound by
the limits of cooling curves characteristic for the equilibrium solidification model and cooling curves
characteristic for the non-equilibrium solidification model.

The results of computer simulation, presented in this paper, were obtained with the help of a
computer program prepared according to object-oriented methodology. Such an approach allows the
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easy implementation of successive numerical models as well as easy corrections and improvements
to those models. An additional advantage is the open character of this computer program: it is
possible to introduce further solidification models.

The use of object-oriented analysis gives a macroscopic view of the problem under consideration
and enables certain common features of the applied models and methods to be found. It also allows
the problem domain to be divided into smaller parts, which, at the implementation stage, guarantees
quicker localisation of possible errors as well as the improvement of models or the introduction of
new ones. The application of the object-oriented technique to the finite element method started in
the early 90ties and it is the most commonly used method for the modelling and simulation of dif-
ferent physical phenomena. Strong support for this methodology from contemporary programming
languages is an important argument for using object-oriented methodology in information system

techniques.
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