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Previously known multi-time step integration methods for finite element computations in structural dy-
namics have been shown to be unstable due to interpolation error propagation. New algorithms of multi-
time step integration based on constant velocity during subcycling are investigated. The assumption of
constant velocity gives linear variation of displacements so the errors connected to interpolation at the
interface between different time step partitions are eliminated. As a consequence, the new constant veloc-
ity algorithms give bounded solutions and have been shown to be conditionally stable by their authors.
However, numerical investigation demonstrates that if time steps close to the stability limit are used,
the errors for higher natural modes are so huge that the obtained solutions can only be considered as
incorrect. The main reason for this behaviour is that the constant velocity time integration algorithms
are inconsistent. Displacements can be calculated either by direct integration or from the equation of
motion leading to different solutions. Based on the numerical results it is concluded that use of time steps
below stability limit is insufficient to assure proper solutions. Therefore, significant time step reductions
are often required to assure acceptable error levels. As a consequence, the new subcycling algorithms can
be more expensive than ordinary time integration. Because they also lead to larger errors the constant
velocity subcycling algorithms are useless from practical point of view. Since subcycling is available as an
option in LS-DYNA a serious warning is issued to potential users.

1. INTRODUCTION

Multi-time step (subcycling) integration methods, that were introduced by Belytschko et al. in 1979,
have been developed for the last 20 years. Different schemes can be found e.g. in Belytschko and
Lu (1993) where also stability of multi-time step methods for second order systems were discussed.
However, the presented conclusions were incorrect. Klisinski et al. (1998) (see also a conference con-
tribution from 1994) have shown that the interpolation errors introduced at the interface between
different time step domains propagate leading to unbounded solutions. Therefore, it has been con-
cluded that multi-time step integration methods are inherently unstable for second order systems.
As a response to these findings a new explicit algorithm was introduced by Smoliriski et al. (1996).
A major difference, comparing to the previous algorithms, is that the algorithm preserves constant
velocity during the subcycling. As a result the displacements change linearly and no interpolation
error is introduced. Therefore, the assumptions on which the stability analysis is based in Klisiniski
et al. (1998) are no longer valid. Smoliniski et al. (1996) proved by analysing the amplification matrix
that the algorithm is conditionally stable. Another version of the constant velocity algorithm which
possesses the same stability properties was presented by Daniel (1998). These two algorithms are
analysed in the numerical way in the paper.
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2. BASIC FORMULATION

The semidiscrete finite element formulation of structural transient dynamic problems without damp-
ing results in the following system of second order ordinary differential equations,

Ma+Kd =f (1)

where M denotes lumped mass matrix; K — stiffness matrix; d — vector of nodal displacements;
a - vector of nodal accelerations and f — vector of external forces. In addition also a vector of nodal
velocities v is introduced. The above matrices and vectors can be partitioned as follows,
MA 0 KAA KAB
0 MB]’ K:[KBA KBB:|’

at ' v d4 i
B ek Seie ] B |7 a= dB |’ be £B |
where A and B — two separate mesh domains. To simplify further considerations it is assumed that

smaller time step At is used in domain A, whereas larger time step used in domain B is twice as
long, i.e. = 2At.

|
(2)

3. SMOLINSKI ET AL. ALGORITHM

The explicit algorithm proposed by Smoliniski et al. (1996) is based on the following equations

At?
d]c_|_1 =d]c +Ath+ Tak, (3)
At
Vigl = Vi + 7(ak + ag41), (4)
Mayy1 + Kdgy1 = fie1, (5)

where the subscripts denote the time step, e.g. dx means d(tx) and t; = kAt is the time station k.
In the actual algorithm Egs. (3), (5) and a similar equation of motion written for time station &
are combined to eliminate the displacements giving

At?
Mayq = (M gt B K) ap — AtKvy + fr — i (6)

The algorithm was described by Smolirniski et al. (1996) and after necessary adjustments to account
for two substeps only (m = 2 in the original description) it looks as follows:

1. initial conditions: do = d(0), vo = v(0),

2. initial accelerations: a0 = M~!(fy — Kdy),
4 updates of subdomain A with smaller time step At

At?

3. aj,, from MAag,, = ([MA 0] - o [Eed4 KAB]) ap — At [KA4KAB) vy + £ — £,

B rou B
4.8 = ~a,

At
5. Vi1 = Vi + —-(ag + ajt1)
increment k by 1,

2 updates of subdomain B with larger time step 2At
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At?
2
— 2At [KBAKEB] v +£2, — £2,

6. af , from MPap,, = ([OMB] — — [KB40] - 24a¢° [OKBB]> ag

o
T. &y = -2,

8. Vig4+2 = Vi o At(ak P ak+2)7

repeat the updates in subdomains A and B.
The only purpose of changing the sign of accelerations is to keep the velocities constant in one
of the partitions when updating the second one.

A!

k+4
k+3
K2

k+1

k

A A B B

Fig. 1. Flow of information in the Smoliriski et al. algorithm (Fig. 1 in Smoliriski et al. 1996)

Unfortunately, the diagram provided by Smolinski et al. (1996) (see Fig. 1) suggests a slightly
different procedure and also reveals a rather surprising fact that the values calculated in subdomain
A for time station k + 4 are used to calculate values in subdomain B at earlier time station k + 2.
According to this diagram the acceleration and velocity vectors at the beginning of the updates of
subdomain B should be understood as

A A
o S T — | Vkt4
2 [] . [] ™
and not as
A A
= ak == vk 8
wolid] w=[h] i

A simple comparison between the results shows that the interpretation according to (7) is the
correct one, because use of the values (8) leads to directly unacceptable outcomes even if some other
modifications are made. However, notice that such a procedure violates the concept of causality. For
example, a sudden load applied later in partition A has an influence on the behaviour of partition B
at earlier times. This gives rise to a serious suspicion about the correctness of the proposed method.
In spite of this, let us check the algorithm assuming that the errors introduced in this way are small.
In particular if free vibration problems are studied, f = 0, and no sudden load changes occur.

Even if the actual algorithm does not use displacements they are vital in many applications.
The basic equations used in the method allow to calculate them in two different ways. The first one
applies direct integration (3) where different time steps can be used in both mesh partitions. The
second method is based on the equation of motion (5) in which displacements are obtained from
known accelerations. If the method was consistent both calculations would give the same result.
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4. DANIEL ALGORITHM

Daniel (1998) proposed another version of the constant velocity subcycling algorithm, where oscil-
lating accelerations are avoided. The algorithm uses velocities calculated in the middle of the time
step.

Unfortunately, the basic equations on which the method is based are not directly provided, so
they have to be reconstructed from the information given in his paper. They can be written as

diy1 =dg + At vy, 9)
t At

Viti/2 =2V + o & Vk+1 = Vit1/2 + o 3k+15 (10)

May i1 + 8k+1 = fr+1, (11)

where g denotes vector of internal forces, e.g. in linear case g = Kd; and the subscript k + 1/2
denotes the time in the middle of the step, e.g. viy1/2 means v (i + At/2).

The elimination of displacements is achieved by introduction of internal forces and instead of
updating the displacements the internal forces are, in the linear case, incremented according to

gk+1 =8k T At K vy /0 (12)

The algorithm proposed by Daniel (1998) for a linear system with the assumption of just two
subcycles can be described as follows:

1. initial conditions: do = d(0), vo = v(0),
2. initial internal forces: gy = Kdg ,
3. initial accelerations: ag = M~1(fy — go) ,
1 update of subdomain A with smaller time step At

At
A A A
4. Vit =V + 5 3k >

5. g1 = 8 + At (KAA"/?+1/2 T KABVE) ;

A ApA A _ A
6. ap,, from M7%ap,, +gi\, =f, ,

At
A A A
7. Vi1 = Vi + 5 8k

1 update of subdomain B with larger time step 2At
8: vl vl L Adal,
9. gky2 =8k + AtKvgy
10. af,, from MBa,]?+2 + g,]ir2 =iy,
1, %8 o=Vt Atal
1 more update of subdomain A with smaller time step At

At
12. k+3/2 — Vk+1 2 ak-l—l )

13,88 8t A6 (B g - KAPYE 5 ).y
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A Aga A _ A
14. agy, from M%aj,, +giys =5

At
A A A
15. V42 = Viyae + 5 842

increment k by 2,

and repeat the entire update process.

The flow of information diagram for this algorithm is shown in Fig. 2. At some times only veloc-
ities are computed (indicated by hollow circles) whereas at other times all quantities are calculated
(indicated by filled circles). Notice that this algorithm is conceptually much better than the previous
one, because causality is treated correctly. Its structure is also more clear and easier to implement.
However, the same problem of retrieving the displacements appears and once again it can be solved
in two ways. Displacements can be calculated by direct integration (9) or from the equation of
motion (11) using the fact that in linear case g = Kd. For a consistent method both results should
be the same.

k+2 -
k+3/2 1

k+1 - S

>

k+172 A

k

A 4 B B

Fig. 2. Flow of information in the Daniel algorithm

5. NUMERICAL EVALUATION

The same test example as in Klisinski et al. (1998) is used to check both algorithms. It is the
cantilever beam with the following properties: length L = 6 m, density p = 8000 kg/m3, Young
modulus F = 210 GPa, cross-sectional area A = 0.012 m?, moment of inertia I = 1.44 - 10~5 m?.
Initially the free end of the beam is statically displaced in the transverse direction by d, = 0.1 m
and instantaneously released. Initial velocities are set to zero. Free transverse vibrations are studied,
so no external forces are applied to the system and no physical damping is present. The beam is
divided into 6 elements of equal length, 1 m, where 3 elements ments counting from the free end
belong to mesh domain A and the remaining 3 to mesh domain B. The interface between these two
domains is placed in the middle node. A standard beam element with a diagonal mass matrix is
used in the computations. The diagonal mass matrix is obtained by the HRZ lumping scheme as
described, for example, in Cook et al. (1989).

The required stability limits for both schemes are found from the eigenvalue analysis as
Atd = 5.22-107% s and At® = 5.46 - 107* s so the larger time step was set to 5-10~* s and
the smaller one to At = 2.5-10~* s. For reference purposes calculations have also been performed
without subcycling and then the larger time step 2At has been applied, because the stability limit for
the entire beam is At; = 5.18-107* s. The results from the Smoliriski et al. algorithm and the Daniel
algorithm are shown in Fig. 3 as the left and right columns, respectively. The displacement diagrams
contain three curves: solid one represents the displacements obtained by integration, dashed curve
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Fig. 3. Results of the example problem using the Smolinski et al. algorithm (left column) and the Daniel

algorithm (right column). The consecutive rows show displacements, velocities and accelerations at the free

end. Solid and dashed lines are used for the subcycling algorithm, dotted lines for the same algorithm without

subcycling. In the displacement plot solid line represents integrated displacements whereas dashed line shows
displacements obtained from the equation of motion
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shows the displacements calculated from the equation of motion, both for the subcycling algorithm,
and the dotted line represents the results from the same algorithm, but without subcycling. The
velocity and acceleration diagrams consist of just two curves: a solid one for subcycling algorithm
and a dotted one for the same algorithm, but without subcycling. The results are quite accurate
and show no tendency of amplitude increase when calculations are carried out longer. The only
problem that can be noticed is that the displacements obtained in the two described ways are not
the same. It simply shows that both methods are inconsistent. While the assumption of constant
velocities is beneficial to eliminate interpolation errors it requires zero accelerations to obtain a
consistent method. Obviously accelerations are not zero and because of this inconsistency errors are
introduced. One can notice that the direct integration results in smooth curves, whereas the equi-
librium calculations lead to additional small oscillations. It is rather transparent, that accelerations
appearing in the equation of motion vary much more than velocities. The amplitude of these oscil-
lations, treated as an inconsistency error in displacements, can be compared with the amplitude of
beam oscillations and in case of the Smolinski et al. algorithm it gives 6.8% maximum relative error,
whereas it is 1.8% for the Daniel algorithm. What is more important the errors show no tendency to
increase with time. Therefore, it may seem like a reasonable price to pay for the increased efficiency.
The only problem that remains is to assess how big these errors can really become.

Let us check the magnitude of errors by calculating single modes of vibration. Natural modes
are obtained by solving the following eigenvalue problem

Kq = w’Maq. (13)

The solution of this problem provides the set of n eigenvalues w? with the corresponding eigenvectors
q; , where n is the number of degrees of freedom of the system. The eigenvectors either are or can
be made orthogonal. Furthermore, they can be normalized so

' MP; =1 (14)
where ®; — normalized eigenvectors q; . For the following initial displacements and velocities

dp = &;, vo =0, (15)
the analytical solution contains a single mode only

d = &, cos w;t. (16)

Therefore, if the initial conditions are chosen according to (15) a numerical method should also give
a solution corresponding to a single mode 4.

Figures 4-7 present the results for the Smoliniski et al. algorithm, whereas Figures 8-11 for the
Daniel algorithm. Each figure shows in the first two rows displacement and velocity diagrams at
the free end with their spectral analysis. Accelerations of the free end and the relative inconsistency
errors are shown in the third row. The relative inconsistency error is calculated according to

il T 17
"~ max |dor| : (1)
where di denotes current displacement of free end obtained by integration, d¢™ — current dis-
placement of free end calculated from the equation of motion, max |dS’"| — correct amplitude of
oscillations of free end calculated without subcycling. The same lines as before are used: solid and
dashed for constant velocity algorithms with subcycling, dotted for the same algorithms without
subcycling; solid for integrated displacements and dashed for displacements calculated from the
equation of motion. The figures show clearly that only the first natural mode is calculated correctly
by the constant velocity subcycling algorithms using a time step close to the stability limit. The
inconsistency errors for the first mode are around 3% for the Smoliriski et al. algorithm and 5 times
smaller for the Daniel algorithm. However, the results for all other modes must be considered as
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Fig. 4. The first natural mode of vibrations using the Smoliniski et al. algorithm
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Fig. 8. The first natural mode of vibrations using the Daniel algorithm
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Fig. 10. The third natural mode of vibrations using the Daniel algorithm
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Fig. 11. The fourth natural mode of vibrations using the Daniel algorithm
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Fig. 12. Forms of beam vibration for the fourth natural mode. The left column shows results from
the Smolinski et al. algorithm and the right from the Daniel algorithm. The upper figures use integrated
displacements, whereas the lower figures present displacements calculated from the equation of motion

incorrect and not just as inaccurate. The solutions provided by both methods do not preserve the
most basic property of higher modes, i.e. the presence of nodes. As an example, Fig. 12 shows forms
of beam vibrations obtained for the fourth mode. For modes 5 to 8 only velocity diagrams are
presented in Fig. 13. The errors for higher modes are tremendous because the calculated solutions
have amplitudes few orders of magnitude larger than the correct ones. The spectral analysis shows
presence of other natural modes than the one which is calculated. It can be seen that especially
lower modes have relatively large power densities compared to the power density of the desired
mode. Notice that a logarithmic scale is used, because the differences between the solutions are
huge. The inconsistency errors in displacements reach 9373% for the fourth mode in the Smoliriski
et al. algorithm, whereas just 1712% in the Daniel algorithm. At this moment it is obvious that
both algorithms are useless from the practical point of view. However, it is interesting to check if
they converge to correct solutions when the time step At tends to zero, because the results are so
discouraging that one can even doubt this.

The presented comparison between both algorithms shows that the Daniel algorithm is clearly
a much better choice in all cases. Since it also avoids violation of causality the convergence study
will be done for this algorithm alone. The same calculations are made with 10 times smaller step,
i.e. larger time step 5- 107> s and smaller At = 2.5-107° s. The maximum relative inconsistency
errors are presented in Table 1 and compared with the previous values.

There is no longer doubt that the algorithm converges to the correct solutions. Moreover, the
inconsistency errors are roughly proportional to the square of the time step, because 10 times
step reduction results in approximately 100 times smaller maximum errors. The registered error
reduction is consistent with the second order of the applied integration method. The observed rate
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Fig. 13. Velocity diagrams for fifth, sixth, seventh and eight mode using the Smoliriski et al. algorithm
(to the left) and the Daniel algorithm (to the right)



138 M. Klisinski

Table 1. Maximum relative inconsistency errors

Mode 1 2 3 4 5 6 7 8
At=25-10"%s | 0.5792% | 34.86% | 149.6% | 1712% | 3917% | 28779% | 2917179% | 838067%
At=125-10"%s | 0.0057% | 0.3426% | 1.482% | 16.83% | 38.95% | 277.8% | 29264% 6764%

Table 2. Required time step sizes to achieve 5% error

Mode 1 2 3 4 5 6 7 8
At [s] [2.73-107%]9.53-107°{4.59-107°|1.36 - 107°(8.95-107%(3.35-10%]3.26 - 10~ [6.80 - 10~
AtP2At 1 2.86 5.95 20.1 30.5 81.5 837 401

of convergence allows us to estimate the maximum time step sizes required to keep inconsistency
errors within some reasonable limits. For example, if the limit is set to 5% the first eight modes
demand the time step sizes listed in Table 2.

The third and the last rows show how much the stability limit At? must be reduced to achieve
acceptable results for given modes. However, let us keep in mind that the ordinary integration
algorithm without subcycling gives better solutions with the time step at the stability limit Az, .

Notice also that the stability limit for the constant velocity subcycling algorithms has a different
meaning than for ordinary explicit integration methods. Use of time steps below the stability limit
in the analysed algorithms only assures that the solutions do not diverge, but the errors can still
be few orders of magnitude larger than the correct amplitudes of oscillations. For ordinary explicit
methods it is usually sufficient to apply a time step close to the stability limit to obtain accurate
results, because such a time step is already very short. However, it is not the case for the constant
velocity subcycling algorithms, because further significant step size reductions must often be applied
to obtain satisfactory solutions for arbitrary initial conditions.

It is also problematic if the results with such huge errors should be considered as stable, because
stability in Lyapunov sense requires that a numerical solution always remains in a vicinity of the
exact solution. Unfortunately, stability is a term not having a clearly defined content. So according to
the amplification matrix stability analysis each bounded solution is stable. Therefore, the analysed
algorithms are treated as stable even if the results have nothing to do with the correct solutions.
It is just a question of the applied stability definition and does not matter as long as it is clearly
understood that a stable solution does not mean a correct solution.

6. CONCLUSIONS

The presented calculations show very clearly that the new multi-time step constant velocity algo-
rithms with time steps close to the stability limit lead to incorrect results for all higher natural
modes. The major problem is inconsistency of both algorithms originating from the assumption of
constant velocity during the subcycling. This assumption allows to get rid of interpolation errors
at the interface, but on the other hand requires zero accelerations which, in general, are not at
hand. Displacements can be calculated in two separate ways, i.e. by direct integration and from the
equation of motion, leading to different results. The inconsistency error, understood as a difference
between these two displacement values, are reduced approximately with square of the time step de-
crease, but their initial values (for a time step close to the stability limit) are so huge that significant
time step reductions are necessary. As a consequence any computer time savings compared to the
ordinary time integration methods are very doubtful. From practical point of view both algorithms
must be considered as useless. A direct comparison between the considered algorithms shows that
the algorithm presented by Daniel (1998) leads to smaller, but still huge, errors and avoids causality
violation present in the Smolinski et al. (1996) algorithm.
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Because the subcycling algorithms are available as an option in LS-DYNA a serious warning
must be issued to potential users: \

The subcycling algorithms are either unstable (as proved in Klisiniski et al. 1998) or inconsis-
tent (as shown in this paper) and can lead to tremendous errors (e.g. 3- 10 in the presented
example).

Finally, let us remind that new algorithms should be carefully checked before publishing, because
consequences of using unstable or inconsistent methods can be very serious. It is even more worrying
if such algorithms are available in the commercial software.
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