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The problem of the stability “in the large” and the unsafe disturbances of the equilibrium position is
studied for the structures whose dynamics is governed by the equation of motion of the pendulum with
parametric excitation. The system displays a variety of nonlinear and chaotic phenomena, so that the
study requires the use of theoretical concepts of the mathematics of chaos. Detailed explorations are
performed by the aid of the nonlinear software package Dynamics.

1. INTRODUCTION

The problem of the stability of the steady-state oscillatory solutions became relevant to engineering
design since it was realized that the nonlinear effects in dynamical devices may result in undesired
responses, or even in the failure of the structure. The effects come from the fact that the nonlinear
systems very often possess more than one solution at given values of the system control parameters,
and that two or more solutions may be locally stable. The concept of the local stability is based on
the assumption of small disturbances of the steady-state solution. This allows to drop the nonlinear
terms in the variational equation of motion and, by the use of approximate methods, to derive
simple criteria for the stability [8, 13, 20]. The criteria, however, are satisfactory merely to identify
the unstable solutions, but are not efficient to assure stability of the solution. The problem is that
the assumption of small disturbances is not satisfied in engineering devices, the devices which work
in a noisy environment.

Consider the standard example of the single-degree-of-freedom damped oscillator, driven by the
external harmonic force P coswt, with the nonlinear characteristics of the restoring force, assumed
in the form

fasho + px®

where z denotes displacement from the stable equilibrium position, k stands for the linear stiffness,
and pz® represents nonlinear component of the spring force. For 4 > 0 the theoretical amplitude—
frequency curves are bent towards higher frequency and hence, within the zone wp <w < wy, three
solutions coexist (Fig. 1a). The analysis of local stability indicates that the middle branch A-B
is unstable, and that the two remaining solutions, S, and Sy, are stable. Indeed, the system may
execute oscillations with the higher resonant amplitude or with the lower nonresonant amplitude,
depending on the initial conditions. If one starts with the initial conditions very close to the resonant
oscillation and increases the frequency w in a quasi-static manner, the condition of small disturbances
from the steady state is satisfied, and the system continues to execute the S, solution until the
value w = wy is reached. Then the response “jumps” suddenly onto the low-amplitude nonresonant
oscillation S, . Analogously, on the decrease of the frequency, with the initial values w > wy, the
jump from the nonresonant to resonant solution occurs at w = wy .
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Fig. 1. Schematic diagram of: (a) amplitude—frequency curves and (b) basins of attraction
at w=wr — Aw, Aw <K ws

The problem of the stability “in the large”, i.e. the system behavior in the situation when the
condition of small disturbances from the steady state was not satisfied, was studied by A. Tondl. The
first results obtained by the aid of an analog computer have been published as early as 1966 [29, 30].
The problem was inspired by an undesired behavior of an engineering device. The mechanical model
of the device was assumed in the form of the single-degree-of-freedom oscillator with the amplitude—
frequency relation displayed in Fig. la. The device was supposed to work at the highest possible
amplitude, i.e. in resonant condition with the frequency w close to wy. It happened very often,
however, that the amplitude suddenly dropped to the nonresonant branch at w essentially lower
than ws . A close look at the working conditions of the device revealed that the system was working in
a noisy environment, and the system behavior was explained in terms of the new concept of the basin
of attraction. We recall that, in dissipative systems, the basin of attraction of a steady-state stable
solution (attractor) is a set of all initial conditions (z(0),%(0)) that, after some transient motion,
lead to the given attractor. It was shown that the basin of attraction of the resonant response S,
diminishes gradually when the frequency grows and approaches w = wy . The schematic diagram of
the basins of attraction of the resonant and nonresonant attractors S, , S, , at the frequency slightly
lower than wy, is displayed in Fig. 1b. The diagram reveals that, although both attractors are still
locally stable, the area of initial conditions that gives rise to transient trajectories which settle onto
the resonant attractor S, is much smaller than that which belongs to the nonresonant attractor
Sy . It follows that even moderate disturbance of the S, attractor may result in the trajectory that
settles onto the nonresonant response S, .

Recently the studies of the effects of large disturbances on the stability of the steady-state oscil-
lations were extended to chaotic systems [7, 15, 26, 31]. In a series of papers, the potential energy
of the considered mathematical model possessed one minimum and one maximum. The system was
supposed to exhibit the oscillating motion within the potential well, but it could also exceed the po-
tential barrier and escape to the “attractor at infinity”. The former solution was regarded as the safe
response, while the latter represented the unsafe one, the response that resulted in the failure of the
structure. The problem was related to the studies of the ship capsize and earthquake damage [18, 19,
23, 24, 25, 27]. The system revealed occurrence of highly irregular chaotic phenomena and therefore
required the use of the modern mathematical concepts of nonlinear dynamics, such as global bifur-
cations and bifurcations of the basin boundary. It was shown that the resulting fractal structure of
the basins of attraction played a significant role in the problem of prediction of transient motion
as well as of the final outcome, after large disturbance of the steady-state oscillations. We recall
that the fractal structure is a highly intertwined, fine-scale structure with a fractional (non-integer)
dimension greater than one, which involves basins of attraction of multiple coexisting attractors.

In this paper we study the problem of the unsafe response in the device governed by the equation
of motion of the pendulum with parametric excitation. The importance of the pendulum in modelling
engineering devices, such as offshore structures, buildings in earthquake or Josephson junction,
makes its study of relevance to a wide audience of theoretical and applied scientists and engineers
[1-5, 9, 11, 16, 17].
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The system displays a variety of nonlinear and chaotic phenomena so that our study is based
on the theoretical concepts of the mathematics of chaos, and detailed numerical exploration is
performed by the use of the nonlinear software package Dynamics [14].

In the pendulum with parametric excitation the unsafe response corresponds to the rotating
solution. We show that the nonlinear phenomena may result in the unsafe response even in the
region of control parameters where the trivial solution, i.e. the hanging position, remains to be
stable, and the linear analysis does not allow to predict existence of any other solution.

2. EQUATION OF MOTION AND ZONES OF PARAMETRIC INSTABILITY

Mechanical model of the system considered is displayed in Fig. 2. It consists of a simple damped
pendulum with mass m and length /, when base is subjected to a vertical sinusoidal time-history
displacement z(7). Equation of motion of the system, in terms of the angle x that defines the
configuration, is

2 2
12-‘%@+3d—f+l<d—:+g>sm= : (1)

With the notations:

ng%, t=Qor, h=—

and the assumption

2(1) = —z cos T,
Equation (1) is reduced to the form

Z+hi+ (1+p coswt)sinz =0 (2)
where dots denote differentiating with respect to the nondimensional time ¢, and

2w?

S

w p

w
Q’
In the mathematical equation of motion (Eq. (2)) = denotes the rotation angle in anti-clockwise
direction from the lowest (hanging) position, h is the relative damping coefficient, and p, w stand
for the amplitude and frequency of the parametric excitation, respectively.
A significant peculiarity of the system with parametric excitation relies in existence of the stable
trivial solution z = £ = 0 in a wide range of the system control parameters p, w. The instability of

7)

Yl

Fig. 2. Mechanical model of the pendulum with parametric excitation
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the trivial solution is examined on assumption of small disturbances from the equilibrium, so that
the disturbed solution Z(t) takes the form

da(t)
dt

Z(t) = 0+ dz(t), =0+ 0z(t).
Since the disturbances are small, the nonlinear terms for dz, dz? are neglected and the linear
variational equation is considered,

6% + hdz + 6z (wi + p coswt) = 0, (3)

withwozl,T=%’5.

Because a closed form solution of the linear equation with parametric excitation is unobtainable,
the Floquet theory is used to formulate general properties of the stability [8, 13, 20]. But quantitative
results in the zones of parametric instability on the control parameter plane p-w (at h = const) need
application of computer based procedures. The final results are displayed in Fig. 3. The unstable
regions on the p—w plane, where the disturbances dz(t) and hence the displacement z(t) grow
exponentially over time, are denoted (1), (2), (3)... For zero damping the unstable zones emanate
from the w axis at the values

fas 2&)0

= — =28 3000
w k ) a,3, (4)

According to the Floquet theory, the solution takes the form

63(t) = o(t) = e 37 p(1), (5)
where ®(t) is a periodic function of time with the period T' or 2T (T = 2I), and ¢ is an unknown
characteristic exponent (purely real or purely imaginary) which is determined by numerical study.

The type of stability of the solution depends on the sign of the real part of the complete exponent
(=2 ¥ ¢). When Re(—% F €) is positive, the solution for dz(t) grows exponentially over time, and
therefore the trivial solution z = £ = 0 is unstable.

The diagram in Fig. 3 shows that the most dangerous region of the parameter p—w plane is that
around w = 2. This principal unstable zone is robust with respect to the damping coefficient and
occupies a wide range in the control plane. In this zone the periodic function of time ®(¢) in Eq. (5)
is 27T -periodic.

In reality, the response z(t) does not grow to infinity in the unstable regions, but, due to the
nonlinear terms, remains bounded. For sufficiently low values of the parameter p the steady-state
oscillating solution within the unstable region has the same form as that at the stability boundaries
of the linearized system. It follows that within the principal unstable region around w = 2 the
system exhibits oscillations of the period 2T = 227” :

p

3.0

2.01

1.0

0 0.5

Fig. 3. Diagram of the parametric instability zones
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The nonlinear term in the equation of motion (Eq. (2)) has a particular form, the form that the
potential energy of the system is a periodic function of the displacement. If we assume zero value
for the minimum of the energy, we obtain

V(z) =1—cosz. (6)

The potential energy (6) induces an additional type of the solution, namely the rotating solution.
Thus the pendulum governed by Eq. (2), in the vicinity of w = 2, can

— remain in hanging position (z = & = 0);
— oscillate around the hanging position with the period 2T’
— rotate in clockwise or anti-clockwise direction.

The first two types of motion remain bounded and hence are regarded as safe responses, while
the rotating solution represents the unsafe response, because it inevitably leads to a failure of the
structure.

At this point it is useful to recall fundamental properties of free vibrations of the conservative,
autonomous pendulum governed by the equation

Z +sinz =0, (7)

and to interpret trajectories on the phase-plane z-z, in connection with the potential energy
V(z) [10, 20]. The hamiltonian pendulum (7) can also exhibit the above three types of motion
(Fig. 4). Hanging position is represented by the single points (centers) at :5.210; n=0,1, 2. «i
oscillating motion — by the ellipse-shaped, close trajectories, and the rotating motion — by the
wave-form trajectories which satisfy the condition of unchanged sign of the velocity. The other
singular points, at z = (2n — 1)m, n = 0,1,2,..., correspond to the unstable, inverted position of
the pendulum and are defined as hilltop saddles. The particular trajectories that seem to leave or
approach the hilltop saddles can not be realized in the system in finite time and are defined as

1 1 1 1 1 1 L x
-T 0 T 2n 3n 4r 5t

Fig. 4. Potential energy and the phase portrait of the undamped, autonomous pendulum
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invariant manifolds of the saddles. They play the role of separatriz, i.e. the lines that separate the
oscillating and rotating motion in the phase plane.

In the considered undamped, autonomous system the criterion for the rotating motion to occur
is very simple; the system will exhibit rotating motion when its initial mechanical energy exceeds
the maximum value of the potential energy,

E(0) > Vinax = 2.

Turning back to the damped pendulum under parametric excitation (Eq. (2)) we notice that our
problem of the criterion for the unsafe disturbances is analogous to that of the separatrix, i.e. the
boundary between the bounded and unbounded responses. The nonautonomous system governed by
Eq. (2) is, however, three dimensional and can exhibit irregular, chaotic phenomena. The problem
becomes very complex and requires extensive exploration.

3. COEXISTENCE OF THE EQUILIBRIUM, OSCILLATING AND ROTATING ATTRACTORS;
CRITERIA FOR UNSAFE DISTURBANCES

In this section we first consider the steady-state responses of the parametrically driven pendulum
(Eq. (2)) in the region of the control parameters p—w where the equilibrium hanging position remains
to be stable and, therefore, linear analysis does not give any warning about unsafe disturbances.
In the neighborhood of the principal parametric instability there is, however, a region where, in
addition to the locally stable equilibrium attractor, the oscillating 27-periodic and the rotating 7T-
periodic attractors coexist. Which one of the three steady-state responses is realized in the system
it depends on the initial conditions. If our starting point is the equilibrium positiofl ‘v = =0,
then “the initial conditions” correspond to the disturbances applied to the system, and the unsafe
disturbances are those which lead to the rotating motion.

Results of computer exploration of the steady-state responses (attractors) of the system, in the
neighborhood of the principal parametric instability zone close to w = 2, are displayed in Fig. 5.
The region of interest is the triangle-like area denoted A—-B~C. In the portion of the area marked in
dark grey, there coexist: the equilibrium (z = 4 = 0) attractor, the 27-periodic oscillating attractor,
and the T-periodic rotating attractor. They are denoted Sy, Sar and SR, respectively. In the light
grey portion of the area, the oscillating and rotating attractors (Ser and Sg) undergo a series of
period-doubling bifurcations, to be finally annihilated in the boundary crisis scenario 6, 21, 22, 28].
Yet, the danger of the unsafe disturbances still exists within this region.

The existence of the 2T-periodic oscillating motion in the considered area of the p—w plane can
be explained in terms of the concepts developed in the theory of nonlinear oscillations 4, 8, 10, 20].
It follows that, due to the softening characteristic of the restoring force, the response-frequency
curves are bent towards lower frequency, and hence the 2T-periodic solution exists also outside the
V-shaped principal parametric instability zone. The schematic diagram of the response—frequency
curve, valid for the parametric excitation amplitude p; < p < ps, is shown in F ig. 6. Notations in
the figure are the same as those used in Fig. 5. It follows that, to the left of the unstable segment
of the w-axis (which corresponds to the parametric instability zone), the two attractors, namely the
equilibrium Sy and the 27-periodic Sp7, coexist.

Figure 5 indicates that, at the increase of the excitation amplitude p, the Sor and Sk attractors
are born in the saddle-node bifurcations, along the lines denoted snop and sng , respectively. For the
sake of clarity, we illustrate the phenomena of the saddle-node bifurcation in the bifurcation diagram
(Fig. 7). The diagram displays the Poincaré displacements of the particular solutions against the
parametric excitation amplitude p, at the fixed value of the frequency w. Characters Sk and S%, are
used to denote the T-periodic anti-clockwise and clockwise rotations, respectively. The 2T -periodic
oscillating attractor is represented by the two lines, denoted S’é;) and S%) . All the attractors are
born in the saddle-node bifurcation scenarios, at the values of p denoted Dsnyr and Py, . At this
type of local bifurcation, the stable branches (solid lines) are always accompanied by the unstable
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Fig. 5. Regions of coexistence of the locally stable steady-state responses (attractors) in the control plane;
So — equilibrium (z = ¢ = 0) attractor, Sar — 2T -periodic oscillating attractor, Sg — T-periodic rotating
attractor

xmlu‘

Fig. 6. Schematic diagram of the amplitude—frequency curve of the 27-periodic oscillating attractor Szt , in
the region of the parametric excitation amplitude p1 < p < p2

branches (broken lines) of the same period, known as saddles. The 2T-periodic saddle associated

with the Sy attractor is denoted by the two lines Dé;) and D%) , while the T-periodic saddles which
accompany the rotating attractors S, and S} — by the lines D, and D% . We do pay attention to
the unstable solutions because the concept of saddles and their invariant manifolds play a crucial
role in further investigation.

At this point it is necessary to notice that in the bifurcation diagram and in presentation of
the subsequent results we employ the Poincaré section representation with the sampling time
T = 2% This reduces the three dimensional state space (z,,t) to the two dimensional phase
plane z(nT),z(nT), n =0,1,2,.... That is why the 2T-periodic solutions in Fig. 7 are represented
by two lines, and the T-periodic ones by single lines. In the phase plane z(nT'), z(nT) the two types
of periodic solutions are represented by two points or one point, respectively.

The Poincaré section representation is a powerful method of attacking the problem of un-
safe disturbances of the equilibrium position £ = & = 0, i.e. the disturbances that lead to ro-
tating solutions. To determine the unsafe disturbances, we explore the basins of attraction of
the safe and unsafe attractors of the system. In our case, the basin of attraction of an at-
tractor S; (1 = 0,2T,R) is equivalent to the set of all initial disturbances of the equilibrium
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Fig. 7. Bifurcation diagram at w = 1.6
solution z = & = 0 that give rise to the trajectories which settle finally onto the attrac-

tor S; .

We begin with the basins of attraction at the control parameters w = 1.6, p = 0.44 (Fig. 8a). The
coexisting attractors are the equilibrium position Sy , the 27-periodic oscillation Syr (represented by
two points Sg,? and S'g«)), and the anti-clockwise and clockwise rotations S% , S% . The corresponding
basins of attraction are marked in light blue (Sp), white (S2r), green (S%) and magenta (S%) colors.
First we notice that the basin boundary of the Sy and Sy attractors is not smooth, but has a fractal
structure [12, 21]. In this paper we do not, however, pay attention to the observation because the
two involved attractors belong to the category of bounded, and hence safe, responses. Therefore it,
is reasonable to consider rather the union of both basins. This approach reduces the complicated
form of the basins to that depicted in Fig. 8b. We see that the basin boundary between the union
of the two bounded, safe attractors Sy and Séilr) (2) and the unbounded rotating attractors 5’}{, S}’2
is a smooth, regular line. Moreover, the boundary is defined by the stable manifolds of the saddles

=+ D}, denoted W(”‘l) (blue line) and W(52) (red line), respectively. Thus we notice that, in the
case of coexistence of the non-rotating and rotating attractors, there are the stable manifolds of the
saddles accompanying the rotating attractors which play the role of the separatriz.

The basins of attraction displayed in Fig. 8b enable us to make the following observation on the
unsafe disturbances, i.e. unsafe initial conditions. If we assume #(0) = 0, then all initial displace-
ments z(0) < || give rise to trajectories that settle on the safe attractors, and therefore belong to
the category of safe disturbances. It follows that in this case no initial displacement can lead to the
unbounded rotating motion of the pendulum.

However, a small increase of the parametric excitation amplitude p brings a sudden dramatic
change of the situation. Results of numerical computations of basins of attraction at the values of
control parameters w = 1.6, p = 0.52 are displayed in Figs. 9a,b. Now the initial conditions that
result in the rotating response invade the area that belonged entirely to the safe attractors. The
basin boundary is no longer smooth but it has fractal structure. The regular, smooth portion of the
safe basin is now reduced to the basin of the equilibrium attractor Sp. If we follow the assumption
of the zero initial velocity, the safe initial displacement is now reduced to z(0) =< |0.5].

To determine the criteria for the threshold values of the parameters p, w for which the sudden
decrease of the basin of safe disturbances occurs we first notice that the process begins with the
bifurcation of the basin boundaries and consequently with generating fractal structure of the basins.
Since we remember that, prior to the bifurcation, the basin boundary between the non-rotating
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Fig. 8. Basins of attraction of the coexisting attractors at w = 1.6, p = 0.44; (a) light blue — basin of the

equilibrium (2 = & = 0) attractor So , white — basin of the 2T-periodic oscillating attractor Szr , magenta and

green — basins of the two T-periodic rotating attractors, anti-clockwise S and clockwise S, respectively;

(b) basin of the union of Sp and Syr attractors (white) and basins of the rotating attractors S and Si.
The grid resolution is 640 x 480
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Fig. 9. Basins of attraction of the coexisting attractors at w = 1.6, p = 0.52; (a), (b) color correspondence
and grid resolution as in Fig. 8a,b
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and rotating attractors was defined by the stable manifolds of the saddles D%, D%, we come

to conclusion that the bifurcation is related to the global bifurcation of invariant manifolds of
these saddles. Two types of global bifurcations can be relevant: the homoclinic and heteroclinic
bifurcations [7, 21, 23, 31]. Critical conditions of the global bifurcations are determined by a tangency
condition of the involved invariant manifolds. The homoclinic bifurcation is defined by the tangency
condition of the stable and unstable manifolds of the same saddle, in our case the saddle D (D).
The heteroclinic bifurcation is defined by a tangency condition of the stable manifold of one saddle
and unstable manifold of another saddle; in the considered case it is the stable manifold of the

saddle DY, (D%) and the unstable manifold of the saddle Dé?’(z). For an illustration, we present the
relevant manifolds right after the heteroclinic bifurcation in Fig. 10.

Fig. 10. Relevant invariant manifolds of the T-periodic saddles D , D and the 2T-periodic saddle Dg;},(z)’
right after the heteroclinic bifurcation of the saddles; WB:q : Wf)g (thin lines) — stable manifolds of D , Dy ;

W34 (thick line) — unstable manifold of D{y"®

It happens that the two global bifurcations (homoclinic and heteroclinic) occur at the values of
the control parameters p, w which are very close to each other. Hence, the results of the bifurcation,
i.e. the fractal structure of the basin boundary (Fig. 9b), can be regarded as an accumulation of
both bifurcations.

We conclude that the two global bifurcations associated with the saddles D', , D, constitute the
sought criteria for the dramatic decrease of the area of safe disturbances of the system equilibrium
position.

Within the area of the basins of attraction where the fractal structure is observed, the system is
extremely sensitive to initial conditions and, in this sense, is chaotic. If the system is set into motion
with the initial conditions that belong to the basin which has fractal structure, it exhibits transient
chaotic motion with an unpredictable outcome. It follows that, for very close initial conditions, the
system may either settle onto one of the safe, non-rotating attractors, Sp or Sar, or develop the
unbounded rotating motion. The phenomena are illustrated by the time histories of the transient
and final steady-state responses z = z(t) realized with very close initial conditions — Fig. 11.
After chaotic transients of arbitrary duration, the system settles onto the equilibrium attractor Sp
(Fig. 11a), the 2T-periodic oscillating attractor Sor (Fig. 11b), or onto the rotating attractor Sk
(Fig. 11c).
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Fig. 11. Three time-histories of the system response with an unpredictable final outcome, at w = 1.6, p = 0.52,

for the very close initial conditions which belong to the fractal region of the phase plane; (a) z(0) = —0.767,

£(0) = 0.00; (b) z(0) = —0.767, &(0) = 0.00; (c) z(0) = —0.761, #(0) = 0.02; (a), (b) — safe outcomes,
c) — unsafe outcome
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4. CONCLUSIONS

Explorations of the regular and chaotic steady-state and transient responses of the nonlinear, para-
metrically excited pendulum, in connection with the study of global bifurcations, allow us to state
that:

— investigations of the stability “in the large” and the unsafe disturbances require applications of
the dynamics of chaos and computer aided methods;

— the sudden decrease of the values of the safe disturbances is related to the global bifurcations
of the unstable rotating solutions, i.e. the saddles that accompany the rotating attractors; the
critical values of the system control parameters p, w are determined by the homoclinic and
heteroclinic bifurcations of these saddles.
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