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The problem of instability and strain localization in a hardening non-associative Drucker-Prager plasticity
theory is analyzed. The classical and gradient-enhanced versions of the theory are reviewed and instability
indicators are summarized. The regularizing properties of the gradient-enhancement are shown. The clas-
sical plane strain biaxial compression test is analyzed in terms of the analytical prediction of ellipticity
loss and numerical simulation of the process of shear band formation and evolution. The influence of
material model parameters, especially of the degree of non-associativity and the gradient influence, on the
instability properties is demonstrated.

1. INTRODUCTION

The problem of material instabilities inducing strain localization has been investigated for instance in
the review papers 35, 10, 18], in the thorough study of bifurcations in geomaterials [32] and, recently,
in the proceedings of IUTAM symposium [11]. If a material instability [13, 15] is encountered in
the deformation history of a body, the strains often localize in a number of narrow bands, while
the remaining parts of the body unload. Within a classical continuum formulation and for static
problems this phenomenon is associated with the loss of ellipticity of the governing partial differential
equations. Therefore, discretization methods used to solve the equations may yield mesh-sensitive
and hence meaningless results. To overcome this problem, a form of rate-dependent or non-local
enhancement of the constitutive model must be adopted [28, 10]. The non-locality may have the form
of micropolarity (e.g. [17]), integral averaging (e.g. [5]) or spatial gradient-dependence (e.g. [30]).
They all imply the introduction of an internal length parameter in the continuum description.

However, majority of the literature of the problem deals with softening materials and relatively
few contributions concern the case of hardening materials with non-symmetric constitutive oper-
ators. It was shown already by Rudnicki and Rice [24] that the loss of material stability may be
encountered for hardening non-associative plasticity and, unless kinematic constraints prevent it,
the loss of ellipticity (discontinuous bifurcation) may consequently occur. The case was then studied
in [23, 33, 6, 7, 30, 25, 26, 2, 3], but numerical simulations were usually limited to classical contin-
uum models and in particular to Mohr-Coulomb plasticity. The analysis is more difficult than for
the associative case since the spectral properties of non-symmetric operators are more intricate to
analyze [36, 29].

This paper reapproaches the problem of localization in non-softening media focusing on the
numerical analysis of the well-known pressure-dependent and non-associative Drucker-Prager plas-
ticity model. The model has been used for a large class of geomaterials, although it is by now
considered insufficiently realistic. However, the discussion here is limited to qualitative aspects of
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instability phenomena in the form of (a pattern of) shear bands. We limit our consideration to the
case of constant values of the friction and dilatancy angles and an increasing cohesion.

A gradient-enhanced version of the theory [21] is employed. The formulation of gradient plasticity
is based on [16, 8] and the present paper is a continuation of [22]. The enhancement was originally
proposed in order to avoid the above-mentioned ill-posedness and mesh sensitivity problems in
simulations of softening materials. Here, it is applied to hardening models which exhibit a softening
response due to localization induced solely by non-associativity.

Another issue brought up in the paper is whether shear band instability can be simulated for
contractant plasticity, since there is experimental evidence of such phenomena [12] and a negative
dilatancy angle is attributed for instance to loose sands exhibiting liquefaction [33]. In fact, the
gradient plasticity theory was previously used in [30, 31| to analyze analytically shear banding and
pattern formation leading to liquefaction.

In Section 2 we recapitulate the classical and gradient-dependent Drucker—Prager plasticity the-
ory. In Section 3 an analytical examination of the instability and localization in the theories is
presented. In particular we consider the bifurcation properties via the acoustic tensor analysis
according to [34] and discuss the properties of the gradient-dependent plasticity model. Section 4
contains numerous results of numerical simulations of the shear band formation in the biaxial (plane
strain) compression test [37, 12]. Final remarks are gathered in Section 5.

In the paper we limit interest to quasi-static loading and small strains, so that the equilibrium
and kinematic equations in the considered boundary value problem have the form

LT +b =0, (1)
€ = Lu, (2)

where L is a differential operator matrix, o is the stress tensor in a vector form, b is the body force
vector, € is the strain tensor in a vector form, u is the displacement vector and the superscript T
is the transpose symbol. The stresses and displacements satisfy the relevant natural and essential
boundary conditions, respectively.

2. DRUCKER-PRAGER PLASTICITY THEORY

According to experimental results, constitutive relations for geomaterials are pressure-sensitive and,
furthermore, the direction of plastic flow is not normal with respect to the yield surface. Therefore,
the behaviour of geomaterials must be described using a non-associated flow rule, which leads to
a non-symmetry of the tangent stiffness operator. We focus attention on the Drucker—Prager plastic
flow theory which incorporates a dilatant/contractant deformation and non-associativity. A gradient
enhancement of the classical Drucker—Prager plasticity theory is used to preserve well-posedness of
the governing equations and to analyze the whole deformation history. The equations for the classical
and gradient-dependent Drucker—Prager plasticity are recollected below.

2.1. Classical Drucker—Prager plasticity
The classical Drucker—Prager yield function can be written as follows,

F(a, ’ﬁ) =4+ 0P ﬁC(K) ) (3)

where g = v/3J2 and Js is the second invariant of the deviatoric stress tensor, p = %(am +0yy +032)
is the hydrostatic pressure, @ and 3 are functions of the internal friction angle ¢:

6si
T AN %
3 —sinyp

6 cos (4)
3 —sinyp ’
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¢ is a measure for the cohesion and & is an invariant plastic strain measure (hardening parameter).
The yield function satisfies the Kuhn-Tucker conditions,

o, Pl A=, (5)

in which ) is a plastic multiplier. The multiplier determines the magnitude of the rate of plastic
strains,

€ =Jm, (6)
m is the plastic flow direction vector defined as the gradient of a plastic potential G,
oG
= — G = Yo% s
m=z= q+ap (7)
where @ is a function of the dilatancy angle 1, similar to the definition of a in Eq. (4):
16 6sin 1)
The plastic consistency condition F =0 has the form
OF + 8Fk = 9
90 "o (9)
We introduce the gradient of the yield function n,
oF
¢ L7 R
and the hardening modulus A
k OF
h(k) = —= —
(K‘) A am ) (11)
so that we can rewrite Eq. (9) in the form
nTe —hA=0. (12)

The stress rate ¢ is derived from the constitutive relation
&=D°(¢-Jm) , (13)

in which D¢ is the elastic stiffness matrix. Equation (12) can be used to determine the plastic
multiplier A and the classical elastic-plastic tangent stiffness operator,
D°mn™D¢

fpr soye =
D D FFaTD'm (14)

To determine the relation between % and ), the strain-hardening hypothesis is used leading to

: |
: 2 3
k=N, n= (1 4 5'072) ) (15)

so that proportionality of the plastic strain measure x and the plastic multiplier A is obtained. Using
Egs. (3) and (15) the hardening modulus reads

h(R) = 8 o2 . (16)

It is noted that both the friction and dilatancy angles are assumed to be constant due to two
reasons: physically, the mobilized angles are asymptotic functions which attain their maximum
value already for small deformations; algorithmically, the dependence of ¢ (or %) on for instance
the equivalent plastic strain measure would disrupt the gradient plasticity formulation summarized
in the next section.
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2.2. Gradient-dependent Drucker—Prager plasticity

In the case of gradient-dependent Drucker-Prager plasticity, the yield function is additionally de-
pendent on the Laplacian of the plastic strain measure k. Assuming that only the cohesion exhibits
the gradient dependence, the yield function takes the form

F(o,k,V?k) = ¢+ ap — Be(k, Vk) (17)

and the plastic potential function does not change.

The yield function satisfies the Kuhn-Tucker conditions (5). The gradient-dependence of the
yield function implies that the plastic consistency condition F' = 0 is the following partial differential
equation,

oF Ao oF e OF

do Ok V2
The hardening modulus A is still defined by Eq. (16). If we introduce an additional variable g,

Kk OF dc

VZk=0. (18)

g(k) = % 0Vik = —Uﬁm ) (19)
the consistency condition (18) can be rewritten as:
nTe — A +gVZA=0. (20)

Note that for g = 0 the classical plastic flow theory is retrieved, but for g # 0 the plastic multiplier
is a solution of the partial differential equation (20). In this paper the coefficient g is assumed to be
constant for simplicity.

The finite element implementation is based on the following two weak-form equations governing
the static equilibrium and the plastic consistency, respectively,

/(Lv)Tade/vadV+/thdS, (21a)
\%4 \4 S

/ wkF (a, n,Vzm) dV =05 (21b)
Vi

where v and w are suitable weighting functions, t is the traction vector. The integral in Eq. (21b)
should formally be computed over the volume of the plastic part of the body, but it is assumed
that in the elastic part the value of the yield function will be set to zero while performing this
integration.

Equations (21) are written for iteration ¢ + 1 of the incremental-iterative algorithm and the
following decomposition is used,

o) = o 4 dg,  AGHD = A 4y, (22)

so that the yield function F' can be developed in a truncated Taylor series around (o(®,\(¥)). We
obtain the following incremental equations,

/ Iv)Tde dV = fou = fints (23a)
Vv
/ w [nTdo — hdX + gV2(d\)] dV = — / wF (a(i),m(i), v%@)) av, (23b)
Vv Vv
with
fext = / vitds —l-/ vIbdy, (24a)
S 1%

= /V (Lv)To® V. (24b)
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Next, we substitute the incremental form of Eq. (13) into Egs. (23) to obtain
/ (Lv)T(D®de) dV — / Lv)T(D*mdA) dV = fext — fint, (25a)
1% 1%

/ wn"DCdedV — / w [(h +n"D°m)dA + gV*(d))] dV = — / wk (a(i),ﬁ(i),v2n(i)) dv.
\% 74

14
(25b)

Now, the plastic multiplier field is discretized next to the classical discretization of the displace-
ments. It is important to notice that, if the yield condition (17) is used in the classical return
mapping algorithm to distinguish between elastic and plastic states, a C''-continuous interpolation
of X is unavoidable, otherwise V2 loses meaning [21]. Therefore, the Laplacian term is not removed
from the left-hand side of Eq. (23b), although this can be done using Green’s formula if a homo-
geneous non-standard boundary condition (VdA)Tv = 0 is assumed (v is a vector normal to the
surface of the plastic part of the body). Further details of the finite element implementation can be
found in [21, 9].

3. INSTABILITY INDICATORS
3.1. Material instability and loss of ellipticity

According to the classical definition of material stability [13, 15] a material is stable if its constitutive
relationship satisfies the condition of a positive second order work density,

éijdij > 0, (26)

where €;; and ¢;; are the strain and stress rate tensors, respectively, and the summation convention
is adopted. We limit our consideration to incrementally linear constitutive equations,

0ij = Dijkiéki - (27)

Then, a material instability is indicated by the loss of positive-definiteness of the tangent stiffness
tensor Djjk; , i.e. by the singularity of the symmetric part of D;jx,

det(Dijkl + Dklij) =i, (28)

Since it can be shown [36] that the smallest eigenvalue of D;jy; is larger than or equal to the smallest
eigenvalue of its symmetric part, for a non-symmetric tangent stiffness tensor the loss of material
stability may occur in the deformation history prior to the limit point and loss of uniqueness related
to a diffuse bifurcation, cf. [35, 10], which are marked by the condition

det(Dijkl) = (29)

As shown in [36], the special structure of the elastic-plastic tangent operator D® in Eq. (14)
implies that it has only real eigenvalues even if it is non-symmetric, so that condition (29) is satisfied
only when h = 0. This means that if we assume h > 0 the diffuse bifurcation will never occur.

However, when the material stability has been lost, a so-called discontinuous bifurcation is also
possible, cf. [24, 19, 36, 20, 10]. For a homogeneous and homogeneously deformed body we investigate
the possibility that upon a further increment of deformation a discontinuity of the deformation
gradient across a plane with normal v; is admitted,

[uij;l #0, : (30)

where [ ]| denotes a jump of a quantity. During this bifurcation the continuity of displacements
and the equilibrium condition are preserved pointwise. If the deformation satisfies the kinematic
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compatibility equations, it must be piecewise homogeneous, so that, for an arbitrary vector y;, the
strain jump has the form

[es] = %(wﬂj + Vi) - (31)

With the piecewise linear constitutive equation (27) we obtain the stress rate jump at the onset
of the discontinuity,

[6ij] = Dijul én], (32)

where it has been assumed that the same tangent stiffness moduli govern the material behaviour on
both sides of the discontinuity plane (cf. the concept of a linear comparison solid [13]). Equilibrium
requires that during the formation of the discontinuity the tractions ¢; are continuous across the
plane with normal v; ,

[i] =wloi] =0, (33)

so substituting Eq. (32) and the rate form of Eq. (31), and exploiting the (minor) symmetry property
D;jri = D;jir, we obtain the equation

(viDijravr) pk = 0, (34)

which has a non-trivial solution only when the determinant of the so-called acoustic tensor Q) =
v; Djjrvy vanishes,

det(Q;) = 0. (35)

For a given tangent stiffness the last condition yields a vector v, which defines the discontinuity
direction, the vector uy can then be determined from Eq. (34) and the jump mode vy, is known.
For a shear band the vector v; is perpendicular to py, .

The singularity of the acoustic tensor and the formation of the discontinuity correspond to the
local loss of ellipticity of the rate equilibrium equations. Ellipticity is one of the necessary conditions
for well-posedness of the rate boundary value problem, cf. [10]. Here, well-posedness is understood
as the existence of a finite number of linearly independent and continuous solutions.

The emergence of the discontinuities in the deformation gradient has traditionally been identified
with strain localization [24]. A shear band may then be viewed as a zone of intense deformation
bounded by two discontinuity planes. However, since the distance between those planes remains
undefined for a classical material model, they coincide giving localization in a set of measure zero.
In this paper the notion of strain localization is understood in a broader sense, as the emergence of
bands of concentrated deformation due to material instabilities. Nevertheless, the first point in the
deformation history for which there exists a nontrivial solution of Eq. (34) marks the possible onset
of localization.

3.2. Properties of the gradient model

The enhancement of the classical theory was made in order to preserve well-posedness of the gov-
erning equations for the case when a softening relation between stresses and strains is assumed
(h < 0). For a softening medium the factor g can be associated with an internal length parameter I,
for instance in a one-dimensional analytical solution we have g = —hl% > 0 [8, 22]. However, also
for a hardening material the Laplacian term with g > 0 regularizes the solution in the sense that
a higher-order continuity of the strain field is obtained [9]. In this paper the gradient enhancement
is applied to Drucker-Prager non-associative materials with constant friction and dilatancy angles
and a non-softening cohesion. The non-symmetry of the constitutive operator induces the mate-
rial instability and shear band localization and the effectiveness of a gradient enhancement of the
cohesion is verified.
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To analyze the possible influences of the gradient term on the material stability and ellipticity
of the governing equations, we first consider a uniaxial case of a shear layer with length L. The
consistency condition (20) then gives

T BL m (36)

with 4P = . We calculate the second order work according to the material stability condition
(26). The destabilizing effect of softening is introduced only by the plastic action and the work
corresponding to the plastic strain 4P equals

L/2 w/2 w/2 w/2
[ iwrdo= [ w2 - gittldo =[O narrdas [T gapras, (37)
—L/2 —w/2 —w/2 —w/2

where w is the width of the plastic zone and the boundary condition 4? = 0 for z + w/2 has
been used. We observe that for h < 0 the first term in Eq. (37) introduces instability, while the
second (gradient) term acts as a stabilizer. On the other hand, if we adopted g = —hi? for h > 0
(hardening) the gradient term would act in a destabilizing manner. Therefore, the gradient coefficient
g is assumed to be positive irrespective of the sign of h.

Next, we calculate A from Eq. (20) and substitute into the constitutive relation (13) to obtain
after regrouping

: 1
e %V2Am = |09 + ;mn"| 5, (38)
so that with the aid of the Sherman-Morrison formula the gradient-dependent elastic-plastic stress—
strain relation can be written in the tensor form as
0ij = Dijriér + 9i; V2, (39)

with the standard elastic-plastic tangent stiffness tensor D;;x; defined in a matrix form in Eq. (14)
and the tensor g;; as follows,

e Dijrimp
- .
h + ni; Dijrimp

g (40)

In analogy to the above ellipticity analysis we can consider the possibility of emergence of a
discontinuity across a plane with a normal v;, which in addition to a jump in the deformation
gradient involves a jump in the second order gradient of the equivalent plastic strain, cf. [35]. The
first jump can be represented as in Eq. (31) and the second can be written as follows,

[V2\] = vy, (41)

with an arbitrary vector oy . Using the equilibrium condition (33) and the constitutive relation (39)
we can write

041 =wl 641 = (WiDijvi) px + (vigijvr) ax = 0. (42)

The occurrence of the discontinuity plane is only possible if, for arbitrary p and ay , both contri-
butions in Eq. (42) vanish simultaneously. This does not happen except possibly for some special
structure of the constitutive operator. Since violation of the bifurcation condition as defined by
Egs. (30) and (33) guarantees ellipticity, we conclude that the gradient-dependence has a regular-
izing effect. Consequently the rate boundary value problem for a gradient-dependent elastic-plastic
continuum remains well-posed in the unstable regime and localization in a set of measure zero is
prevented.

It is noted that for the gradient dependent continuum the critical value of the hardening modulus
and the direction of the localization band can be determined from the classical condition of the
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acoustic tensor singularity (35), since prior to the moment of bifurcation into a localized deformation
pattern the gradient terms have no influence on the solution.

Therefore, before we embark on the nonlinear instability analysis with the gradient-enhanced
model, an analytical examination of the acoustic tensor is performed. The analysis is based on the
algorithm described in [34], which determines the normalized value of the determinant of the acoustic
tensor as a function of an angle defining the direction of the discontinuity plane in a two-dimensional
case.

3.3. Analysis of acoustic tensor properties

The analysis of the acoustic tensor properties is performed in order to indicate the loss of ellipticity
for the non-associated Drucker—Prager model with a non-negative hardening modulus and to find
out which factors influence it. Calculations are carried out for the case of plane strain biaxial
compression (see a typical configuration in Fig. 1) and, with the exception of one case, the onset
of plastic yielding is considered. In further considerations we adopt for conciseness the following
notation: a = sin¢p, b =siny, h, = % ;

P
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Fig. 1. The sample and the influence of h. on the determinant of the acoustic tensor

The first computations are performed to analyze the influence of inclination of cohesion hardening
diagram h, on the results. The following data are adopted: Young’s modulus E = 2400 %{,
Poisson’s ratio v = 0.2, sinyp = 0.5, sinty = 0.0. The purpose is to find the value of h. for which
elastic-plastic localization tensor Q°P exhibits a singularity. As can be read from Fig. 1, for the given
data a discontinuous bifurcation is possible only for cohesion softening. The maximum value of h,
for which det(Q®P) = 0 is equal to approximately —0.205 of shear modulus G' and the corresponding
discontinuity direction estimated from the diagram is v ~ 40°, where <y is an angle between the axis
of the minimum (compressive) principal stress o, = 02 and the discontinuity direction.
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Then, we investigate the influence of the internal friction angle ¢ and the dilatancy angle 1) on
the possibility of the discontinuous bifurcation. In all simulations we assume that ¢ > 1) since it
has been proven for cohesionless soils that this assumption is necessary to ensure that the amount
of dissipated energy is non-negative [33]. The first analysis is done for a constant difference between
a = sinp and b = sin% equal to 0.5 (Fig. 2). The second example is computed for siny = 0.5 and
a varying value of sint (Fig. 2). Figure 3 depicts the results for sin = 0.0 and a series of values
of sinyp both at the onset of plastic yielding (22 = v) and at the limit point (%21 — 0.5), with data
taken from the output of a one element test. As expected, the analysis of the diagrams indicates
that instability increases with a decreasing value of sint and with growing non-associativity. It is
worth noting that in the case of contractant plasticity (¢ < 0), the material becomes very unstable
and for certain data a discontinuous bifurcation is possible even at the onset of plasticity.
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L iy 0.2 o
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§ \ b / P \ 4
§ \ ! / 7 i e 4
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Fig. 2. The values of the normalized determinant of the acoustic tensor for a — b = 0.5 (left) and the
influence of b = sin for a = sin p = 0.5 (right); h. = 0.0 in both cases
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The following calculations are carried out for a varying value of v with fixed values of G =
1000 —2', he = 0.0, sinp = 0.5, sint) = 0.0. We notice that, with Poisson’s ratio growing to 0.5
(1ncompre331b111ty) the singularity of the acoustic tensor is approached The results are plotted in

Fig. 4.

4. BIAXIAL COMPRESSION TEST

The first aim of numerical calculations is to analyze the shear band formation for a varying intensity
of cohesion hardening. The influence of the gradient factor g on the shear band width is also
investigated. Another goal is to simulate localization for the case of contractant plasticity (negative
value of sint). Eventually, a comparison of results for a coarse and fine mesh is done. We focus



Instabilities in non-softening Drucker—Prager plasticity

193

1.6

1.2

det(Q™)/det(Q)
o
(o<}

o
'S

T T T T T
Yo
E e v=00
A O REDD
A
\ — e v=049
\
L \ |
\
‘\
! \
/, \‘
A
./ N\ \

& i \\ \. -
....... / c
™\ ! Nz g g
b § ligesiq s AT
L ¥ pr s NG X \ / o

. i/ Ny
E \\\\\ ///)/ \\3\ ///,/ A

£ 3 Pditi. 5 b Vo 5 :
oX N Sl \\ 7 S
N S e Pk 1 27
\\ // \ B
£ N
> <25 R hid 4
1 1 1 1 1

0 30 60 90 120 150 180

shear band direction y

Fig. 4. The influence of Poisson’s ratio v on the ellipticity condition

// imperfection

relative force P/Bc

12

10

a=b=0.5
y
a=0.5 b=0.0 |
Shear band /
a=b=0.0
1 : : l
0 0.002 0.004 0.006 0.008 0.01

realtive displacement v/H

Fig. 5. The sample and load-displacement diagram for h. = 0.0001G



194 A. Stankiewicz and J. Pamin

our attention on a standard plane strain biaxial compression test [37, 12], shown in Fig. 5. The
constant material data are as follows: E = 2400 "m%f , v = 0.2. The dimensions of the specimen are:
B = 60 mm width and H = 120 mm height. It is discretized with 12 x 24 eight-noded plane strain
elements CQ16E [1] or their gradient-dependent modifications R32EG [21]. To load the sample, the
vertical displacement of one node at the top is prescribed and the vertical displacements of all nodes
at the upper edge of the sample are constrained to be equal. To initiate shear band formation one
element in the bottom, left-hand corner of the sample is assigned a 1% smaller value of the initial
cohesion.

4.1. Small cohesion hardening

The first calculations are carried out for incompressible plasticity with a = singp = 0.5, b = siny) =
0.0, g = 0.1 N and cohesion hardening modulus h, = 0.0001G. The aim of the calculations is to
show that despite the fact that cohesion hardening is adopted, localization appears due to non-
associativity (non-symmetry) of the constitutive operator.

In Fig. 5 the load—displacement diagrams for two values of a and two values of b are shown for
comparison. The first diagram is plotted for associated, compressible plasticity with a = b = 0.5.
The second diagram is for the considered case of non-associated plasticity with a = 0.5 and b = 0.0,
the third one is for a = b = 0. We can see that the solution is not unique in the second case
and a band of localized strains appears at a certain state of stress. Although in general the local
unstable behaviour can be stabilized by the surrounding material, in the considered test ellipticity
is lost almost simultaneously in many points and a shear band develops. The analysis of localized
deformation patterns and plastic strain distribution provides the information that the shear band
evolves with the deformation level, i.e. it moves from the bottom towards the top of the sample.
This will be shown in the next section.

4.2. Comparison of analytical and numerical results

The next calculations are performed for an increasing rate of the cohesion hardening h.. The aim
is to estimate numerically a maximum value H® of the hardening modulus for which a bifurcation
occurs at a certain state of stress [26, 20].

First, we increase the hardening modulus ten times. However, the results for A, = 0.001G and
he = 0.0001G are quite similar. Analyzing the load—displacement diagram for these two cases, we
can state that larger cohesion hardening gives stiffer result, however, the difference seems to be
insignificant. Next, before we again increase the value of h., analytical calculations are made to
obtain the critical hardening modulus and the corresponding bifurcation direction. According to [26],
for the classical Drucker-Prager plasticity and plane strain conditions we have:

when
9(sy1 +vs3)+ (1+v)gla+a@) >0 and 9(s2 +vs3)+(1+v)gla+a@) <0 (43)
then
o 9s1twvss)+(1+v)g(a+7a)
A = = o+ wss) + (L+ D)g(a T ) o
and
B latdep > 9s3 iy
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Fig. 6. Shear band formation and equivalent plastic strains for the upper edge displacement equal to 1.3 mm.
Triangles in the figure illustrate equivalent plastic strain distribution, their sizes are proportional to the strain
value
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To calculate the values of the angle w (cf. Fig. 1) and H® we read from the output the principal
stresses 0 = [0, —6.804, —2.838] for the state just before the numerically simulated bifurcation
and the assumed value h, = 0.0001G. According to Eq. (44) the angle w between the shear band
direction and the horizontal axis should be equal to 52°. From the figure of equivalent plastic strains
(not shown) we can estimate that this angle equals about 48°. The disagreement is plausibly caused
by the fact that the calculated value of w corresponds to the hardening modulus H® = 0.0308G,
while in our case h = nfh, ~ 0.0002G. Another conclusion from the analytical results is that we
may increase the value of h, and we should still observe strain localization.

The following example is computed for A, = 0.01G. Analyzing the incremental deformation and
equivalent plastic strains for that case it can be noticed that various deformation patterns depending
on the stage of loading are obtained. The history of shear band formation for an increasing level
of deformation is shown in Figs. 6-8. In Fig. 9 the evolution of equivalent plastic strains along a
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vertical line through the sample is shown. For this case, the properties of the acoustic tensor are also
examined for the actual values of stresses taken out from the output for selected levels of loading.
As can be read from Fig. 10, localization is not possible prior to a certain level of deformation. The
localization tensor exhibits a singularity when the total prescribed displacement v equals 0.71 mm.
A shear band initiates at the angle v equal to approximately 38°. It should be noted that after
localization appears the diagram becomes slightly non-symmetric, which plausibly happens due to
presence of the shear band.

Having computed the example with h, = 0.01G' we again determine analytically the maximum
hardening modulus for o = [0, —7.253, —3.089]. This time we obtain H® = 0.045G, so that the
maximum h. is equal to approximately 0.022G. Next, we repeat the example for a larger rate
of cohesion hardening h, = 0.02G and we again observe stiffer results and deformation patterns
evolve in a similar way as before. Moreover, for this case the shear band direction, which can be
approximated from the picture of equivalent plastic strains (Fig. 11), is close to the analytically
calculated value, still approximately equal to 52°.

X XX KX
AN AVAAINAA AR
Ve Y XV LY AXAY
AN NENNNENANA
DONPN'G 10.0 T T T T
A NANANGNNNA
Dh,
AN
X AIA,
\
X
3 A\ 8.0 -
N
X ekl .00
4 ¢ 0 8
o X = 60N E
v v s
5 Ry 2
g NN L
é AN S
é SRR § 40|
5,. YO ORI NI, AE ==
0 \
7 SN GV
A o i \ 20 + hc=o.01G B
e o b 8 e o h¢=0.0001G
BAROX NANY é
P, ; :Y N7 XA, AE
AR AR MR AR 325 53153 0.0 : s s ;
NN ¥( N A § 0.000 0.002 0.004 0.006 0.008 0.010
y NN NN X § relative displacement v/H
é i NANANDNONCNONE: Y
A YXY DN, XK o
L XA YXNMYY XY AX XY XX XAXAX

Fig. 11. Equivalent plastic strains for h. = 0.02G (left) and comparison of results for various values of h.
(right)

Taking the numerical and analytical results into account we can state that the critical value of
the hardening modulus has almost been reached. Finally, to show that localization does not appear
for h > H?, the example with h, = 0.05G is calculated. This time we observe a homogeneous strain
distribution.

The load—displacement diagrams for various values of h. are shown in Fig. 11. It can be observed
that the larger cohesion hardening is applied, the stiffer results we obtain.

4.3. Influence of g on shear band width

The second aim of our research is to evaluate the effect of the gradient scaling factor g on the
results. Theoretical relations between g, h, [ and w (where [ — internal length scale and w — shear



Instabilities in non-softening Drucker—Prager plasticity 199

band width), worked out for cohesion softening and a uniaxial shear layer case [22] are as fol-
lows,

w=2rl, 1=4/=2. (46)

h

According to these relations the shear band width grows for increasing g. The question is whether
formula (46) is also an approximation for the case of cohesion hardening, when the minus sign
under the square root is neglected. Calculations are performed for various values of g with a = 0.5,
b = 0.0, he = 0.0001G and numerical results are compared. In Fig. 12 contour plots of the

8 T T T T T

6 # .
O /
a
o
(0]
¥
S4f .
(]
;4
©
0

2r g=10N

- g=100N
g=300N
0 1 1 1 1 1
0 0.002 0.004 0.006 0.008 0.01 0.012
relative displacement v/H
s = A:ﬁ
);l;zf iy

Fig. 12. Comparison of load-displacement diagrams and shear band widths for a growing value of gradient
influence coefficient g
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equivalent plastic strain for three values of g: 10 N, 100 N and 300 N are presented. We can
state that in the case of cohesion hardening the shear band width still increases with grow-
ing g (stronger regularization effect), but the relations between g, I and h in Eq. (46) do not
seem to hold. As expected, the load—displacement diagrams in Fig. 12 show that the response
becomes stiffer with growing g, since the gradient term has a stabilizing effect on the solu-
tion.

4.4. Contractant plasticity

In order to simulate the case of contractant plasticity we adopt a negative value of the dilatancy
angle. First computations are performed for the following data: a = 0.5, b = —0.1, g = 0.1 N,
he = 0.0001G. The results we obtain this time are quite similar to the earliest ones (Section 4.2). In
the figure of equivalent plastic strains (Fig. 13) we can notice the initial localization pattern which
after a rehardening phase (visible in the load-displacement diagram) evolves and the shear band
moves towards the top of the sample.

The next calculations are carried out for @ = 0.1 and b = —0.4 (the remaining data as before).
Figure 14 shows the results of numerical simulations. In the figure of equivalent plastic strains some
shear bands can be seen, however the load—displacement diagram does not show any instabilities in
spite of some negative pivots monitored in the output. The explanation is provided by the analysis
of the acoustic tensor. It is again examined for the plane strain compression at the onset of plastic
yielding. The results depicted in Fig. 14 indicate that for the considered data a discontinuous
bifurcation is possible already when yielding first occurs. Adopting a larger value of the gradient
influence factor g does not stabilize the response.
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4.5. Mesh sensitivity

If the classical continuum theory is used in presence of material instabilities triggering localization,
the ellipticity of the governing partial differential equations is lost. Consequently, numerical results
become determined by the discretization. The mesh-dependence is signalled by the fact that for
different meshes the shear band always occupies the smallest possible area. The gradient-enhanced
plasticity is used in our calculations to avoid this mesh-sensitivity. In order to check whether the
applied regularization method prevents mesh-dependence we repeat the calculations with a = 0.5,
b= 0.0, g = 100N and h, = 0.0001G for three different meshes (6 x 12, 12 x 24, 24 x 48 elements).
The results of computations are presented in Fig. 15. As can be seen, the load—displacement dia-
grams for different meshes show mesh-sensitivity. The diagram for the coarse mesh does not show
any instabilities, for the fine mesh the response is much more brittle than for the medium one. On
the other hand, strains do not localize in the smallest possible area and, moreover, the deforma-
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Fig. 15. Comparison of results for different meshes

tion patterns (plotted for the upper edge displacement v = 1.0 mm) and shear band widths are
approximately the same for the medium and fine meshes. The figure of equivalent plastic strains
for the first mesh (6 x 12) has been omitted in Fig. 15 since this mesh seems too coarse to give any
reasonable results.

5. FINAL REMARKS

Theoretical considerations referred to in Section 3 can be summarized as follows. The occurrence
of a material instability is a necessary condition for the loss of ellipticity, which is associated with
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a discontinuous bifurcation and marks the possible onset of localization. For a non-symmetric con-
stitutive operator the material instability and loss of ellipticity may occur prior to the limit point
on the equilibrium path for the homogeneous deformation. They may occur not only if softening
is involved, but also for a hardening model. These findings have been confirmed numerically in the
paper using both the analysis of acoustic tensor properties and gradient-enhanced plasticity simula-
tions of shear banding in a Drucker—Prager non-softening material. The analysis of the determinant
of the acoustic tensor has proven that the degree of non-associativeness measured by the difference
between the friction coefficient sin¢ and the dilatancy coefficient sint) is the crucial instability
factor. The destabilizing effect of the increase of the Poisson ratio has also been shown.

The nonlinear simulations of the plane strain biaxial compression test demonstrated the influence
of the rate of cohesion hardening and of the gradient effect coefficient on the response. A compar-
ative numerical-analytical consideration of the critical hardening modulus value and discontinuity
direction provided the verification of the numerical results. It has been shown that due to cohesion
hardening after the softening phase related to strain localization a rehardening phase is observed
and consequently the shear band evolves, i.e. the instability has a propagative character. It has
been shown that for a sufficiently large value of the gradient influence coefficient g the width of
the shear band grows with the increase of g and the plastic strain distributions are similar for two
mesh refinements. On the other hand, the authors did not succeed in simulating mesh insensitive
load-displacement diagrams and the reason seems to lie in the fact that the consecutive phases of
instability and rehardening are influenced by the density of the mesh.

The authors limited the analysis to the case of a gradient-enhanced cohesion. In future inves-
tigations the possibility of a gradient-dependent dilatancy or friction angle should be examined.
Although it will introduce some modifications into the gradient plasticity formulation, it is ex-
pected that the regularization attached to the quantities which are responsible for the instability
may be more effective.

The results obtained for negative values of the dilatancy angle have been inconclusive, although
the acoustic tensor properties have proven again that the contractant plastic flow is a highly desta-
bilizing factor. In the future the authors are planning to analyze the issue of instabilities related
to soil liquefaction using more accurate models. Firstly, a consolidation theory will be pursued in
order to describe the behaviour of a two-phase medium [4, 27]. Secondly, large deformations will be
incorporated in order to take the density evolution into account [14].
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