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In most cases a safety of optimal construction may be limited by the violation of stress, buckling or
displacement constraints. An unexpected exceed of these constraints may be caused by manufacturing
tolerances of structural elements (differences between assumed and obtained dimensions). This requires
an incorporation of tolerance problem in optimum design. One may deal with two different tolerances — the
first case is when it’s related to the members’ cross-section variations, whereas the second notion represents
the variation of elements’ lengths. Considering operation conditions and manufacturing techniques the
second case of tolerance seems to be more important. This approach states the problem of minimum
weight design of a structure with initial distortions. A standard solution algorithm with the Kuhn—Tucker
theorem was used with the adjoint variable method. Necessary optimality conditions have the form of
equations and inequalities. The equality constraints were put forward for the average values of design
variables [, while tolerances t; were introduced into inequality equations i.e. the limit values of stresses
and displacements were diminished by the positive products of appropriate sensitivities and tolerances.
The method was next illustrated by an example of a ten bar bench-mark problem - a typical one for
testing algorithms in structural optimization. The idea presented in this paper may be used not only for
truss structures but it can be easily extended to other kinds of structures like frames, composites etc.
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1. INTRODUCTION

The development of the structural optimization and applying advanced computational techniques
leads to a near-optimal solution for the stated problem. Having found the theoretical solution
one or several constraints come to their limit values. In most real cases the safety of structure
may be limited by the violation of stress, buckling or displacement constraints. An unexpected
exceed of these constraints may be caused, among other things like material imperfections etc.,
by the manufacturing tolerances of structural elements (differences between assumed and obtained
dimensions). This requires an incorporation of tolerance analysis in an optimum design problem.
The importance of tolerance influence on the optimum design has drawn attention in a number of
publications. In [11], a review of several works devoted to this subject is presented. Next, in this
paper the problem of minimizing the margin of safety is considered. This is done by introducing
the notion of “tolerance box” and is illustrated with a minimum weight design of a composite
structure.

Two main groups of problems in tolerance analysis seem to appear: the first one, when the
tolerances are prior given and a designer seeks for an optimum design under imposed constraints;
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and the second one — while looking for a minimum cost of a structure, keeping the tolerances within
a specified region [14]. The present paper deals with the first group of problems.

For truss structures, the mentioned above problem of minimum weight design was usually con-
sidered allowing for the elements’ cross section tolerance [7]. Dealing with the operation conditions
and manufacturing techniques the elements’ lengths tolerance seems to be more important, but it
hasn’t been examined in detail yet. Some approaches to that subject were presented in papers |2,
3, 10] as a distortion problem.

At present the elements’ manufacturing tolerances are minimized by the proper assembly tech-
nology — i.e. the lengthened rod and a nodal plate will overlap more, and will be welded in such
position. The mentioned distortions may arise while assembling final structure from distorted sub-
systems, since, in general, most feasible structures are statically indeterminate. Therefore both the
influence of elements’ lengths tolerances (initial distortions) in the structure on its minimum weight
and the reciprocal interactions between loads and initial structure distortions as well, need detailed
examination.

2. INEQUALITY CONSTRAINTS ALLOWING FOR MANUFACTURING TOLERANCES

Considering a set of elements with the lengths’ tolerance equal to zero (initial design) and assigning
to each member an appropriate value [/, one gets a series of I; values. Constraints imposed on
displacements and stresses take the known form

i=10
u?—uizo; U?-—UjZO @U?—EZBjiuiZO for ’iZl...iQ, j=1...j0, (1)
==t

where u; and u? denote respectively the elements of nodal displacement vector w and limit values
of possible displacements vector u’, o and ¢ are elements of stress vector o and admissible stress
vector 0”. Matrix B is the geometric matrix (component of stiffness matrix K applied in FEM)
and E denotes the elasticity modulus (all components are manufactured from the same material).

Assume, in general, that the length of an initial structural member [; varies from I; — ¢; up
to l; + t; where ¢; represents manufacturing tolerance. These variations will cause variations of
nodal displacements and elements’ stresses. Focusing attention on the i*" node we may find that its
displacement, according to j*" member tolerance, is as follows,

U = u; + S%tj ; (2)

where the right sided u; denotes a displacement under the condition of zero tolerance and 55
denotes the sensitivity of i*" displacement to 7 elements length. Extending the considerations to

all 7 =1,...,70 elements we find the total displacement as a function
Jo
Ui 1= U + Z S;thj ; (3)
g=1

The similar considerations may be derived for stresses:
Jo

gi=io;% Z S%tj g (4)
j=1

In a general case the product of ¢; and s or s can take positive or negative values. This means
it can have “positive” or “negative” influence on present displacements or stresses. As the total
number of all possible combinations is difficult to evaluate and moreover their exact interaction
with the values of state variables is hard to estimate — it’s justified to introduce absolute value of

the product into inequality constraints.
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The mentioned above reasons cause the necessity of constraints’ modification. In general, the
constraints imposed on stresses and displacements are as follows,

uO—uZO, 00—020,
and considering tolerances they will get the new form

u’ —[u+|st]] >0, o’ —[o+|st]] >0.

3. PROBLEM STATEMENT

Consider a truss structure with 4g joints and jp elements. The truss members are manufactured
from the same material each, with a given elasticity modulus F, and with known bounds on lengths’
tolerances t; . For quantitative study of the influence of tolerances on optimum design we assume
the linear dependence of ¢; with respect to I; — i.e. t; := p-l;. Without restrain of generality of our
considerations, we can assume constant p for every truss member j.

The task of our optimization problem is to find a minimum of a structure volume

f=AT1 (5)

with imposed equality and inequality constraints — h and g, respectively. Above, A = [A4;,
A i A]-O]T stands for the cross-sectional dimensions vector and 1 = [, I3, ..., le]T stands
for the elements’ lengths.

Previously mentioned sensitivity matrices s* and s, where subscript (i) or (j) denotes the ‘!

(5*") constraint, are defined for initial design Eq. (1) as

dgi) 08w = 98(i) du : .
S?i): dlz e o + oy o)t s e Bl 1 (6)

oo — 980) _ 98u) | 98G) du
@~ a ol du dl

for j=1+1,...,%+ Jjo- (7)

The above equations were solved according to the adjoint variable method [9].
Introducing state equation

K(A])-u-P=0 (8)
one gets its derivative

dK(A,1)

dK(A,l) du dP du iz
S S R )———=0 —=-K7(A,]) ————u.
g o R Al Rt (A1) grocet ©)
The above put into Eq. (6) gives
Bg(i) dK(A l)
¢/ i -1 )
56) = By K (Al e (10)
Define an adjoint variable as
T
= |—=K~ =K (A)]) ——=. 11
2 = [ kan] —KiaH (1)
As the result we obtain the final expression for the sensitivity
dK(A,l)
s'(‘i) = -—<I>5) - (12)
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Finally, we get a set of equations

oK
dg:’;c
K(A,1) &) — ﬁ =0 (14)

where: s(;) denotes the general sensitivity vector of the k" constraint with respect to all design
variables, ® ;) stands for the adjoint variable vector associated with the kP sensitivity vector and
finally g() means the constraint (inequality) imposed on the &*! state variable.

Inequality constraints imposed on displacements, stresses (including tolerances) and cross-
sections are as follows,

[ Jo
w — |ui+ Y [stits]| >0, i=1,2...,4, (15)
| =
[ Jo
of — low + 3 |sgti| | >0, k2 woisgon (16)
i=1
Aj—AT" >0 Tora P2 £ g (17)

4. KUHN-TUCKER NECESSARY CONDITIONS

The stated problem belongs to the class of nonlinear programming methods described in many
monographs e.g. [12]. It can be solved by one of the standard algorithms form the library of nonlinear
programming methods, i.e. SLP or NLPQL. The authors decided to develop and improve their own
previously worked out algorithm, based on Kuhn-Tucker necessary conditions [4, 5, 6]. The Kuhn—
Tucker theorem [13] defining the necessary conditions for an optimum solution gives Lagrange’an
in a form as below,

y o el e T K aT agg’;)

+ A% (0 — u) + A*" (6% — EBu) + A" (A — A™In) | (18)

and moreover a system of following equations and inequalities,

gg=K(A,l)-u—P=0, (19)

oL  Ogh

o3 = ot — KA ) @ =0, (20)

oL 4 poigne oT s oK o

;e KA, ) A A A EB - )\ ‘I'(n) 3 = 0, (21)
1

g_é =)\t%u—A“TK(A,I):0, (22)

oL

5g — Afz) = S(k)p,AdA = 0, (23)

oL .7 OK oy 7 OK T o o oy

k=1
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T u
A 0 - s(j)ulj‘ =7, (25)
: .
2 e Nt Z ’S?j)ll;lj‘ i A (26)
o
ACT ; (A x Amin) =0, (27)
L L e (28)

where A¢, A%, XY, A% A® and A° are respectively vectors or matrices of Lagrange multipliers asso-
ciated with equations of equilibrium, adjoint equation, sensitivity relation and constraints imposed
on displacements, stresses and sizes.

As reported by many authors [1, 6] the main difficulty in solving the derived set of equations is
related to the evaluation of the Lagrange multiplier associated with the active constraint (the all
remaining are zero). To do this an extra relation was derived. First multiply (21) by u and (22)
by @ and (24) by A. Then consider the linear combination: subtract first two relations from the
last one. One gets the following equation, :

f:XiT u—+ (s | A S o+ s A)+>\CTAmi“. (29)
(k) ()

Bearing in mind that Lagrange multipliers differ from zero only for active constraints, the above
equation may be transformed to the following form,

f= /\dTuo s )\sTo_o 4 )\CTAmin' (30)

This equation will be used later in the proposed solution algorithm.

5. SOLUTION ALGORITHM

A solution algorithm is based on the interdependent actions of professional FEM module (analyzer)
and optimization procedures arising from the Kuhn-Tucker theory (optimizer) [4, 5, 6].

During iterative procedures, all active constraint functions came down to their limit values.
Applying scaling (step 5) at each iteration step the most violated constraint is brought to its limit
value. So, at each step, one has a single active constraint problem. If so, then the Lagrange multiplier
associated with this constraint may be derived from an additional relation (30). The remaining
multipliers are equal to 0. Calculations in the step 7 are also carried out by FEM software.

Below, the grey colour denotes actions performed by optimization procedures and the white one
means professional FEM module calculations:

Step ‘1  Take n := 0 where n denotes iteration counter.
%StepZ Assume an arbitrary vector A(0) of design variables A; .
Step 3  Solve equations for u(0), o(0) and s(0).

Step4  Find

{ <Ul : Z] e ) <0k - Z?]:l Sthj) (Amin) }
r{n)s= maxicamaxt oy i Omax 5 S INAX :
ul o; Aj
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1~1§)St‘ep; 5  Scale design variables A; and state variables u; and o} with r(n):
Aj(n) := Aj(n)r(n); ui(n) := ui(n)/r(n); a;j(n) :=oj(n)/r(n).
St'ep 6  Find the Lagrange multiplier for the single active constraint from (30).

Step 7  Derive A® from equations

if u is active: K(n)-A*—-A¢ =0,
if o is active: K(n)-A°—= AEB = 0.

* StepS Input obtained design variables values to dL/OA equation and find residuals Dj(n).
If residual is small enough end computations, else proceed further.

Stepd n=n+1

Steplﬂ Find new design variables

Dj(n)jo
; 0.5
{0 1Di(m) 451}

Ai(n+1):= Aj(n) |11+

If A(n+1) < A™" then A(n + 1) := Amin,

‘Step 12 Go to 3.

The presented above method and the appropriate algorithm have some disadvantages. The main
one is that the tolerances are considered only during determining scaling factor r — see step 4. They
are not included in other iteration steps i.e. 3, 7, although some variables, for instance matrix K, are
functions of truss dimensions (A;, [;). This approximation could be done because at all iteration
steps the error of K estimation caused by the lengths’ tolerance remains constant (members’ lengths
are not changing at successive approaches) and moreover, the scaling factor is very close to 1
(especially at the end of calculation process).

The mentioned estimation error is partially compensated by the consideration of products of
absolute values of members’ tolerances and appropriate sensitivities i.e. the worst possible case is
taken into account — see (15), (16), (29) etc.

6. NUMERICAL EXAMPLE

As a test example, a typical 10-bar bench-mark structure was considered [4, 5, 6, 7]. The system is
subjected to the displacement constraint u® = 2.0 in (0.0508 m) on all nodal displacements and the
stress constraint with the maximum allowable tension 0 = 2.5¢ 4 04 Ibsi (172.37 MPa) imposed on
all structural members. The minimum size 4 = 0.1 in? (0.000064 m?) was assumed. Because each
cross-section is considered to be a single separate design variable, therefore, we come to the problem
with 10 design variables, 8 degrees of freedom and 28 constraints (8 displacements, 10 stresses and
10 minimum cross-sections). External load of P = 1.0e+05 1b (444.819 kN) value is applied in nodes
no. 2 and 4. Modulus of elasticity E = 107 Ib/in® (68947.2 MPa), material density p = 0.1 Ib/in®
(27.68 kg/m?), members’ length I = 360 in (9.14 m). Structure’s dimensions, elements’ numeration,
material properties and coordinate systems are put in Fig. 1.

B
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Fig. 1. The ten-bar bench-mark problem for the test analysis
w [1b] :
9000 T T 1
o ¢ 1=0.00
2D o u=0.01
8000 -
A n=0.03
7500
o p=0.05
7000 =
6500 =
24, "o
QOOAA DDn
6000 3,00k, 0
5500 g " ..:igﬁAAqu_
5000 T T T
0 20 40 60 n

Fig. 2. Course of weight changes during successive iterations

The presented algorithm gives an optimal solution after about 25 to 60 iterations, depending
mainly on the initial solution, tolerance p, scaling factor [ etc. At the beginning the structure
weight goes down rapidly, but after 20-30 iterations the weight is rather oscillating then significantly
decreasing. The successive solutions are there very “unstable” (Fig. 2) and some design variables
may change rapidly. This could be related to the huge cross-section distribution (the ratio of the
biggest to the smallest exceeds just 300) and the fact that at the end of iterations two or even
three constraints come close to their limit values. In such situation it’s necessary to change the
scaling factor # to make the next approximations of A “finer”. The observed little increase at certain
iterations (i.e. 18, 24) is related to the change of a temporary active constraint.

The course of calculations is presented in the Fig. 2.

The table below presents the results of optimization problems obtained for three different toler-
ances p = 0.01, p = 0.03 and px = 0.05. The obtained solutions were compared to the well-known
solution of p = 0.00 [8].

An expected growth of total structural weight can be notified while increasing tolerance fac-
tor u. But incorporating manufacturing tolerances changes active constraints at certain iterations



468 J. Bauer and J. Latalski

— especially at the end of calculations, and as stated before, this causes rapid changes in elements’
temporary cross sections. This may explain why at bigger tolerances some elements get thinner —
see Table 1.

Table 1. Results of calculations for different p factor, compared to the initial solution

21.20 21.07 21.67 21.99

21.62 21.64 21.64 21.79
10 0.1 0.27 0.20 0.18

Weight [Ib] | 5061.6 | 5136.15 | 5243.04 | 5326.02

p

Ali] [in?] p=0.00 |3 =001 | pu=003 | u=0.05

1 30.03 29.87 3113 32.05

2 0.1 0.12 0.12 0.17

3 25327 23:97 24.28 24.66

4 15.29 15.35 15.27 15.86

) 0.1 0.1 0.1 0.1

6 0.56 0.1 0.39 0.42

7 7.47 8.73 9.05 8.85

8

9

The observed phenomenon of structural weight’s increase doesn’t have the linear relation. But it’s
worth pointing out that, in general, the total weight of truss with manufacturing tolerance incorpo-
rated in optimum design (series A) is smaller than a truss with all elements increased proportionally
(series B) - see Fig. 3.
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Fig. 3. Obtained solutions (series A) in comparison to the linear design variables change (series B)

Finally, the presented solutions were compared to the results obtained by searching for optimum
design in initial and in the modified problem - i.e. all dimensions were changed proportionally
l:=1+ Al. Let h} denote the initial value of a h; constraint, h? denote the same constraint value
for modified design, and h; denote the change of constraint predicted by the sensitivity formula i.e.
R ;":1 |sij|plj . The measure of the derivative accuracy is a ratio y equal (h? — h})/h% - 100%.
All results are gathered in Table 2.
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Table 2. Comparison of sensitivity calculations in case of p = 0.05

hi hy hi (hi-hi| kK | 7
us [in] | 19119 | 2.0075 | 0.0956 | 0.3622 | 105
ug [in] | 1.9097 | 2.0052 | 0.0955 | 0.0530 | 106
o5 [Ibsi] | 19919.44 | 20914.72 | 994.56 | 9.9595 | 105

7. CONCLUSIONS

The theoretical considerations and numerical result lead to the following conclusions:

1. It is possible to incorporate manufacturing tolerances of members’ lengths in optimum weight
design.

2. The presented method gives solutions with a margin of safety, because the limit values in in-
equality constraints are diminished by products of absolute values of sensitivities and appropriate
tolerances.

3. As a result of incorporating tolerances in minimum weight design an expected increase of total
weight of a structure is observed. However, this phenomenon isn’t proportional (see Fig. 3) and
moreover, some cross sections may decrease.

4. The total weight of an optimal structure with incorporated tolerances is less than the weight of
a truss with linear increase of elements’ lengths due to their tolerances.
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