Computer Assisted Mechanics and Engineering Sciences, 7: 479-492, 2000.
Copyright © 2000 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Adaptive solution of problems
modeled by unified state variable constitutive equations

Witold Cecot and Waldemar Rachowicz

Cracow University of Technology,
ul. Warszawska 24, 31-155, Cracow, Poland

(Received November 3, 1999)

The objective of the work was an efficient, numerical implementation of one of the unified, internal-
state-variable constitutive models. Such models are general and convenient in numerical applications
since they describe elastic, plastic, viscous, damage phenomena and they do not require neither yielding
condition nor loading/unloading criterion. However, they result in so called stiff initial-boundary value
problems. Therefore, an efficient numerical implementation demand adaptive techniques, both in space
and in time. The paper presents application of such an adaptation approach. It uses an improved version
of the semi-implicit Euler method with automatic time step control and the & refinement of the FEM
meshes based on the interpolation error estimate and on the reliable, selfequilibrated, implicit, a posterior:
estimate. Selected problems were solved and both the efficiency and reliability of the unified model were
confirmed.

1. INTRODUCTION

The paper presents a numerical implementation of a unified, internal-state-variable constitutive
model in an “hp” adaptive FEM code. Such theories have evolved over the last 40 years (e.g.
Biot [4], Bodner [5], Krempl [10]) and are now the most general, consistent with micro-mechanics
and thermodynamics of materials, methods for modeling of the nonelastic behavior of metals. They
make use of some functions (internal state variables) which evolve in time, keep track of proportional
or nonproportional loading history and are the main factor contributing to the nonelastic strain
rates. The most important advantage of such models is the unified treatment of the elastic and
various kinds of the nonelastic phenomena including plasticity, creep, relaxation, continuum damage
and thermomechanical fatigue. Moreover, the unified models do not require a yielding condition or
loading and unloading criterion, therefore, they avoid many of the classical complexities in numerical
applications. The internal-state-variable constitutive models can be successfully used in computer
codes, however, some research work on their efficient application is still necessary.

From the mathematical point of view, the unified elastic-visco-plastic models together with the
momentum and geometric equations result in initial boundary-value problems. We deal here with, so
called, stiff differential equations with respect to time, therefore, a special integration with automatic
time step control is necessary. Efficient integration in space also requires advanced adaptive methods.
Both kinds of adaptation should be based on apropriate error estimates, which are the key to rich
high efficiency and reliability of the computation.

The Bodner-Partom constitutive model was chosen as an example of the internal-state vari-
able theories and it was efficiently implemented in a two-dimensional [8] computer code based on
the adaptive FEM. The semi-implicit Euler method with automatic time step control is used for
integration in time.

The similiar problems were already undertaken in [20, 21]. In this work other error estimates
were used and some improvement of integration in time is proposed.
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2. DESCRIPTION OF THE PROBLEM
We consider the problem of infinitesimal, quasistatic deformations. It can be formulated as follows

e Conservation of momentum and linear formula for strains result in the relation
P gj + (B + Mo = 2uél;;  in Q 1)

where 4,5 = 1,...,N; N =1,20r 3; Q C RV is an open material domain; €* is the nonelastic
strain rate tensor, A, p are the Lame elastic constants and the dot stands for derivative with
respect to time (denoted by t).

e The constitutive equations include the Hooke law — Eq. (2), a formula for evolution of nonelastic
strains — Eq. (3), and at least one evolution law of parameters which model influence of loading
history on the nonelastic deformation — Eq. (4):

6ij = Eijri(ért — €5y) in Q, (2)
€5 = 9ij(o,B) in Q, (3)
ﬁ.pq = hpq(aaﬂ) in €2, (4)

where o;; is the Cauchy stress tensor, E is the elastic modulus tensor; 3 is a vector of internal
state variables, i.e. functions of x € £ which evolve during the loading process and are the main
factor modeling nonelastic behavior of the material; g, h are functions which depend on some
material constants.

e Boundary conditions:

u; = Uy Vition 08, (5)
(5',']' n; = ql Vit on aQt, (6)

where n; are components of the unit vector normal to the boundary. More general cases, e.g.
contact condition, elastic foundation, can also be considered.

e Initial conditions:

u=ug fort=0 VxeQ, )
& a5 fort=0 VYxe€Q, (8)
5= 8, fort=0 Yxeq. 9)

All functions w; , ¢;, ug, €;, By are known.
The above problem can be formulated in the following semi-weak form

Find ua € V +w such that:

/ Vi j [,u’l.'l,i’j + (p+ )\)llj,i] dQ) = 2/ Ui,j,u,é:j dQ + / v;04;n; ds VveV, Vi>J0,
Q Q N
(10)

where V is subspace of the Sobolev space (H'(€2)") of functions satisfying the homogenous Dirichlet
boundary conditions.
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3. A UNIFIED CONSTITUTIVE MODEL

The first formulation of unified constitutive equations was proposed by Biot [4] and Meixner [14] in
the fifties. Some theoretical background for this type of models was also developed by Perzyna [16].
The first practical implementations are due to Bodner [5]. A fast development of internal state
variable models, observed in the recent years [3, 12, 20, 21| was mainly due to their significant
advantages like:

e a unified treatment of the elastic and different kinds of the nonelastic phenomena (plasticity,
creep, relaxation, continuum damage, thermomechanical fatigue),

e theoretical and experimental background,

e lack of yielding condition or loading and unloading criterion, which simplifies the numerical
implementation.

Let us now briefly review the Bodner-Partom constitutive equations. It was proposed in the
seventies for modeling of metals in wide range of temperatures. The formulas have the following
form

n

(2 + Bnn—222-)
€ = Do_f_k_l_ exp{ — 3 S ) (11)
35ijSij 2%44%
: e FoZn
7. _=my (Zl = Z)aijsij - A1 7, ( 7 2) ) (12)
. Okl = V055 \
Bri = mo <Z3 '—_——_Uijo'ij 2z ﬁkl) Oij€5 — Ay (T) Bkt (13)

where: D,, n, my, me, Z1, Z2, Z3, A1, Aa, 1, T2 are additional to A\, u, material constants:
D, [s7!] - limiting strain rate in shear,
n [-] — a kinematic parameter related to the yield limit,
my , my [MPa~!] - hardening rates (usually m; = ms),
Zy, Zy, Z3 [MPa] - limiting values of the hardening parameter Z,
Ay, A [s7Y], r1, r2 [-] - temperature recovery constants (usually 71 = 7y and A; = Aj),

si;j stands for deviatoric components of the stress tensor, s;; = 0;; — %akkéij ,and Z, @ — internal
parameters responsible for isotropic and unisotropic hardening.

A characteristic feature of the unified models is comperatively large number of material constants.
They can be determined from a few uniaxial tension and creep tests [13, 18]. One can simplify the
above formulas by neglecting some terms (e.g. unisotropic hardening), reducing simultaniously the
number of constants. On the other hand it is possible to introduce certain additional parameters
which would model other phenomena (e.g. damage).

4. SOLUTION OF THE PROBLEMS WITH INTERNAL-STATE-VARIABLES

Equations (1)-(4) can be treated as an initial-value problem and can be written in the following
form

dy
T =F(Y.9) (14)
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where Y = (uy, ug, u3, Z, w, P11, Pi2, --.)%. In fact, Eq. (1) is an implicit formula for rates of
displacements, so computation of u requires solution of a linear boundary-value problem. It can
be done efficiently using adaptive numerical methods. Their basis is an error estimation. A simple
error estimate based on interpolation theory together with h-adaptivity was already used for unified
problems [3, 20]. We use here the more reliable implicit residual estimate [1, 2].

The system of Eqgs. (14) is so called stiff (ill conditioned), and it demands application of implicit
integration methods in time in order to provide stability of the algorithm. On the other hand the
more d.o.f. in space are used for better accuracy the worse stability may be observed. Therefore, to
obtain high accuarcy and stability of the algorithm, as well as possibly low computational cost we use
adaptive approches, both in space and time. Semi-implicit Euler scheme with automatic time-step
control is usually applied [12, 20, 21|. However, we have also tested several other strategies. These
were the Runge-Kutta (a higher order method) and the Bulirsh-Stoer approach (recommended in
textbooks [17]). In order to compare efficiency of these methods we applied them to solution of
a simple benchmark problem. The semi-implicit Euler method was used in the original form and
in a modified one. In the original version the implicit iteration is performed only once. If the error
is too big the time step is decreased. In the modified version an additional implicit iteration was
performed without decreasing the time step if the error was slightly (a few per cent) higher than
the admissible tolerance. It reduced the time of computation by about 10%.

As the test problem we considered analysis of the uniaxial stress state arising from cyclic load. One
cycle was analyzed (tension—-compression—tension) with the extremum total strain equal to +5%. The
Bodner-Partom constitutive model in its simplest version was assumed. The results are summarized
below.

method number of evaluation
of right-hand side
Bulirsh—Stoer 2515
Runge-Kutta 3502
semi-implicit Euler 371
semi-implicit Euler (modified) 343

The number of evaluations of the right-hand side (F in Eq. (14)) decides about the time of
computation, since it involves solution of a boundary-value problem. The above results indicate
that the simplest method is the fastest one. Additionally, as a first order approach it requires the
least amount of memory. The above observation is very likely to be generalized for more complex
problems.

5. ERROR ESTIMATES

Adaptive modification of the FEM mesh and of the time steps is based on error estimates. For
adaptation in space an a posteriori [1] and an interpolation [15] error estimates were used, while for
the time step adaptation an error obtained from the Taylor formula [12] was used. They are briefly
described below.

5.1. An idea of a posteriori implicit residual error estimate
The finite element approximation of problem (10) is to find ux € X C V such that

B(vx,ux) = L(vx) Vvyx € X. (15)
The error of the solution is defined as the following function from to the space V \
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which satisfies
B(e,v) = L(v) — B(ux,v) VveV. (17)
Moreover, the standard orthogonality condition for the error in the Galerkin projection holds
B(e,vx)=0 VveX (18)

In practice, it is not possible to compute exactly the error e. Error estimation allow one to evaluate
the error indicator () which should satisfy the property

3C1, Ca: Cille|l <n < Colle]l. (19)

In such a case 1 tends to zero at the same rate as the true error. The ratio

o, 3
llell
is called the effectivity index. Usually

= (Zn%) (21)
K

where 7 is a local error indicator on element K evaluated by the approach described in [1].

5.2. Interpolation error estimate

In the non-elastic problems an additional estimate of the error is necessary for nonelastic strain
tensor. This field is approximated by shape function derivatives on triangular elements, and it is
the input data for the FEM analysis. The interpolation error estimate [15] is useful here. If e;‘;‘ is
an interpolant of nonelastic strain, which has bounded second derivatives, and e;; = ez‘j — 5;‘;‘ is the
interpolation error function then the error estimate assumes the form

SRR s S e
D wi ol i i i
leislh < Chleil = On | [ | o) ¢ | S (22)

with C being a positive constant. The general conclusion from the above formula is that, wherever
the second derivatives of the nonelastic strain are high, the mesh should be refined or enriched. We
estimate this derivative, using the moving least square approximation.

5.3. Estimation of time integration error

The system of ordinary differential equation (14) is integrated in time. The k-th time step lenght is
controlled by the following error estimate [12]
1 ||Y£+1 e Yk”

A 23
2% e ] (23)

€ =

where

Yz +1+ Yjy stand for predictor of solution rate and corrector of the solution at the end of the
k-th time step,

Y is the rate of the solution at the begining of the k-th time step,
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6.

Aty stands for the k-th time step lenght,
Yz_f_l = F(YZH, te+1)
Y= Yok
Yig = Yk—f-AtkL;Y—'i,
Y, is the solution at the begining of the k-th time step.

Finally the following strategy of adaptive solution was developed.

. Obtain the solution for an adaptively adjusted time step. IF adaptation in space is not assumed

for this time instant THEN go to 6.

. Evaluate the a posteriori error estimate of the BVP solution.
. Estimate the interpolation error.

. Modify the mesh, wherever it is necessary (i.e. residual or interpolation error indicator exceed

the assumed level), if the errors are small skip the next step.

. Project the solution onto the new mesh and go back to 1.

. If it was not the last time step go to 1.

NUMERICAL EXAMPLES

A computer, adaptive FEM code [8] was customized to solution of nonelastic problems modeled by
the Bodner—Partom equations. Triangular, second order elements were used in all the examples.

Some selected problems were solved to verify and present possiblities of the model and of the

code. They are summarized below.

e Uniaxial tension for different materials (aluminum, steel, BI900Hf alloy) for various strain rates

as well as creep and relaxation tests for the alloy at different temperatures (Fig. 1). The tests
show possibilities of the model.

A thick wall cylinder (with radiuses 1 m and 2 m) loaded by the internal pressure 180 MPa.
Adaptively refined meshes and results are shown in Figs. 2, 3. This is an example of an adaptation
process. The results were compared with solution obatined by another code [11], which makes
use of the Perzyna model. The difference for all stress components was less than 1%.

Tension test of a specimen with a hole of radius 1 m, solved to evaluate a solution with concen-
tration of stresses (Figs. 4-6).

A railroad rail (American 132RE type, about 0.18 m heigh) in a plane strain (Figs. 7, 8), loaded
in the middle of the top surface by continuouosly distributed load 900 MPa. The exapmle shows
possible practical applications. In fact this problem will require a 3D model.

In all the examples the following material constants for steel [5] were used in the Bodner-Partom,
internal state variable constitutive model with only isotropic hardening taken into account:

E =203 GPa, my = 0.030 MPa™1,

v =0.3, Zy = 640 MPa,
D, =108, Zy =930 MPa,
n =40, mo = 0,

A1 =43 =00.
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Fig. 1. Uniaxial tests
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Error levels

Fig. 2. Cylinder problem. Initial and adaptively refined meshes with error estimates
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Flg 3. Cylinder problem. Contour plots of horizontal displacement and stress components for internal
pressure 180 MPa
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Fig. 4. Hole problem. Schematic plot of the load and supports

350 MPa

Fig. 5. Hole problem. The Mises equivalent stress for 80 MN /m and 100 MN/m
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Fig. 6. Hole problem. Initial mesh, refined mesh and displacement fields
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Fig. 7. Railroad rail problem. Adaptively refined FEM mesh (whole and zoom of the head)

7. CONCLUSIONS

The Bodner—Partom internal state variable constitutive model was applied to solution of nonelastic
problems. These kind of models are very general since they describe elastic, plastic and viscous
phenomena. Moreover, they are convenient in numerical applications due to the fact that they do not
require neither yield condition nor loading/unloding criterion and they describe material properties
more precisely as they were developed on the basis of more accurate experimental measurements
than the classical models.

However, their efficient implementation requires to apply an addaptive approach both in space
and time. A few methods of adaptive integration in time were compared in order to choose the
optimal one. It is the semi implicit Euler scheme with automatic time step control which additionally
was speeded up by a modification of the algorithm. On the other hand reliable a posteriori and an
interpolation a priori error estimates were used for adaptation in space.
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Fig. 8. Railroad rail problem. Stress components for the plane strain state
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The proposed algorithm was implemented in 2D adaptive FEM code and used to solve a few
selected problems. They confirm that the unified models may be efficient in numerical modeling and
as modern theories are worth to be recomended for practical applications.

In the future the Bodner-Partom constitutive model, enriched to provide the possibility of eval-
uating continuum damage of material, will be used together with a 3D FEM code to allow us to
solve real life engineering problems.
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