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Structure—subsoil contact task —
an iterative engineering realisation
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The analytical formulation of an iterative procedure applied for structure-subsoil systems is presented in
the paper. A physical and engineering interpretation has been given for the presented algorithm.

1. INTRODUCTION

The boundary value task describing the equilibrium of subsoil loaded by a building structure has
been presented in this paper. It is an interactive task in which the accuracy of the solution results
from both:

e constitutive laws which approximate stress-strain relations in both subsystems,

e and the method of realisation of the contact zone between the subsystems in the calculation
model.

The classical engineering estimation method of interaction between structure and subsoil is based
on an independently carried out:

e estimation of subsoil load carrying capacity and subsidence under structure loads,

e calculation analysis of foundations (or the whole structure) resting on the subsoil which usually
has the form of:

— a parametric (analogous) calculation model,

— or, an elastic half-plane or half-space with possible modifications (e.g. change of modulus of
elasticity with depth).

Modern numerical ground models (e.g. models containing elastic-plastic constitutive relations or
critical state models) are still rarely used while predicting the behaviour of ground environment
interacting with the designed structure. This is mainly caused by the problems in “coupling” the
structure calculation model in an interactive system together with the subsoil numerical model.
Another approach to the discussed contact task is to create a global model for the whole structure-
subsoil system. However, this implies a huge amount of time to elaborate the model, carry out
the calculations and process the results. Therefore, it can only be applied while analysing certain
scientific cases.

Consequently, it seems reasonable to put forward a proposal of the contact task solution in the
interactive process between two independently modelled subsystems: structure and subsoil [4, 5, 6].
Application of the interactive process enables us to obtain the solution for the whole system by
means of:
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e any adequate computer programmes, providing us with the complexity grade suitable for the
geometrical or physical description of each of the subsystems,

e a description of both discretised subsystems by one common or two different numerical methods.

2. DEFINITION OF THE PROBLEM

The calculation model of the structure-subsoil (B)—(S) system was considered which provided for
interaction between both the subsystems conforming to a certain class of real engineering problems.
Vertical load that is transferred from the structure onto the subsoil is considered in the range of the
so-called working loads [5]. Loss of contact between the structure and the subsoil is not considered.
Two different types of modelling the contact between discretised subsystems have been considered:

e (a) — main nodes of discrete elements at the contact zone of both subsystems maintain their
common vertical displacements, whereas horizontal displacements may be different (Fig. 1a),

e () — main nodes of discrete elements of both subsystems are joined by connecting elements (Rf,)
constituting a parameter (or parameters) for the system of equilibrium algebraic equations for
the boundary value problem (Fig. 1b).
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We assume that the case («) represents a well-posed boundary value problem assuring the exis-
tence, uniqueness and stability of the solution. Case () is the description of a boundary value task
resulting from (), providing mutual transfer of vertical contact forces between the subsystems.
Simplifications in internal constraints between the subsystems in case () result in the necessity of
carrying out a parameter analysis of the task. This is essential for the evaluation of the solution.

Description of the boundary value problem, including the type () of contact modelling between
the subsystems enables us to give fully applicable engineering character to the considered problem,
which is possible due to the easy formulation of the iterative solution procedure.

3. ANALYTICAL DESCRIPTION OF THE TASK

The following assumptions in the presented contact task solutions were made:

e the incremental procedure will be adopted for numerical analysis within the frames of elastic-
plastic constitutive theory,

e the subsystem (B) will be described by the REM — Rigid Elements Method [3-9, 11, 12] or by
the FEM [1, 11]; in the REM unknown vector contains the displacements of the elements centres
of discrete model,

e the subsystem (S) will be modelled by FEM.
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A global model of (B)—(S) system was shown in Fig. 2a. Discretising was achieved by means of
REM and FEM methods (Fig. 2b). In order to assure clarity of this presentation, we limited the
number of elements to a minimum. Assuming that the structure acts on the subsoil by vertical forces
only (acc. to par.2), a () type connection has been used in the contact zone of the subsystems.
The solution given for 2D state does not contradict the general character of the considerations.

Defined at every step of the incremental procedure the system load vector (external and mass
forces) as dQ the system of algebraic equations of equilibrium shall be written as

K-dZ = dQ (1)

(For linear elastic problem dQ = Q, dZ = Z).

The considered system (B)—(S) shall be divided into four zones I-IV (Fig. 2a). In the contact of
type (/) the interaction of subsystems (B) and (S) is expressed by the difference in displacements of
elements REM and FEM of zones II and III which are bound together by connecting elements R, .
After the regrouping of stiffness matrix K and vectors of displacement dZ and load dQ, in order to
obtain equations describing vertical displacements of the contact elements in zones II and III only,
and after realising that matrix K is a strip matrix, the system of equations (1) shall be written in
the form of

Ky -dZy, + Kjp-dZp = dQ,
Ko -dZ; + Kog:-dZo + Koz-dZs dQs,
K3 -dZy + Kj33-dZ3 + Kzq-dZy dQs,

Ky3-dZs + Ky4-dZy = dQg.

(2)

The stiffness matrix of the system shown in Fig. 3a corresponds with this record. Vectors of
displacement and load increase are of the form

dz = { dz¥ dz¥ 4zl a4zl }", (3)
dQ = { dQf dQf dQf dqf }". (4)

Having eliminated vectors dZ; and dZ, from Egs. (2) we obtain equations of equilibrium of the
global system, reduced to the contact zones II and III of both subsystems:

(Kzz = K21K(1;1)K12> -dZy + Koz - dZ3 = dQg + K21K§II)dQ1 ;
(-1) (-1) (5)
K3g - dZs + (K33 - K34 Ky, K43) +dZ3 = dQ3 + KK, 'dQq.

The above notation allows observations presented below. In order to do this we will consider two
auxiliary tasks a; and ey, describing the separate subsystems (B) and (S).
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Task o1

Analogous to (2), a system of algebraic equations of equilibrium was written for a separate sub-
system (B), which represents the structure that rests on the parameterised supporting layer and
is additionally loaded by vertical loads dQ (Fig. 3b). This layer (further named contact layer) is
defined by quantities of parameters R, , which create the diagonal matrix R, . Having eliminated
vector dZ; from this system, we obtain for contact zone

(x5 - KEKYVKE) - 2, = (aQ; + KEK["dQ, ) +dQ. (6)

The block K&, may be shown as the sum stiffness matrix block of the building (B), without taking
into account its interaction with the supporting layer — K9, and diagonal parameter matrix R,
which represents influence of the supporting layer on the structure,

K2 =K3, +R,. (7)

Task oo

For the separated subsystem (S) that represents the subsoil, loaded by the vertical forces dF (Fig. 3c)
at the contact of subsystems, a system of algebraic equations of equilibrium has been written,
analogous to (2). Having eliminated vector dZ4 from this system, we obtain for the contact zone

(K KK 1)K43)-% = (4Qs + KK 1)dQ4)+dF (8)

Now we achieve a comparison between the global system (B)—(S) and the separated subsystems of
tasks aq and ap .

As interaction of subsystems (B) and (S) is limited to vertical forces only, matrices Koo and K33
in the equations of equilibrium (5) may be shown in the form:

Kpn =K% +R,, Kiu=K5+R,, (9)

where R, is a diagonal parametric matrix (which contains the parameters R,). The matrix R,
expresses interaction of subsystems (B) and (S). Comparing the system of equations of equilib-
rium for the global system (5) with similarly composed equations of equilibrium for two separate
subsystems (6) and (8), taking into consideration (7) and (9) as well as the obvious relations:

Ki =K%, = -R,
and

Kn=Kj3, Kp=Kj, Ku=Kfj, Ku=Kj, Ku=Kj, Ku=Kj,
system (5) can be written in the following form,

(K2 +R,) - dZ; = dQP + R, - dZ3

10a
K® - dZ; = dQ° + R, - (dZ3 — dZ3) e
or in the symmetric form
(KB +R,) - dZ; = QB + R, - dZ3
(10b)

(K® +R,) -dZ; = dQ° + R, - dZ,

where KZ, K%, dQ?, dQ® - are stiffness matrices and vectors of loads transformed in the process
of eliminating unknowns which do not belong to the contact zones. These matrices and vectors, not
taking into consideration the interaction of the subsystems, take following form,

K5 ZK3, - KEK;VKE, dQ? = dQ. - KF KV - dQ,
KS=KS K KOVKE, dQ® = dQ; — K5, K5 - dQy.
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If for (10a) we consider the second components of the right side of the system of equations as an
additional load R, - dZ3 = dQ (Fig. 3b) and R, - (dZ2 — dZ3) = dF (Fig. 3c) then (10a) splits into
two independent equations, equivalent to Eqs. (6) and (8) of tasks a; and e . Similar reasoning
may be carried out for system (10b), for which the separated subsystems (B) and (S) can be depicted
by Figs. 3b and 3d. In this case i.e. relating to (10b) as an additional load we consider respectively
R, -dZ; = dQ in Fig. 3b and R, - dZs = dF in Fig. 3d.

The consequence of the above is, that the solution of the global system, described by equiva-
lent Eqgs. (10a) or (10b) can be obtained in iterative procedure carried out between two separate
subsystems (B) and (S), described by Egs. (6) and (8).

The iterative procedure, resulting from both (10a) and (10b), is structurally identical. In the first
iterative step we assume initial values of displacements vector dZz and start iterative procedure from
subsystem (B) — Eq. (6) — and obtain the approximation of displacement vector dZ; . Turning now
to subsystem (S) — Eq. (8) — we obtain the approximation of displacement vector dZs (for an i-th
iterative step these will be ng) and ngz)).

A physical interpretation of the way the reactions between divided subsystems (B) and (S) are
transferred during the iterative procedure depends on whether the process is related to Egs. (10a)
or (10b). The first - we name iterative scheme (SI), the second — iterative scheme (SII).

The Seidel iterative method applied for groups of unknowns [10], was used in the presented
iterative procedure ((SI) and (SII)). Conditions of convergence occur for the desired solution in
the consequence of the analysed systems (Egs. (6) and (8)) are strongly diagonal of symmetric
submatrices (K%, K%, Ro, Kﬁ, K§3, K5, K°) with positively determined square form. The
criterion for convergence is the norm of the difference x between dZ® and dZ(~V (dz{ and
dZS—l) , dF(® and dF(-Y) for instance < 1%, where i — iteration step.

4. NUMERICAL CALCULATIONS
4.1. Parametric analysis
Numerical investigations have been carried out for an ideal (B)—(S) system representing the equi-

librium of the subsoil loaded by the structure — Fig. 4. Discretising of the system has been achieved
by means of methods: REM — for (B), FEM - for (S).

lSO l 100 o
S =100

! ] A0 ‘ i
b L % 4L, ;
b () //7 7 tB=t5=1,0
| (B) 7 R
¢ L gemER |
2 4 7 ffos :
0.5 5 B N Q 8 4 = 3 Roor Bl ik
S N AN AN SN N NN NSNS | 92
: > DA IANA NN NN NN AN i R
1 \\ ‘i\ \‘\\ k (S) )\ N ;\ L 4
RN u N N l k;=0,467 - % 1 BT
. RARARRRAARRRRARRAR &K 2
JANRVANRYAN AAAAAAAAAAALAAAL A A &
el i P 14 x 0,5 Lldal ]
0, 55085 0,50,5



Structure-subsoil contact problem 529

Task 1.

A global model of system (B)-(S) has been created. It is described by the system of algebraic
equations of equilibrium (acc. to (1) — Sec. 3) and realizes different connections of subsystems at
the contact (Fig. 1).

Task 1A - (a) type contact has been realized.
Task 1B - () type contact has been realized.

The interactive parameter has been defined in the following way,

e : + : (11)
R} (k;f’j + kfjl) ey,

where kj; refers to the components of stiffness matrix for discrete elements of the model, joined
together in node number j of the contact. For example, for REM the component of number r
element stiffness matrix referring to vertical displacement of number j node is described by the
dependence [4, 8] CV =2-EP .a-tP/(b- (1 — v3)) - Fig. 2b.

Task 2.

Two calculation models (B) and (S) have been created from the separated subsystems of the above
Task 1.

Task 2A - according to the requirements of the iterative scheme (SI).
Task 2B - according to the requirements of the iterative scheme (SII).

Results of the tests and comparisons have been stated in the following figures. The result of the basis
test is represented in Fig. 5a—c by the thick line. For the numerical solution the average error A(®)
for the Task 2B related to the exact solution (Task 1B) has been shown on the vertical axis. The
analysis refers to the subsoil displacements A(dZ3), structure displacements A(dZ,) and contact
forces A(dF) determined at the contact of the subsystem in numerical model. For the analysed task
the error A, defined in the consecutive iterative steps was: A®) < 45%, A(®) < 15%, A0 < 1.5%,
AR < 0.01%, where

; (4) :
; 'w2B,j — W1B,j

A = ZEZ
1

12
|wiB,;] (12)

(5 — number of discrete quantities of displacement or forces in the contact).

The repetition of parametric analysis for the task where the height of zone III has been reduced
(0,5 of the height for the basis task) did not show any changes in behaviour of the solution under
examination.

The (SII) iterative process is quickly convergent: x®) < 40%, x(® < 10%, x(10) < 1%, where

2.5 {0 | to-1) U
X = 7;‘@3’3) —wi} | (13)

Task 2B forms a series of numerical tests (Fig. 5a—c). By introducing changes in the contact
layer parameters, the deviation of 2B from the exact solution 1B has been examined. The changed
parameter has been defined as R, = SR, , where for the basic Task 2B we have 3 = 1.0.

The analysed iterative procedure (SII) shows considerable tolerance for error (for 8 > 1) in
defining the quantities for the contact layer parameters. This feature is extremely important as
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it enables us to introduce simplifications while defining the parameters R, for actual analysis of
engineering tasks:

1 1
B grR 3

For the proportion of elasticity moduli EZ /ES = 50-500, neglecting the influence subsystem (B)
has on R, leads to the quantity of 5: 1 < 8 < 1.01.

Similar solutions to the above type (Fig. 5a—c, # = 1) were obtained by introducing a changeable
proportion of elasticity moduli EB/ES = 100, 500, 50 (Fig. 5d).

Figure 6 shows certain results of parametric analysis that referred to iterative scheme (SI). This
was carried out similarly to the analysis shown in Fig. 5. While compared with procedure (SII),
this procedure (SI) is much more exposed to changes in parameters R, and it converges much more
slowly.
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Discretised displacement functions of the subsystems, obtained for two different ideas of contact
modelling have been compared in Fig. 7a. From solution of Task 1B (equivalent with Task 2B)
the displacements dZ}? have been obtained and from solution of Task 1A the displacements dZ34.
Results of calculations carried out for EZ/ES = 100 and E®/ES = 50 have been shown. In
Fig. 7b the subsoil displacements function dZ};B has been shown together with the “translated”
structure displacements function dZy that was obtained as the result on an additional solution of
subsystem (B) resting on the new supporting layer which has parameters

(dZ3 — dZ)) R}
dzj

ci=

; (15)

Parameters C, defined in this way, express through the set of discrete values, the flexibility of
the loaded subsoil, determined by taking into account an actual rigidity of the structure.

4.2. Examples of calculations
4.2.1. Parameter R} determined in the elastic range

If, after the system has been loaded, the material in the contact zone is still within the elastic area,
parameters Rj shall be obtained from expression (11) or simplified (12). However, R} can also be
expressed directly — by solving an auxiliary task — via the forces in nodes of the contact elements
caused by unit displacements of these nodes.

Ezxample 1.

The structure of transversal carrying system and self-supporting longitudinal walls, loaded by its
dead weight @ and operational load P (Fig. 8a) has been calculated for elastic-ideal plastic Coulomb-
Mohr subsoil [1, 2]. In order to calculate internal forces correctly when the transversal rigidity of the
structure is considerably high there is a need to define the displacements at contact points between
transversal continuous footing and the subsoil. Figure 8b shows an example distribution of shear
stresses between the middle transversal wall and the longitudinal wall of the structure. Figure 8c
shows the plastic zones for the fully loaded subsoil: (I) — the correcting influence of the structure is
not taken into consideration, (II) — the state obtained as the result of iterative procedure (SII).

4.2.2. Parameter RZ(“’) determined in elastic-plastic range
In the incremental-iterative calculation procedure the R} parameters change together with the load

increase. In elastic or elastic-plastic range for any loading incremental step we can determine the
R}, explicitly as follows,

(4) B (C)
BT-psB=8B -4 B D F |8,
& BN

where by brackets marked components of D¢ or D’ matrices form together with B matrix compo-
nents (a,c, f) parts k;; of expression (11):

kjj=(A)'a+<C)'C+<F)-f. (16)
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Ezample 2.

Direct determination of the parameter Rf;(e” ). Behaviour test of Drucker-Prager material under an
uniaxial state of strain (Fig. 9a—d)

de;={dey 0 0}, de; = é—dq {2 -1 -1}, do; = {do; doy doy}

is an example of the possibility of direct determination of Rf;, basing on (16), while knowing the
stress—strain paths o;—€; . A comparison has been made between:
e analytical description of the Drucker—Prager material (Fig. 9a)

e and its numerical answer (Fig. 9b) during the test in which the sample has been

— first divided into two parts
— then joined together, according to the procedure (SI) (Fig. 9c,d)

* ) (K +4G/3)—{[2+/3 /3]G + 3K} /[9Ka2 + G]

a) c) 49
/ YYVYYVYVYYY
|
I
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26+3 3K«
Yield

1Q

|Q

v

b) 0,100 d) g
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Fig. 9
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Ezample 3.

The structure of strongly diversified rigidity that transferred a load via the foundation plate onto
the subsoil has been described in state 2D — Fig. 10. The uniaxial state of strain for subsoil under
the foundation plate in the central area of the contact zone can be assumed for this task. As a result
of plastic zones, below the foundation, R¢ in the contact central area receive new values Rg’. Plastic
zones obtained

e for the subsoil loaded with the aid of rigid plate foundation (thin lines),
e as the result of iterative procedure (SII) between loaded structure and subsoil (thick lines)

have been shown in Fig. 10a.
In Fig. 10b the deviatoric state for the final state of (SII) procedure has been shown.

5. CONCLUSIONS

e For the examined class of interactive systems (B)-(S) the presented iterative procedure (SII)
leads to the unique solution of the problem provided that iteration is carried out on subsystems
via the connecting layer with parameters determined by expressions (11) or (16).

e For the (SII) procedure deviations of the solutions obtained while entering R, = SR, from the
real solution have been shown in Fig. 5a—c. This examination may constitute the evaluation of
sensitivity of the analysed task to simplifications introduced while modelling real engineering
problems.

e The carried out parametric analysis proved that (SI) procedure is more sensitive to changes of
contact zone parameters than (SII) procedure (Fig. 6).

This leads to conclusion that the popular engineering practice of correcting the numerical results
in a way similar to (SI) procedure, is prone to recede from the physical behaviour of the system.
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