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The article presents the high-performance Ritz-gradient method for the finite element (FE) dynamic re-
sponse analysis. It is based on the generation of the orthogonal system of the basis vectors. The gradient
approach with two-level aggregation preconditioning on the base of element-by-element technique is ap-
plied to minimize the Rayleigh quotient for the preparation of each basis vector. It ensures the evolution
of the regular basis vector toward the lowest eigenmode without aggregating and decomposing the large-
scale stiffness matrix. Such method often happens to be more effective for dynamic response analysis,
when compared to the classical modal superposition method, especially for seismic response analysis of
the large-scale sparse eigenproblems. The proposed method allows one to apply arbitrary types of finite
elements due to aggregation approach, and ensures fast problem solution without considerable exigencies
concerning the disk storage space required, which is due to the use of EBE technique. This solver is imple-
mented in commercial programs RobotV6 and Robot97 (software firm RoboBAT) for the seismic analysis
of large-scale sparse problems and it is particularly effective when the consistent mass matrix is used.

1. INTRODUCTION

At present, the Lanczos and block subspace iteration methods are used as powerful tools in com-
mercial programs where finite element analysis is implemented. They are applied to solve large-scale
sparse eigenproblems, when it is necessary to derive a large number of eigenpairs [14, 17, 19]. Their
application, however, is usually restricted by long computation time and huge disk storage re-
quirements during Cholessky decomposition or Gauss elimination of the large-scale sparse stiffness
matrix K. This problem remains particularly acute when the consistent mass matrix is used. It
forces one to turn to the iteration methods that do not require the above mentioned decomposition.
The papers [9, 10, 13-16] and others contributed greatly to the development of iterative meth-
ods for solving large-scale sparse finite-element eigenproblems. The preconditioned conjugate gra-
dient method [10, 13-15] is usually applied to solve such problems. The multi-level (multi-grid)
high-performance iterative methods [1-3, 8, 20] as well as the incomplete Cholessky factorization
methods [10, 14, 15| have been developed intensively for the last years. The modified subspace it-
eration method [4] is of particularly great interest. It combines the idea of simultaneous subspace
iterations with the iterative preconditioned gradient multi-level aggregation approach. All the above-
mentioned approaches concentrate on the derivation of the low eigenmodes and eigenfrequencies.
This paper attempts to elaborate high-performance Ritz-gradient method that would allow us to
derive Ritz vectors for the analysis of dynamic response of structures. The evaluation of exact (in
the range of a given discrete model) eigenpairs is a very expensive procedure for large-scale sparse
problems. Moreover, the classical modal superposition approach is still just as ineffective for some
tasks of the seismic analysis (see [17-19]). Instead of deriving exact eigenpairs, the basis vector
generation procedure is applied to evaluate the Ritz approximations. The evolution of each regular
basis vector toward the lowest eigenvector is obtained by means of Rayleigh quotient minimization.
The two-level preconditioned gradient method is used to derive good approximations of low Ritz
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vectors to the corresponding eigenvectors. The orthogonalization procedure of the current basis
vector against the previously defined ones is used to ensure its linear independence.

Detailed analysis shows that the Ritz vectors, derived by the application of the two-level precon-
ditioned procedure, approximate better the global vibration modes than local ones. So, the proposed
method tends to dump a part of local vibration modes. It is very important for the seismic analysis,
because the local modes usually do not have an essential contribution to the seismic response due
to small mass participation. But the presence of a large number of local modes into the low part
of spectra requires huge computation effort, especially for certain kinds of bar and shell structures.
The use of Ritz vectors leads to the implementation of a smaller number of base vectors which is
the essential advantage of the proposed method.

The effectiveness of the preconditioned gradient method is achieved by defining appropriate
properties of preconditioning [3, 8, 9, 11-14, 20]. The two-level preconditioned approach is applied
here. The aggregate method [4-6] based on the EBE (element-by-element) technique is used to
create a coarce level model. The main advantage of the aggregate approach consists in allowing
one to use arbitrary types of finite elements. There is no necessity to elaborate specific high-order
hierarchical finite elements, which is done in well-known fast iteration solvers [8, 14]. The usual
finite element library can be applied both for the proposed method, and for the direct methods.
The term “direct” denotes the well-known subspace iteration method, Lanczos method and others
that use the decomposed stiffness matrix K. It facilitates greatly the application of the proposed
method to the existing FEM software. So, this method allows one to calculate bar and combined bar-
continual structures as well — both as continual structures. This is very important for its application
in commercial programs developed for analyzing and designing building structures.

The EBE technique envelops all stages of the proposed approach, namely: prolongation—
restriction operations, the aggregation of coarse level matrix K, and EBE preconditioning [11,
12] on inner smoothed iterations (see [3-6]). It ensures minimized disk space requirements and
fast resolution of problems, due to respectively small size of data during input/output operations
involving disk (secondary) memory.

2. EVOLUTION OF RITZ-GRADIENT VECTORS

There is an eigenvalue problem
Ko — \Myp =0 (1)

where K, M are the stiffness and mass matrices, respectively, ¢ is the eigevector and A is the
eigenvalue. The procedure of evolution of the basis vector’s set x¢, X1, ..., X, toward the lowest
eigenmode will be described. The preconditioned gradient approach is applied to minimize the
Rayleigh quotient

)\k it (Kx/mxk) (2)

(Mx, X)

where k € [0,n], k is the evolution step number; n + 1 is the number of basis vectors that define the
size of subspace span € (xg, X1, ..., Xp); n+ 1 < N where N is the number degrees of freedom
for the considered problem (1). It happens very often that the considered eigenvalue problem (1)
is ill-conditioned. In such case, the evolution of the regular basis vector xj toward the lowest
eigenmode will be very slow. The preconditioning operator B is applied to improve such situation.
The expression Bz, = ry = z; means that the vector zj is the resolution of the given equation set
where B is preconditioning operator and ry = Kxj — A\Mx}, corresponds to the residual vector.

The base vectors satisfy the following conditions of orthogonality:
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The original large-scale eigenproblem (1) is reduced to the following subspace eigenproblem

{ki;j}q — w*{mi;}q=0. (4)

The matrices of subspace projection are defined as {k; ;} = (Kx;,x;) and {m; ;} = (Mx;,x;) =U
where U is a unit matrix.

The Ritz vectors vy, va, ..., vu41 for derived base vectors x¢, X1, ... , X, and the correspond-
ing approximations of frequencies wy , wy, ..., wyy1 are used for the superposition of the structural
dynamic response.

The details of Ritz-gradient method are presented below.

Step 1. Start initialization

5{0 == : XO = ——io >\0 = _———(KXO,XO)
g (Mxo, %) (Mxo, x0) ’
ro = Kxg — \oMxg, Bzyg =19 = 2.

Step 2.

Step 3. Evolution of the regular basis vector
1. Search of the next basis vector to minimize the Rayleigh quotient into the zy direction
(see 10, 13-15])
a = (ka,Zk), G (MXk,Zk), m = (MXk,Xk-),
b= (K%, %), d = (Mzy, zx), n = {Kxp %)

A = (nd—mb? 4 - ad(ma—ne), o= "L IENE )

*
Xpy1 = Xk + a2

2. Orthogonalization against the previously derived basis vectors

k
Rt R o Gt i =ik M)
i=0
3. Normalization of the current vector (Mxg41, Xk41) =1

I
2 = e ~
p° = (MXgy1, Xpq1),  Xpp1 = 5 Xkt

Step 4. Compute k£ + 1 row of the stiffness and mass matrix projections to the
span{xo, X1y ooy xk-’rl}

1 fork+1=3j
kp1 = (KXpt1, X5)  mpy1,; = { 0 Mor k1 £ },
Step 5. Compute the new search direction

(KXpt1, Xk41)
(MXpp1, Xk41)

Akl = - rry1 = KXpq1 — M1 Mxgy, Bzyi1 =Try1 = 2k
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Step 6.

if (k+1<n) go to Step 3
else perform Step 7.

Step 7. Solve the reduced eigenproblem

S0

S1
{kij}s—w'{myle =0, 8= F 01,2000

Snp

Step 8. Derive Ritz vectors

n+1
Vi:ZSi_l’j_1Xj_1, z:1,2,,n+1
i=1

The procedure of the evolution of the basis vectors x;, K =0,1,...,n, toward the lowest eigen-
mode is very close to the corresponding step of the preconditioned gradient iteration method for
eigenproblem solution. It is noted in the numerous articles [1-3, 8, 11, 12, 20| that the convergence of
the preconditioned iteration methods depends essentially on properties of preconditioned operator
B. This operator should be positive definite, it should allow an economic resolution of Bz = rp41
and it should satisfy to the condition number C(B~'K) ~ 1 as well as possible.

The last requirement in the case of Ritz-gradient method ensures a good approximation of the
low part of eigenmodes.

3. TWO-LEVEL AGGREGATION ELEMENT-BY-ELEMENT PROCEDURE

Let us introduce the following terms: fine level — it is the original finite-element model; coarse level
— it is the reduced finite-element model, derived from the fine level by means of some restriction
procedure. The subscripts f, ¢ denote the fine level and coarse level correspondingly.

The main idea of the two-level approach consists in substituting the explicit resolution procedure
Bz = ry; with the following implicit one [3-6] (lower subscript k41 will further on be omitted):

e Restriction of r vector to the coarse level, ry — r.. This procedure consists in transforming the
fine level model into the coarse level, r, = Q'r s, and QT is the restriction operator (see [4-6]).
The upper subscript T denotes the transposition.

e Resolution K.z, = r. where K, is the projection of the original stiffness matrix K onto the
coarse level (K, is already decomposed and the size of the coarse level problem allows one to
implement the “direct” methods. Cholessky factorization method is used here).

e The prolongation z, — z; from the coarse level to the fine level. This operation consists in
reversed transformation from the coarse level model into the fine level, z; = Qz., and Q is the
prolongation operator.

e Smoothing of the vector z after prolongation. The rapid-fluctuation residuals appear during the
prolongation. The inner iteration procedure is applied to dump the residuals.
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The coarse level model should predict low vibration modes. In this case, such two-level proce-
dure of Ritz-gradient method leads to a good approximation of the low vibration modes, due to
fast damping of the higher components of residuals. It has been shown [3] that the preconditioned
gradient methods are characterized by fast convergence for the high-modal components of the re-
sultant vector and by slow convergence for the low-modal components. So, such methods damp
the high-modal components of the residual vector r very fast, but the low-modal components are
reduced very slowly. The significance of the proposed two-level implicit preconditioning procedure
consists in the fact that it predicts well the low-modal components of the resultant vector by means
of the coarse level model, and it damps effectively the high-modal residuals by applying the inner
iteration procedure during smoothing. The background of such theoretical positions is presented
in [1-6, 20].

4. APPROXIMATION OF THE LOW VIBRATION MODES AND CONNECTION WITH
LANCZOS METHOD

Let us consider some important properties of the proposed Ritz-gradient method.

Theorem 1. If the preconditioned operator B coincides with stiffness matrix K, the proposed basis
vector evolution procedure is still identical with Lanczos method.

Proof. Let us rewrite (5) as follows,

xl:+1 = Xp+ QkZp = Xk + akB—lrk

= xp + apBHKx, — \eMx) = (1 + ap)xp — ap MK TMx;, . (6)
The expression (6) with o = —1 takes the form
xpy 1 = MK Mxy . (7)

The following orthogonalization procedure against the previously obtained basis vectors x; and the
normalization (see steps 2, 3 in the above presented algorithm) yields the set of basis vectors that
are equal to the corresponding Lanczos vectors [14, 17, 18].

Theorem 2. The regular basis vector xj is obtained by prolongation and smoothing procedures
applied to the corresponding coarse level vector xf, which is a result of current step of inverse
iteration on coarse level.

Proof. Let us present the fine level basis vector x; as a result of prolongation and smoothing of
the corresponding coarse level vector x§ (the subscript ¢ denotes the coarse level),

xi = Smooth{Qx}} . (8)
The Smooth{...} denotes the smoothing operator. Let us apply (8) to (5),
Smooth{Qx} 1} = Smooth{Qx}} + oy Smooth{Qz;} = Smooth{Q(x}, + axzy)}
= Smooth{Q(x§ + . K. 'r$)}
= Smooth{Q[x§ + K ' (Kox§ — AiM.x$)]} . (9)
Let us note that oy = —1 yields
x§ 1 = x§ + o Ko (Kex§ — MMex§) = MK 'Mxj, . (10)
The expression (10) is a step of the inverse iteration [7] on coarse level. So, it follows from (9),
X1 = Smooth{Qx,} = Smooth{QUAK; 'M.x)} (11)

The expression (11) sets up a connection between the inverse iteration step on coarse level and the
regular basis vector xj.; on fine level.
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These theorems allow one to make the following conclusions that underline important properties
of the basis vector set:

Conclusion 1. The difference between Lanczos method and proposed basis vectors evolution ap-
proach consists in the use of the prolongation and smoothing of the results at a step of the
inverse iteration on coarse level instead of using it at a step of the inverse iteration on the fine

level.

Conclusion 2. As the coarse level model approximates well the low vibration modes, the basis
vectors xj, are close to the corresponding Lanczos vectors on fine level. In a limit case when
B = K, basis vectors x; are still exactly the Lanczos vectors on fine level.

5. AGGREGATION APPROACH AND ELEMENT-BY-ELEMENT TECHNIQUE

The main idea of aggregation method [4-6] is applied to derive the coarse level model. Details are
presented in above mentioned articles. In this section, attention will focus on the application of the
EBE technique to the aggregation of the coarse level matrix K. and evaluation of the EBE restriction
and prolongation operators. It is a very important moment, because it ensures fast preparation of K,
without any storage to disk of the large-scale sparse stiffness matrix K. The matrix K, is presented
as

K. =Q'KQ. (12)

The aggregation approach consists in introducing additional connections (rigid links) to decrease
the number of degrees of freedom in a given computation model. The coarse level model is created in
such a way. So, the original finite-element model (fine level) is transformed into a mechanical system
(coarse level), consisting in rigid aggregates, coupled by the elastic connections. Rigid aggregates
are the rigid bodies appearing due to imposed rigid links. All nodes of the finite-element model
should be combined in the rigid aggregates. (It is possible to consider a single node as the limit case
of the minimal rigid aggregate). It is not admissible for any node to be included in more than one
aggregate.

A direct evaluation of the expression (12) is a very expensive way of obtaining the matrix K.
The EBE procedure,

Ne
Kowrs 1ol 00 (13)

e=1

is applied here to accelerate the computations. Here: N, — the number of finite elements in a finite-
element model, and T, — the transformation matrix established due to additional rigid links. The
restriction and prolongation operators (QT and Q, respectively) are not evaluated directly, but
implicit EBE procedures are applied during ry — r. and z. + 2y, respectively. This allows one to
reduce the computation time and disk storage requirements for such operations.

The following expressions are generally correct, but we shell illustrate the transformation (4) on
the particular example to simplify the understanding of this problem.

Let us consider the application of transformation (13) to the example of the 4-noded shell element.
Let us assume that 7 € sAggr, j € jAggr, and p,q € iAggr (Fig. 1). Here, i, 7, p, ¢ — nodes of the
considered shell element, and 1Aggr, 7Aggr, sAggr — rigid aggregates.

The following is the equilibrium equation for the fine level model of the current element e,

KeQe =Te, (]_4)
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Rigid aggregate sAggr

Rigid
aggregate
iAggr

i
Rigid aggregate jAggr

Fig. 1. Aggregation process for 4-noded shell element

where K, — element stiffness matrix; q. — the element nodal displacement vector; r, — the element
nodal load vector. The following are its values for the considered example,

Ki Ki;j Kip Ky u;

Ra' Ky Ko K Uy  F
.o - T ot - Q=" Ak - (15)

: Kpi Kpj Kpp Ky : u, | : Tp
Ko K¢ Kgp Ky |, Uy |, Tq dl,
The block sub-matrices K;;, K;j, ... , Kg4q contain stiffness coeflicients for corresponding nodes.

The aggregation procedure at the level of elements leads to the following formula,
TRTEa=Tr.. (16)

The nodal displacement vector u 4. should be expressed through the displacement vector of the
gravity center y aq4 of the rigid aggregate Aggr in the following manner,
UNode = CAggr,Node Y Aggr - (17)

The values Node and Aggr denote a node number and the corresponding rigid aggregate number.
It is evident that Node € Aggr.
The matrix C gggr, Node should be evaluated as

| ea A | 0 ZNode 55 ZAggr YAggr =7 YNode
g-1 -4 ZAggr = ZNode 0 XNode L XAggr
T e g -Y, X - X 0
CAggr,Node s ol Node : Aggr Aggr . Node % (18)
0 0 0 0 1 0
Q::0-:0 0 0 1

where X aggr, Yaggr, Zager — the gravity center coordinates of the Aggr rigid aggregate;
X Node s YNode s 4Node — the coordinates of the node Node € Aggr. The vector of the gravity center
displacements of all rigid aggregates for finite element e is expressed by

YsAggr
Qe = YjAggr (19)
YiAggr
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and

ge = Teqe - (20)

The transformation matrix T, for the considered example (see Fig. 1) is

CsAggr,i 0 0
0 Cidaori 0
S N JA997,] 21
= 0 0 Cinggr.p @)
0 0 Cinggra

The nodal load vectors for elements are transformed into the load vectors, that are applied to
the gravity centers of rigid aggregates,

ne i T e
Aggr — Z CAggr,NoderNode 2 (22)
Node€ Aggr

The upper subscript ¢ means that vector ft‘z ggr 18 @ contribution of the finite element e to the load

vector of the rigid aggregate Aggr. The upper subscript T denotes the operation of transposition.
So, the expression (16) should be presented in the following form,

K.qe =Te, (23)
where
_'e
= 7 : = _SAggr
Ke =T K.T,; re=T,r.= _’;Aggr (24)
nggr
The coarse level matrix K. should be aggregated by the EBE procedure
Ne -
Be= 5 B,
e=1
The EBE restriction procedure is evaluated as
Ne Naggr
Te = Z Z Rager = Z Raggr - (25)
e=1 ecAggr Aggr=1

The symbol e € Aggr means that this sum is extended to such finite elements whose nodes are
included into Aggr aggregate. The number of rigid aggregates is denoted by Naggr. The vector
R 4gqr is the load vector applied to the gravity center of the rigid aggregate Aggr,

Ne
35 e =,
éRAggr 2 § :mAggr 4
e=1

The EBE prolongation procedure is evaluated as

Nnodes Nnodes

£ f =5 c
&= Z ZNode = Z CAQQT,NOde Z Aggr (26)
Node=1 Node=1

The symbol Z{Vode denotes the displacement vector on the fine level for such components that are
related to the node Node; symbol zilggr — the displacement vector of the gravity center of the rigid
aggregate Aggr and Nnodes is the number of nodes of the finite-element model. The sums of (25),
(26) imply the aggregation process.
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6. INNER ITERATION PROCEDURE AND ELEMENT-BY-ELEMENT TECHNIQUE

The vector z has the rapid-fluctuation residual components after prolongation [3]. The inner iter-
ation procedure [4-6] is applied to dump the residual components. The Cholessky EBE symmetric
preconditioning [11, 12] is used to accelerate the damping process. The implementation of the EBE
technique ensures reduction of the requirements concerning disk space at this stage as well as at
the stage the procedures of EBE aggregation of K, matrix and EBE restriction and prolongation.
This usually produces 3-4 inner iterations.

The Cholessky EBE symmetric preconditioning is presented as

Ne 1
Bor =] {L§} % P 102} (27)
e=1 é=N,

where L¢ and U¢ denote lower and upper triangular matrices, respectively. Each of them has
Nel x (Nel +1)/2 nonzero coefficients where Nel is the size of the finite-element matrix K, for the
current element e. The relevant details are presented in [11, 12]. So, it is necessary to store only the

Ne
) Nel x (Nel +1)/2

e=1

coefficients (the matrix fJ; should be evaluated as a transposition of the corresponding matrix I:;),
instead of storing the profile of the large-scale stiffness matrix K. The fast resolution method is
applied to solve the equation set

Benyj =r} (28)

where y; — unknown vector, rj — residual vector for 4§t step of inner iteration. The fast resolution
algorithm is presented by the following formulas,

y) =r},
L;y;fzy;*liy; e= 1,500 Ny i
= e — 1 _.2N.— 2Ne— 1 o
e et S i X, e - -
2N,
Yo

It is very easy to perform such procedure, because the matrices f;; and ﬂ; are triangular with
a small number of nonzero coefficients. Such matrices are not evaluated directly, but by means of
references to the appropriate coefficients of the corresponding element matrices (see [11-12]).

7. NUMERICAL RESULTS
7.1. Model example

As an example we will consider a thin square plate with consistent mass matrix which is clamped
along one edge. We apply the 4-noded shell element and mesh 128128 (number of equations Negq
is 99072 and the bandwidth after optimization is 1242). The ten low frequencies obtained by both
Lanczos and Ritz-gradient (PCG _Ritz) methods are presented in Table 1. It occurs that the residual
norm ||Ke; — w?Me;||/||w?Me;|, i = 1,2,..., for results obtained by Lanczos method is usually
smaller than 10e—7. So, it is possible to claim that Lanczos method produces the exact solution in
the range of a given discrete model.

The frequencies obtained by means of PCG _Ritz methods are very close to corresponding fre-
quencies obtained by means of Lanczos method. The PCG_Ritz method requires essentially less
computation time and disk storage space (see Table 2) than Lanczos method.
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Table 1. Natural vibration frequencies (Hz), obtained by Lanczos method and PCG _Ritz method

e
ts
1410?
110
Lanczos
PCG_Ritz
100

Mode number | Lanczos method | PCG _Ritz method | Error %
1 4.6865e+01 4.6966e+01 0.20
2 1.1282e+02 1.1298e+-02 0.14
3 2.0833e+02 2.0902e+02 0.33
4 2.6751e+02 2.6781e+02 0.11
5 3.3584e+02 3.3622e+02 0.11
6 3.7696e+02 3.7841e+02 0.38
7 4.8816e+02 4.9048e+02 0.47
8 5.6343e+02 5.6960e+02 1.09
9 6.1785e+02 6,2137e+02 0.56

10 6.7662e+02 6.7757e+02 0.14

Table 2. Computation efforts for Lanczos method and PCG_Ritz method

Method Lanczos method | PCG_Ritz method
Computation time, s 75017 7367
Disk storage requirements, MB 2216 401
e Ho,mB 3000
-
: II NS
. 2000 )
7 > . x
i ’
- &
B A
£ 1000 -
il s
s Lanczos 4
£ UM, S———— — B +
I g
7 PCG_Ritz o L "ﬂ/w
v EOh el v
0 soon 1ot st aat 9 5000 1‘1']=| 1,5‘104 2‘104

NUMBER OF NODES {Mesh NxN )

NUMBER OF NODES (Mesh NxN )

Fig. 2. Dependencies of computation time from mesh
type

Fig. 3. Dependencies of disk storage requirements from
mesh type

Table 3. Parameters of problems for given mesh types. Negq — number of equations,
Bandwidth — bandwidth after optimization

Mesh 32x32 64x64 128 %128
Number of nodes 1024 4096 16384
Neq/Bandwidth | 6336 / 324 | 24960 / 630 | 99072 / 1242
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The dependence of computation time (Fig. 2) and disk storage requirements (Fig. 3) on mesh
type (see Table 3) indicates that computation efforts for “direct” methods catastrophically increase
if the size of a problem increases. 40 Ritz-gradient vectors have been generated to derive 10 Ritz
vectors of PCG _Ritz method for all considered problems. We used a computer Pentium 400 with
512 MB RAM.

7.2. The examples of real problems, taken from engineering practice

The following three quite different problems (see Figs. 4-6) are presented to illustrate the effective-
ness of the proposed PCG _Ritz method. They are taken from practice of IT firm RoboBAT. The
corresponding models consist of 3D bar and 3-4-noded shell elements. Parameters of problems and
computational efforts are presented in Table 4 where Neq — number of equations, bandwidth — av-
erage bandwidth after optimization. Column 4 shows the number of required modes and the type of
mass matrix (consistent or lumped). For both consistent and lumped mass matrices, the PCG _ Ritz

Table 4. Parameters of problems and computation efforts

Problem | Neq | Band NModes / Method Time, s Disk, MB Computer
width masses

PJG203 | 34266 990 | 25, consistent Lanczos 32420 598 Pentium PRO
PCG_Ritz 3912 85

Cinema | 41118 | 1380 60, lumped Lanczos 44 457 669 Pentium 120
PCG_Ritz 24 597 165

Telecom | 83574 | 2610 | 30, consistent Lanczos Has not 4200 Pentium 400

been solved

PCG_ Ritz 36473 364 Pentium 120

oonm

Fig. 4. Problem PJG203
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%% Robot 97 - Affaire : Cinemac? - Resultats MEF : absents - [Vue - Cas : 1 (PP]]
& Fichier  Edition = Affichage  Structure  Chargements - &nalyse  Rlsultats  Outils  Fenltre 2 =& ]

Di=la| sls|r] il=(a] olc] BlE| alaltTay] 2] el 2] [&Geonm.
2 = o

—

Leles oK (@l A L] B (o2 g

-

| »

L_ ¥=25.75. y-45 23,2=37.86 = 000 ) [kN] [Deg]

Fig. 5. Cinema building in the Near East (problem Cinema)

%% Robot 97 - Affaire : Test - Resultats MEF : absents - [Vue - Cas : 1 (WW]]

&w Fichier Edition Affichage Stuctue C Analyse Rlsultats Outils  Fenltie 2 =]|51[_>§j

Dlslal alalal [z ol Bl alalmabe] AalE] 2] S =

o == ]

o

|Ele! |l [l AL B oz e

{ Definit les péﬁﬁéﬁux

msmnl 2 Inbox - Mi.. i 14 Windows .. ! (3] Exploring . l BY Microsoft ... i;';_&ﬂdows ” &5 Robot ... N ?ﬂi—"ﬁw—

Fig. 6. Polish telecommunication multistory building (problem Telecom)
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method turned out to be more effective than traditional Lanczos method. The last problem was
impossible to solve — even on powerful computer Pentium 400 (512 MB RAM) - by Lanczos method,
due to the requirement of huge disk storage space. However, the problem was solved successfully on
an ordinary PC Pentium-120 (64 MB RAM) by means of the PCG _Ritz method.

8. CONCLUSION

The proposed Ritz-gradient method is a powerful tool for solving large-scale sparse dynamic prob-
lems. It allows one to obtain Ritz vectors that approximate the low eigenmodes. The quality of
such approximation depends essentially on the properties of the preconditioning operator B. Theo-
rems 1, 2 and Conclusions 1, 2 establish the following general peculiarity of the proposed method.
As the coarse level model approximates well the low vibration modes, the basis vectors xj are
close to the corresponding Lanczos vectors on fine level, and the Ritz vectors on fine level are good
approximations of the corresponding eigenvectors.

The two-level aggregation approach ensures the preparation of a coarse level model that usually
approximates well the low vibration modes. The application of EBE technique leads to the reduction
of requirements on disk storage space and to fast problem resolution.

The above-mentioned properties of Ritz-gradient method allow one to reduce essentially the
computation time and to maintain the precision that is sufficient for practical dynamic analysis of
building structures.
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