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Modelling of heat transfer in biological tissue
by interval FEM

Marek Jasinski
Department for Strength of Materials and Computational Mechanics,

Silesian University of Technology
ul. Konarskiego 18a, 44-100 Gliwice, Poland

Andrzej Pownuk

Department of Theoretical Mechanics,
Silesian University of Technology

ul. Krzywoustego 7, 44-100 Gliwice, Poland

(Received November 3, 1999)

In this paper, an algorithm of calculation of extreme values of temperature based on interval arithmetic
is presented. Many mechanical systems with uncertain parameters A € A can be described by a pa-
rameter dependent system of linear equations K(A)T' = B()). Using natural interval extension of a real
function, one can transform the system of linear equations into the system of linear interval equations
K(A)T = B(A). Solution of the system of linear interval equations always contains the exact solution
of the parameter dependent system of equations. A new method of computation of extreme values of
mechanical quantities based on the monotonicity test is introduced. This method can give exact solution
of a parameter dependent system of equations.

1. INTRODUCTION

The study of the influence of parameters upon behaviour of mathematical models is one of the
basic problems of computational mechanics. Usually, one is interested in systems which are locally
stable in the sense that their qualitative behaviour does not change under small variations of the
parameters. Here, some form of perturbation theory may be the appropriate tool [29]. One often
needs to know explicitly the properties of the solutions for a large region of physical significance.
The mathematical models for describing the systems considered in this paper are in the form [23, 29|

Flz) =0 (1)

where F' : Z x T — Z. Space Z characterizes the state of the system, ¢ denotes the parameter
variable allowed to vary over the space 7'.

Consider the mechanical system (1) with uncertain parameters ¢. If sufficient experimental data
are available, probabilistic methods can be applied [33, 34]. Alternatively, the convex model of
uncertainty can be applied [2-4, 6, 36].

One of the simplest ways of representation of uncertain or inexact data, as well as of inexact
computations with them, is based on interval arithmetic [1, 18, 20, 23, 35]. Other methods are based
on set valued analysis [31] and classical theory of optimization [2, 3, 5, 7, 9, 19, 34, 37]. Convex
model of uncertainty can be represented also by ellipses of uncertainty [8, 26, 36].

When function is sufficiently smooth, to calculate its extreme values, the Kuhn—Tucker condition
can be used. When function z(t) is given explicitly, one can use interval global optimization [32] or
other global optimization method.
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2. INTERVAL ARITHMETIC

A real interval is a set of real numbers such that
e g B PR R S BT (2)

The set of all intervals is denoted by IR [1, 23] and called a real interval space. Operations and
functions on reals are naturally extended to interval operands according to the general formulas [20]

xoy={zdy: x€z, yey} where oe{+,—,-,/} (3)
Fimi Xl =t ) BEY, . B ER) (4)

The function f is called programmable if f(z) can be built up from arithmetic, logical and
comparison operators and some collection of standard transcendental functions (like sin, cos, power,
etc.). Given an argument z, the function value f(z) can be computed with a finite number of
operations [23]. All the functions in this paper are assumed to be programmable.

Another important property of arithmetic operations on intervals is called inclusion isotonicity

(aCc)A(bCd)=>adbCcahdd (5)

that is, the result of straightforward calculation of interval expression will always include the proper
result (@ is any interval arithmetic operation).

Let x € IR, then the natural interval extension f of a programmable function f to x is defined
as an expression which is obtained from the expression f(z) by replacing each occurrence of the
variable z by x, the arithmetic operations of R by the corresponding interval arithmetic operations,
and each occurrence of a pre-declared function g by the corresponding inclusion function g:

{9(z): zex}C{g(z): zex} (6)
Every inclusion function f(x) has the property:
z €x  implies f(z) € f(x). (7)

Property (7) is the key to almost all interval arithmetic applications and results [1] and should be
called the fundamental property of interval arithmetic.
For any bounded set of real numbers S, one can define a smallest interval enclosure of the set

hull § = [inf S, sup S]. (8)
In the same way one can define the space of multidimensional intervals IR"

IR &ixi=XpX g X5 XXy, where x; € IR. 9)

3. SYSTEMS OF LINEAR INTERVAL EQUATIONS

Let us consider a linear interval system of equations with an interval coefficient matrix A € IR™*"
and an interval right-hand vector B € IR™ [23]:

AX =B. (10)
The solution set of Eq. (10) is defined as:
> (A,B)={X€eR': JAcA, 3B€B, A-X=B}. (11)

Calculating (and representing) the solutions set ) (A,B) may be quite hard and impractical,
especially for larger n. Therefore, for many practical purposes, one is satisfied with the interval
enclosure of the solution set (11). The smallest enclosure is the hull of the set

hull 3" (A,B) = [infz (A,B), sup ¥ (A,B)] ! (12)
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There are many methods for solving Eq. (10). The simplest method is the use of all combinations
of the endpoints of intervals of the matrix A and vector B [18]. Others, like Rohn sign-accord
algorithm [30] or linear programming method [15, 18] are based on the theorem of Oettli and
Prager [23]. Some methods give only an interval estimation of the set [18, 23]. Computation of the
exact solution set or its hull ((11) or (12)) is NP-hard [17].

4. INTERVAL FEM

In this paper extreme values of temperature in biological tissue using Interval Finite Element
Method [15, 16, 21, 22, 27, 28] are calculated. The Pennes equation describing the steady tem-
perature field in a biological tissue is considered [10]:

div [Agrad T'(X)] + Qmet + Qperf =0 (13)

where ) is the thermal conductivity of tissue, Qmet is the metabolic heat source, Qperf is the perfusion
heat source, T' is the temperature. Equation (13) is supplemented by boundary conditions which
can be written in the form

X
XeT: <I>[T(X), & )] =4 (14)
on
The perfusion heat source is as follows
Qpert(X) = coppGo[T(X) — Tp) (15)

where ¢, pp are the specific heat and mass density of blood, T} is the temperature of blood and G}
is the perfusion rate. In this paper the one-dimensional problem is considered. In order to obtain
the solution, the FEM is applied. Finite Element Method leads to the following system of equations

KT = B()) (16)

where K is the global heat conductivity matrix, T" is the vector of unknown temperatures and B
is the vector containing the information about boundary conditions. The exact solution set of (16)
can be described as

{(To(N), ..., Ta(N) : A€ A} ={(T(z0,A),...,T(zn,\)) : XEA} where A = [)\)].
(17)
Interval analysis provides a rigorous and realistic sensitivity analysis of the solution of (17) under
perturbations of arbitrary specified magnitude (i.e. not only asymptotically for “sufficiently small”
perturbations). Computation of the exact solution set (17) is very difficult [11, 14, 23-25]. Uncer-

tainty is introduced by assigning an interval valued parameters using their interval extensions [1].
Then the system of equations (16) becomes a system of interval equations in the form

K(A)T = B(A). (18)
From the fundamental property of interval arithmetic [23], it follows that [12, 23]
{(TN),-- -, Ta(N) = A€ A} ={(T(20,N),.-, Tz, 2)) : A€A}C Y (K(A),B(A)) (19)

i.e. the solution of the system of linear interval equations (18) always contains the exact solution
set (17) in a nodal point z; (¢ = 0,...,n). Both solution sets (17), (19) are usually very complicated.
Because of this, in applications, one uses the smallest interval which contains the exact solution set

((17) or (19)) [18].
hull ) (K(A),B(A)) € IR". (20)
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Fig. 1. Solutions sets of equations (17) and (19)

5. INTERVAL FEM BASED ON MONOTONICITY TEST

In many engineering problems, the solution T;(A) is monotone in A. In this case extreme values of
mechanical quantities can be calculated using endpoints of the interval A

T,=min{T;(2), (N}, Ti=max{T;(Q), T:(A)} (21)

From the fundamental property of interval arithmetic (7) and properties of he derivatives, it
follows that

OTi(A)
oA

if 0¢ then T;()) is monotone in A. (22)

The derivative of temperature T; can be calculated using the implicit function theorem

or _ o8 _ oK

G v T

(23)

An interval extension of derivative (22) can be calculated as a solution of the following system
of linear interval equations

OT OB(A) OK(A)

K(A) 55y = —ax % T(A) (24)
where
T(A) = hull ) (K(A), B(A)). (25)

From the fundamental property of interval arithmetic (7), Eqgs. (24) and (22), it follows that if

00 -, BB

then the functions T;(\) are monotone in A. If the interval A is too large, one can divide it into
parts A; such that A = |J; A; and int(A;)Nint(A;) = 0 for i # j. If the functions T;()) are monotone
in all parts A; then they are monotone in A.
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6. MATHEMATICAL DESCRIPTION OF THE PROCESS AND COMPUTATIONS

A temperature field in biological tissue in cylindrical co-ordinate satisfies the following equations

Ry <r-<Ra: }-i(r e ))+Q

r dr dr
dT
r=R o G a(T(r) —Tp), (27)
dr

r=R g o S
Ry, Ry — internal and external radii of the domain,
«a - heat transfer coefficient,
T — tissue temperature,

Q@ = Qmet + Qpert — constant value.

blood vessel
tissue
A T
Q
R, R,

Fig. 2. The domain considered

Using the weighted residual method criterion one has

/R R [;r ( A %%) i rQ]w(r) dr = 0. » (28)

and after integrating the first component of equation above by parts, one obtains the following

equation
e T L ard Ra
—/ ) dr +/ rQuw(r)dr = 0. (29)

Ry Ry dr dr Ry

rA Ew(r)

The integrals from R; to Ry are substituted by the sum of integrals

el il A%

(e) = (e) s

==

rQw (r)dr =0. (30)

Temperature at the finite element sub-domain is described by the linear function

( & gt i2 : S § 75 ¢

r&idri-serils Tle)= g Tiph . L= NiaTiy + NiT. (31)
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From Eq. (30), one obtains a system of linear equations in the form

K(\)T = B(X). (32)
The coefficients of the global heat conductivity matrix for ¢ = 1,...,n — 1 are

koo =13 — 13, ko1 = T8 — r2, (33)

kij—1 =13y — 1] kig=rhi—riyy  Rawt=rfeirhs (34)

)
2 2 o jao 2
kn,n—l =1 kn,n =Tn —Tp-1- (35)

The coefficients of the vector B are

pi =4rd +rd i —3ri(ric1 — Tig1) 7 A A O (36)
3RyaTpA
po =15 +72(2ro — 3r1) + o s 3 (37)
Qh
3T A
Pn = Oh (38)
Finally
h :
biz%pi for i=0....n (39)

For a numerical example we assumed R; = 0.0005 [m], Ry = 10- Ry, a = 2000, T, = 37 [°C],
T, = 32.5 [°C], Q = 10245 [W/m?], X € [0.21,0.23] [W/mK] and domain of the tissue was divided
into 10 elements (nodes i = 0,...,10). Additionally in the calculation using Interval Finite Element
Method with monotonicity test interval A was divided into 40 parts A;. The results of calculations
are shown in Table 1.

Table 1. Results of computation

Number IFEM IFEM with monotonicity test
of node T, [°C] T; [°C] i le] T; [°C]
0 33.456 40.094 36.586 36.619
1 32.456 38.899 35.470 35.494
2 31.849 38.172 34.782 34.800
3 31.401 37.638 34.284 34.298
4 31.059 37.231 33.894 33.905
5 30.770 36.887 33.573 33.582
6 30.516 36.586 33.302 33.308
T 30.287 36.316 33.065 33.070
8 30.068 36.057 32.857 32.859
9 29.863 35.816 32.669 32.671
10 29.668 35.588 32.500 32.500

7. CONCLUSIONS
The Interval Finite Element Method (IFEM) always gives solutions in the form [15, 18]
T(A) = hull ) (K(A), B(A)). (40)

This interval always contains the exact solution set of the parameter dependent system of equa-
tions (16). Both solutions are very similar only if the width of the interval A is very small. In



Heat transfer in biological tissue by interval FEM 557

other cases, the so called overestimation problem [13, 18] causes the Interval FEM to give very
overestimated results. Coefficient dependence is the main source of overestimation [18]|. This error
is an integral part of IFEM and it is impossible to avoid this effect in the algorithm presented in
Section 4. IFEM with monotonicity test gives the exact solution of Eq. (16). One can apply this
algorithm in situations where parameter dependent solution is monotone. In other case it can be
difficult to obtain the solution using this method.
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