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A-priori estimates of the hp-adaptive BEM
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In the paper some a-priori hp- adaptive error estimates, applied to the problem of acoustic wave scattering
on an elastic body in the 2D space, solved by the Boundary Element Method, are presented. The estimate
includes both the function- and boundary approximation errors.
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1. INTRODUCTION

In the Finite Element Method (FEM) the hp- adaptive methods, as a consequence of h- and
p- adaptive methods, were introduced first by Babuska et al. [2]. The Boundary Element Method
(BEM), which accepted much of the FEM ideas, had included these methods, after some time, to
its own tools. The pioneer works in the hp- adaptivity were done by E. Rank [18] and 1. Babugka [3]
with coworkers. In the first papers two-dimensional domains with piecewise straight boundaries were
considered [7, 18, 19]. A plane with an extracted curve (screen problem) was a domain of the process
in [17]. Infinite domains surrounding bounded regions were considered in [6]. An analogous approach
to three-dimensional problems was a subject of some later papers, e.g. for open domains [8, 19],
and for infinite domains with bounded ‘holes’ [10]. The exponential convergence was extended onto
hp- adaptive BEM in (7, 8, 19]. A-posteriori local error indicators were proposed in [15]. Detailed
discussion of mathematical aspects of the adaptive BEM may be found e.g. in [9, 10, 16].

The error estimates proved in the papers cited above include only errors caused by solution’s
approximation by shape functions, in general. It is assumed that all calculations are performed on
the given boundary. It may be true e.g. for screen problems or polygonal domains, but for domains
of higher regularity some approximation of the boundary has to be introduced. This approximation
generates an additional error, which should be estimated too.

The plan of the paper is as follows: In Section 2 we remind some known hp- interpolation
estimates. As an application we derive in Section 3 analogous estimates for boundary approximation.
The problem of elastic scattering is posed in Section 4 and the method of the Galerkin BEM solution
is presented there. Some properties of a fundamental solution are considered in Section 5. In Section 6
the final a-priori error estimates are proved.

2. HP- INTERPOLATION ESTIMATES
Let

1= [0’ l] (1)
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be a pattern 1-D finite element,
Pyla,b] = { p(t Zaj , t € [a,b] (2)

the space of polynomials of order not greater than d on [a,b], H™(S2), || - [|m, — the Sobolev space
with its norm. As a reference domain we consider an interval G = [a, b] divided by points ¢; into
subintervals

a=tg<t < <tn=b Ti=[ti1,t], G=JT&

with
h' =diam(T-) :—‘t'——ti_l, h=suphi.

For each T; we define an affine, invertible mapping B; : T — T} . Let % € H™(T [') be a real function.
On each T; real functions v; € H™(T;) are defined by this affine mapping

v; =900 B k.
The following theorems about interpolation are true (cf. [4, 5]):

Theorem 1. By the previous notations for integers m > 1, d > 0 there is a constant C' = C(m,d)
such that for any function v; € H™(T}) there is an interpolating polynomial v¢ € Py(T;) such that
for any a < p,

d d prispl
Sup{ dte (U'L U; )(t)} ) te 711} S C dTln—Oz—l “Ui“m,Ti 5 (3)
where
p = min{d + 1, m}. n

Theorem 2. By the previous notations for m > 1, d > 0 there is a constant C' = C(m,d, G) such
that for any function v € H™(G) there is an interpolating function v € C°(G), being a polynomial
vd € P4(T;) on each T such that for any a < p,

de p—a—1
sup {

h
o =v)0)] , te G} <O gy ol 6)
3. APPROXIMATION OF THE BOUNDARY

Let the bounded domain Q € R? with a boundary T' be given. There is a function

X =(X,X?:G-> R (6)
which describes the boundary as

I' = X(G).

We assume that X € H™(G) x H™(G) with the usual norm ||X||mG = ||X1an’G + | X2|2, & . Let

X}, be an interpolant of X i.e. X,il are interpolants of X in the sense of Theorem 2 and I'y, = X ;,(G).
Let I; denotes a class of vector interpolants of the order d

L={Yr=LY)):GR:Y} €C'G), Y|lnePuT), j=1,2, i=1,...,n}
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We assume in what follows that derivatives of functions X?, X,il exist and are bounded from below
and from above by positive constants ¢;, Cy:

dX dXy
< e <<
0<as|Do) | Fo <o wea, )
and they satisfy the Holder condition
dX
l (t) — —(t + At)| < Ch]At", Vi, t+ At € G, (8)

for some 7y € (0,1].
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Fig. 1. Boundary and its approximation

A simple corollary of Theorem 2 is

Lemma 1. By the previous assumptions for any m > 1, d > 0 there is a constant C > 0 such that
the interpolation error for any vector function X € H™(G) x H™(G) may be estimated as

s
sup| X (t) — Xp(t)] < C = Xlma, (9)
teG d
dX dXy, h#—2
—— () < X
Sup |\ — O~~~ 0] < C 2 | Xlme, (10)

where X € 1.

We extend any function v € C!(I') onto a neighbourhood Ur of T to define dv/d7(x), where T
is a vector tangent to I' at . For the arc length parameter s of I' we have

ov ov

(@) = o (@), (11)
On the approximate boundary I';, we define v as

v(@h) = (vo X o X})(z) (12)
In the same way we obtain, in regular points of Iy, for its arc length parameter sy,

aa—;(ivh) = g—;(wh)- =8)

By the definition we have, if = X (o), ), = X (to),
v(z) = v(xp). (14)
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Lemma 2. By the previous assumptions there is a constant C = C(m,G) such that

dsp, hHE
e <3 m,G»
fgg 1 5 (t) < Cdm_2 | X |lm,c (15)
dsp, dsy, ht—
1——(t1) —(tz)| < C X
S () 5, ()| < C g [ Xmye, (16)

and for any function v € C'(I') extended as above

ov v h#—2

schif o < : g

é,7(5'3) aTh(ﬂvh) Lix Cdm—2 | X Nlm,c Hvli%,r (17)
Proof.

dsy _|4Xa| |ax|™

ds | dt TE

dsp, dX dXx,| lax|™ P 2
15 B bsuiipls £ < 2 b s

o4 et ) Gtrier € <. S ‘ dt C gz 1 Xllm.c, £

because of (7) and (10).
dsy, dsy, [ dsy, ] [ dsy, ] dsy,
su 1——(t1) —(t2)| = su 1— —(t + |1 - t t
tl,t?ga Is (t1) = (t2) tl,tzle)G - (t2) - —2(t1) = —(t2)
2
S C dm_2 “X”TTL,G7
ov ov ov ov ov dsp,
- peton| | =|qe - gaten| | =l - T

qeH(T)

o ov dsy, -1
= sup [ 211 G| @ntaas - (ol o)
hH

@
ds

dsh
=g & )‘

< sup

-
o o
P < C g 1 Xlmg - lIvlly r

S D
2 )

At any point € I' a tangential-normal coordinate system may be established. We assume that

in this system and in some neighbourhood U, of  the boundary I' can be described by a function 1:

(y1,92) € Uz = y1 € (a1,02), a1 <0<ay,

(19)
(y1,42) € Ue NT & y2 = f(y1), [f(0)=0.
We suppose that f € C'(ay,a2) and df /dy; is Lipschitz-continuous at 0, i.e.
’—(yl < Loy, Yy € (a1,a2). (20)

By 7%,7Y,n% nY we denote tangent and outward normal unit vectors at z and y, respectively
(cf. Fig.2).

Lemma 3. By the above assumptions and notations

y
n® = e LO Yl 21
m || (21)
|7® — 7Y < Lolyl, (22)
1
|[7%(r® = ¥)| < s Lolyl*. (23)
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by,
Fig. 2. Local system of coordinates
Proof. In the proposed system of coordinates 7% = (1,0), n* = (0,1).
L 2
nz_‘ podml o e < oly1] < Ll (24)
|y| Vyr + y2 |y1| |yl|
For z = df/dyi(y1)
N
df f 2
#—a¥f =110 11, == 14 {—=
- = (1,0 (,dyl(yn)( +|1 <y1>])
1 z . 222
=(1- ; = < 22 < L2y |2
( V1+ 22 \/1+22) \/1+z2<\/1+z2+1) < Lolwn|
1 z 24 1
- = [0 (1- 2= )| - < 5Ll
i | \/1+Z2 \/1+22 \/1+22(\/1+z2+1) 9 0|y1|

Lemma 4. Let points ¢,y € I' and their hp- interpolants x; , y, € I'y, be given. Tangent and
normal vectors at xy , y;, are correspondingly denoted by i , nj , 7'"1{ ) nz In addition r = x — y,
r = |r|, ry, = &, — Yy, rn = |rn|. For points x,y near enough, by previous assumptions about
interpolation, the following inequalities hold:

p—1
Fengsdr—ral < Or o) 1 X [lm.,c (25)
T Th Rt
"m‘m— ﬁ'm < Or s 1 Xllme (26)
r Th Fikr2
nY |—'r‘—| . n% . m < Cr =) 1 X |lm.c , (27)
hi=2
Bl < Cdm—_g 1 X lm,c (28)
hi=2
|[7%7Y — ThThI < Gyt e 1 X |lm,G - (29)
Proof. It is easy to note that
" = 7 = [n® —nj], (30)
7Y — 7irh] = In®n? - nfn}). (31)

Inequalities (25)—(27) were proved in [11]. The next ones were proved there for right-hand sides of
(30), (31).
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4. THE ELASTIC SCATTERING PROBLEM IN THE 2-D SPACE

We consider here the classical linear formulation of the acoustic scattering problem. Let a bounded
domain © € R? with a smooth boundary I' be given (cf. Fig. 3). We define the exterior domain Q°
which completes Q and look for a function p : ¢ — R, which satisfies:

e the Helmholtz differential equation
—Ap(z) — k*p(z) = 0, for x € Q°, (32)
e the Sommerfeld condition at infinity

op?
or

= 0(7‘_%), for r = |&| — oo, (33)

— 1kp®

e a simplified boundary condition on I

Op

. (z) = ep(x), forzel, (34)

where k is the wavenumber. p is interpreted as a total pressure of the acoustic wave

p(e) = p™(x) + p*(x). (35)

Terms p™¢ and p® mean an incident and scattered wave pressure. The boundary condition (34)
is a “spring-like” scatterer, which corresponds to a rubber layer on the surface of the body, which
occupies the domain Q. For details of this model see e.g. [6] or [10].

nX

Fig. 3. The elastic scattering problem
The fundamental solution of Eq. (32) in the two-dimensional space is
1

where i2 = —1, r = |z —y| and H}(z) is the Hankel function of the first kind. Using this fundamental
solution we may replace the boundary-value problem (32)—(34) by a variational equation

a(p,q) = 1(g), VgeV =H3{), (37)
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which was obtained using the Burton—Miller approach with coefficients a € [0,1] and (1 — a)k™!
for the Helmholtz and hipersingular integral operators. These coefficients were proved to be the
optimal ones if @ = 0.5 in [1]. The sesquilinear form a : V x V — C is given by

p(z)q(x) ds(e) +0.5(1 — a)k_lai/rp(w)Q(iv)dS(a:)

a(p,q) = 0.5a/

E

+a/I;/F [e@(m,y)p(y)q(w)—%(w,y)p(y)q(w)] o (i ()

ra-ap i [ [ o) w5k e - Fee ppwae)r
+ oot @ pv)a(e) | dsty)dsa) (38

and the semilinear form [ : V — C by

Fe apinc

1) = a [ P @@ ds(a) + (1~ ki [ T @la(e) dse). (39)

Equation (37) is equivalent to (32)-(34) if p is its regular solution. For details see e.g. [12]. It is
known that the both forms (38) and (39) are continuous and « fulfils the Garding inequality

Rela(v,v) + c(v,v)] > v|lv]|?, Yo e V. (40)

for some sesquilinear compact form ¢ and constant v > 0 (cf. [20]).

5. PROPERTIES OF THE FUNDAMENTAL SOLUTION

Lemma 5. For Hankel functions H(()l), Hfl) the following estimate is true:

I[Hﬁ”(w)—Hﬁ”(y)][Hﬁl)(w)]‘llsc%ﬂ, T T (41)

Proof. We apply here an integral formula for these functions, valid for Rev > —0.5, —7/2 < argz <
m, 1 =+/—1[14, p. 181]:

HV(2) = (%) : exp{i[z — 0.257(2v — 1)]} [r (1/ + %)] ¥ /:o et sV 2 (1 = i)u—% ds.

(42)

In this proof I' means the Euler Gamma Function. This formula states, that |H,£1)(:c)| > 0 for
v=20,1, z > 0. We have then, for v =0,

HM (2) = (%) % exp(—0.25im) [I‘ (%)] e /Ooo " 9572 (z % %)_ ds. (43)

Y (@) — H (y)

D=

Il
N kb
e
|
e’}
>
3
|
©
N}
Sy
=S,
2
a2 ooa |
b-j
Ty
N | —
ST G
| WSS |
|

-1
0 1T iz iz iy
x/ e P , . : . i . ; ds. (44)
0 \/x+’—§- \/x+% VE+YE Ay+ ¥
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We pay attention to the term in the square brackets

oF
eir it - W < |1 = ¢itv-2) "L'__'*_'_E b '1 Uily—u) %
NEES \/x+i§ \/y+i—5~ y+3 Y
’1 eily—2) ’1_\/7‘ ‘1 ely—2)| . ll_ =
Cly — z|? Cly —
e TR Cly - ot bl Iy 2 )

e R e R
Inequalities (44) and (45) imply (41).

Let us consider the case v = 1 now.
l

: . : ol ; ; : g
oo <iury, cefig fidnd 8 e R eSdr AR dink
x/ e ’s? - ds (46)
0

l—|
/—\
N w
e R
| I |

2 g 5 Y
and
S - L
1T 1 1T 18 2 18
ez + 73 efy s ket y R gy e
T  ~ Y i Y T+ 125
Y Y
analogously to (45).
We have applied here the algebraic formulas:
1-0e=(1-8)+(1-¢e)—(1-6)(1—¢), Vie€eR, (48)
a?(b + ic) a
o e 1 i_ i 1' ) 979 ’
o ig) ‘< 2 Va,b,c >0 (49)
a+ic a
b+ic—11<’5—1‘, Va b6 5°0; (50)
Lemma 6. There is a constant C > 0 such that for any z,y €', x # y
s
[2(z,y) — 2(@h, yu)ll < Cle(@,y)l - ooy [ Xlma (51)
0P 0P 0P i
|22 @) - 2y tenun]| < || gte)] +1] - i Xlmc. (52
Proof. Formulas (25), (36) and (41) imply (51). We know that
oo i d 7l - RS, r-nY
bl ] M ol - :
o @,y) = § - Ha (k) - T = 2 (k) (53)
Therefore
od 0P k r-nY| k n¥  rn-n}
2 (o9~ ayten, w)| < | o) — o] T e | T T
r=n¥| [ri=r
<omen [N i) e WX (54
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Expression H{(kr)r is bounded because of (41). (25) and (27) imply then

po2

0% &y H AT (55)

ony

(M)50P+‘

and (52) is proved.

6. CONVERGENCE ESTIMATION

We solve Eq. (37) by the Galerkin method, although we compare in it approximate forms ay, , Iy,
being forms a and [ obtained on the approximate boundary using numerical integration

an(phsqn) = ln(qn), Van € Vi. (56)

The convergence estimates can be stated as follows:

Theorem 3. We assume that

— solution p of (37) belongs to H™ ('), m > 2;
-Vic{vel%G@): Vie{l,...,I} vlr. € Py_1(T})}, d > 0;

- X € H™(G) x H™(G);

- Xpely;

~ terms p™° and 9p'™/dn® are interpolated by pi"® and dpi"°/On on T}, ;

— the hp- adaptive BEM described above is used to solve the problem (37) and py, is the solution
of (56).

Then there is a positive constant C, for which

apinc apznc
on® onj

h?
lp = pallip <C + d—m_—g(HX”m,G lIplly -+ ||10||m,1“)] ;

”pinc znc”__ T LA ‘

—%,I‘
(57)
where C' does not depend on h and d.

Corollary 1. If p™¢ and 9p™/On® are hp - interpolated like p, inequality (57) obtains the form

hH—2 g apinc
b= il < Oy 1 + | 22

+ [ Xlm,c llplls r + ”p”m,I‘] : (58)

m,I’

Proof of Theorem 3. To the modified Galerkin equation (56) we can apply the Second Strang
Lemma (cf. [11]):

Lemma 7. By the above assumptions there is a constant C', such that

g llh(qh)—uqh)l}_ (59)

ahEVR llanll

lan(vn, qn) — a(vn, qn)
Ip=pall <3 inf |lp ol + sup |
vLEV), xan ”th|
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We should estimate two right-hand side terms of inequality (59)

3 [awp (zh) + (1 — @)k~ v (@h)]gn(@h)dse

lan(vh, gn) — a(vn, qn)| =

od

+/Fh/r:h{CYE(I)(iBh»yh)Uh(yh)Qh(CCh) T2 %(wh,yh)uh(yh) an(zn)

+i(l —a)k~1e

(h,Yn) vR(Yn) gn(Th)
—i(1 — @)k ®(xh, yp) 7, 77, va(Yn) an(@h)

Fillealk Suie, b g:—;;@h) 3—3;',;(%)} i
/[avh( z) +i(l —a)k™ avh( )] qn(x) dsg
- [ [{aco@mnmae - o g @ v um aw

il @)k e o 2 (2,0 va(y) (o)

—i(1 - @)k B(z,y) 77" on(y) gu(@)

v, | Oqp
ET—y(y) e (m)}dsydsz .

+i(1 — oz)k—1 O(z,y)

(60)

We take into account that

vn(y) = vn(yn), an(x) = qn(zn) (61)

(60) g’/F[avh(.z-)+z’(1—a)k—1gvh(w)]qh(w) [1-5121—’;5:7")] i

_|_/F/F{as<1>(a:,y) vn(Y) qn(T) [1 5 d;zé?;l)z) d;’;g’)l)]

+ ae[®@(zn, yn) — (@, y)] vn(y) an(@) deEZ;L) djlzgzl)l)

[1 _ dsn(ya) dsh(fch)]
ds(y) ds(x)

0 2 (@, y) o) an(@)

0P 0P ds dsp(x
~a [ 22 (o,1) — oy )] ) (o) ) W

onvy p
(on, ) o) ) |1 — S0 Sonien)|

+i(l — )k 686@

i(1—a)k™te [ dShEy ) dsn(zs)

h
ds(y) ds(z)
—i(1 — a)k B(z, y) 7Y va(y) au(e) [1 _ di';g’; dj’;g’;)}
dsp(yy) dsp(zh)
ds(y) ds(z)

(1~ @)k{B(en,ui) — (e )] 7T o) ) ) )

mh,yh>] itk
)

—i(1 - a)k (2, y)[r" 1" — 7] on(y) gn(@)
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+ill - )k 0(z,y) 20 0 () [1 _ onlyn) dsh(mh)]

v ¥) 5y ds(y)  ds(z)

, . oy, aqn vy, dqn dsp(yy) dsp(zn)
Fill - )k (e,y) | T(0) F(e) - i) G| S S

(1~ k™ [Blen,u) 6o, )] Sa(w) S (@) T S L g g5, .

(62)

All terms in square brackets are bounded by Ch*~2d*> ™ || X ||m.c, cf. (15), (16), (17), (29), (51),
(52). It is well-known, that the single- and double layer potential operators and the adjoint one,

Vo)@) = [B@uwdsy,  V:EHO) - ) (63)
KW(@) = [ go@uo@ds, KO - 2 (649)
K@) = [ ga@ni)ds, K HE) - B (65)

are linear and continuous in the indicated spaces. First terms of (62) may be estimated using the
Schwarz inequality

: = dSh n=2
[iewn(@) + i1 - b em@an(e) |1 - G (@)] dse| < g 1Kl ol ol
(66)
and last ones using properties of potentials
dsn(yn) db‘h(mh)”
ac®(z,y)v x) [1—
[ [[actte.m) ot ante) |1 - et us
hi? =2
<C s 1 Xlme IV (on)llo,r llanllo,r < € =ozg 1 X llm.c llonlly r lanlls p s (67)
: . v 5} dsp(yy) dsp(xh)
1 h dn h\Yp h\Th
o o
(1~ @k~ Bla,y) S () gk (a) |1 - Sl S
h#—2 ovy, th h#—2
<5 3. € V <(OC——||X §
<O 1Xlne |V (52) 52, <O FE X bl ol (9
We have therefore
2
|an(vh, qn) = alvn, n)| < € =5 1 X llm,cll vally p llanlly p- (69)

The term |l,(gn) — l(gn)| may be estimated analogously.

7. CONCLUSIONS

The presented paper delivers an estimate of the hp- adaptive Boundary Element Method. It confirms
a known fact that the optimal convergence rate is attainable, if the boundary interpolation order is
greater by 1 than the function interpolation order.

Convergence tests are reported in [6, 10]. Analogous estimates over three-dimensional surfaces
are given in [11]. Integrals arising in forms aj and [, are evaluated by appropriate quadratures,
which are sources of another errors. This aspect of the problem is a subject of the paper [13].
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As a continuation of this paper some numerical tests verifying “real” convergence rates for prob-
lems of this type are needed. An optimal way of hp-adaptation is still not fixed out. Other external
problems and nonlinear tasks are a great research field, where the practice leaves the theory far
behind.
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