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This paper concerns modelling of surfaces resulting from measurements or from digital simulation of
surfaces e.g., tooth flanks, based on the theory of gearing, with intentionally introduced modification
usually defined in discrete form. Computational methods of modelling of curves and surfaces are briefly
reviewed. Problems of stability of geometric modelling and related problems of parametric estimation of
mathematical models, representing curves and surfaces are discussed. An analysis of multicollinearity of
the measurement matrix is performed. A method of regularization of matrix, containing coordinates of
nodes from considered surface, is proposed. This method allows to improve the robustness of parametric
estimation and is specially helpful for on-line parametric estimation of surface models utilized during
measurements.

1. INTRODUCTION

Gear transmissions play very important role in almost every machine, esp. in transport equipment:
in aviation, automobile and shipbuilding industries, and in many stationary machines, i.e.: machine
tools, manufacturing equipment, etc. They must fulfill certain strong criteria, like: transmission
of very high loads, low vibrations and noise, high reliability, low weight, low wear, to name only
a few. Therefore, modern gear transmissions must be developed in a way, which combines design
and technological stages into one consistent algorithm of determination of gear transmission para-
meters, which enables their optimization with consideration to important criteria. This algorithm
should allow modification of structural and technological parameters [26, 40| after every stage of
calculations, starting from their initial values, and should include:

e numerical simulation of gear machining, made for the assumed method of machining and tool
parameters — to determine tooth profile mapped by the tool;

e numerical simulation of kinematics of mating gears in gear transmission — to check for possible
undesired tooth contact disturbances;

e strength calculations and tooth contact analysis to calculate stresses generated in gearing.

All the a.n. stages require precise geometrical modelling of tools and gears in mesh. Tooth flanks
and fillets should be modelled on the basis of theoretical data (solution of corresponding equations
following the theory of gearing) and measurement data. For these purposes related formulas for
generation of gear tooth flanks were created on the basis of the theory of envelopes and the theory
of gearing [23, 24, 26, 17]. Considering significant role of the shape of tooth profile (kinematics and
transmission of load) as well as the shape of tooth fillet (where concentration of bending stresses
occurs), corresponding mathematical formulas for calculation of the whole tooth geometry were
developed [17]. Methods described in [17] enable generation of numerical models of spur gear tooth,
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including not only tooth flanks but also tooth fillet surfaces machined by gear tools with precisely
defined shapes.

Such consistent approach to parametric geometrical modelling of boundary surfaces, representing
gear tooth, combined with finite element analysis [3, 20] performed with the use of the ADINA (1] fi-
nite element system, allowed to create some modules for optimization of structural and technological
parameters for gear design [18].

In an ideal gear transmission, without any deviations, the teeth contact uniformly along the
whole tooth width. In real gear transmission tooth contact differs from theoretical one, resulting
from the involute gear theory. Tooth contact is disturbed due to manufacturing misalignments 8]
and due to deflections of all loaded gear transmission elements (Fig. 1).

Fig. 1. Possible basic forms and locations of tooth contact area: (a) required form in ideal involute gear
transmission, (b) boundary contact of involute tooth flanks, (c) tooth contact after optimal modification of
one tooth flank Fc = Fax

Both nonuniform distribution of tooth contact area and its incorrect location make kinematic
and mechanical properties of gear transmission significantly worse [26, 32, 16]. Therefore, one of
the central stages in the a.n. algorithm is proper tooth contact analysis (TCA) of mating gears in
gear transmission [32, 42]. This technique enables to predict the level of transmission errors and the
shape of the volume, where they develop. It also enables calculation of approximate shift of contact
pattern, caused by the errors, which occur in gear manufacturing and assembly [4]. Tooth contact
area considered in this analysis is an area of temporary contact of mating gears in gear transmission,
which originates under acting load [26, 40].

Tooth contact analysis was developed by The Gleason Works [39] for the analysis of mating gear
teeth in spiral bevel and hypoid gear transmissions. The main parameters analyzed were bearing
contact and transmission errors, based on machine tool settings for spiral bevel generators. Next,
TCA techniques were extended to models of theoretical point contact of tooth flanks [23] and to
models of line contact of tooth flanks [24].

Negative influence of misalignments and deflections in gear transmission on its mechanical prop-
erties can be compensated by modification of tooth flanks [12, 30, 35, 41, 43]. This method, being one
of the most effective methods of improving kinematic and strength properties of gear transmission,
requires proper selection of the type and parameters of tooth flank modification (Fig. 2).

Tooth flanks after such modification differ from theoretical tooth flanks based on involutes. In
the case of complex three-dimensional modification of gear tooth flanks their shape is obtained
by machining on machine tools with Computer Numerical Control (CNC). After machining, tooth
flanks are being measured (Fig. 3) on general purpose computer controlled Coordinate Measuring
Machines (CMM) or on specialized CMMs, linked with CNC machine tools for gears. After veri-
fication, if any corrections are necessary, the gear is machined once again, until required shape of
tooth flanks is obtained. Thus, in this manufacturing process, optimization of machine tool settings
is done on the basis of measurement data [42]. According to this approach, the settings are changed
in such a way that the resulting deviations of the machined gear tooth surface from the ideal one
are minimized. These deviations and tooth flanks themselves are determined numerically [25] and
compared with real surfaces. Due to flexibility of such approach esp., when CNC machine tool with
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Fig. 2. Modification of tooth flanks by the vector function ||[AKmoda(rasi, bari)|| determined in discrete
points — nodes of the mesh of curves at the boundary surfaces: (a) crowning tooth flanks along tooth width,
(b) modification function ||Akmod (7, basi)||, (c) shapes of modified and non-modified tooth flanks
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Fig. 3. Measurements of gear tooth flank on the CMM (a), with relationship between the tooth flank and
the probe (b)

5-axes control is used, this manufacturing process can be applied to wide range of complex gear
tooth surfaces [34, 46].

In order to reconstruct from measurements a real tooth surface of an arbitrary gear, a method
was proposed [25], which fitts a second order polynomial surface to the error surface, using linear re-
gression. Another approach, based on fitting a tensor product surface to the measurement data [19]
uses the idea of parametric patches [11] and parametric splines. Although large effort has been put
into the TCA, there are still uncertainties and opened questions concerning: (i) choice of surface
models for suitable description of inspection data representing tooth geometry; (ii) improvement
of ill-conditioned data that may occur after performing measurements on CMM gear inspection
machines; (iii) effective calculation of relative location of numerically determined modified tooth
surfaces or real surfaces measured in discrete points on the CMM gear inspection machines; (iv) ac-
curacy of estimation of contact area and contact stresses over curved real tooth surfaces, represented
in discrete form, etc.

Application of interpolation methods to measurement data may lead to highly nonlinear surface
models incorporating either high degree polynomials or low degree curves with a set of related control
points, which have to be determined in numerical way. They must be calculated with consideration to
the fact that interpolating curve must pass through all measured points. These calculations, however,
may lead to very complex surface models, hard to be handled in further strength calculations
for TCA. Therefore, smoothing techniques, combined with estimation methods are being used to
establish less complex surface models, representing important boundaries of the model to be used
for TCA, including contact analysis with finite elements.
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2. MODELLING OF 3-DIMENSIONAL OBJECTS

If a body, which is to be modelled, is compound of simple 3-dimensional (3-D) objects as planes,
spheres, cylinders, cones etc., then its numerical representation can be found as a result of logical
combination of corresponding solid primitives. The main reasons for using 3-D solid primitives as
basis for geometrical modelling of any machine part are usually the design idea or a function, which
must be performed by the part, interaction with another part (e.g.: kinematic chains, parts of joints,
bearings and shafts, linking mechanisms, etc.) or predicted, optimal technology of manufacturing
of a part, etc. This kind of mathematical description of solid body is called Constructive Solid
Geometry (CSG) [5].

Very often (esp. when car bodies, fuselages, aeroengines, gears, etc., are being designed), geo-
metrical models and the following finite element models must be represented by complex boundary
surfaces, which are not entirely analytical. These surfaces usually have to meet certain requirements,
resulting from fluid dynamics, strength of materials, specific motion trajectory, etc. In such cases the
other method of solid modelling is used ~ Boundary Representation (BR) [5, 10, 11]. This method
allows definition of a solid body by description of basic and blending surfaces, playing the role of its
boundaries. The CSG an BR methods originated from different geometrical representations of 3-D
objects and were developed almost completely independently from each other, but they use similar
algorithms for surface modelling esp., for blending surfaces [10, 11, 45].

2.1. Mathematical description of complex surface

General phases of mathematical description of complex surface in BR scheme are:

1. determination of topology of curves laying on the surface, one set running fore and aft, the other
transversely, defining regular patches of rectangular form in topological sense; these surface
patches are usually limited by four or e.g., in degenerated cases, by three boundary continuous
curves;

2. measuring coordinates of nodes of the mesh on the physical model or calculating them from
cross-sectional real or virtual drawings of considered surface;

3. numerical approximation of the a.n. network of curves, meeting all required smoothness specifi-
cations;

4. filling the areas of surface patches by defining interpolation curves of constant parameter (e.g.:
u = const or v = const) or implementing known models of elementary surface patches [10, 11]
e.g.: Coon’s, Gregory’s, Bezier, B-Spline, etc.

Very often it is possible and suitable to define the mesh of curves as intersections of considered
surface with two families of planes, orthogonal to each other, consisting of parallel planes each. Then,
boundary curves of every surface patch are plane curves. Within this approach each surface patch
f(z1, z2) can be described in terms of two independent parameters z; and z3, measured along the
axes of considered plane coordinate system. Directrices of the mesh are plane curves: gz, = gz, (z2)
and hg, = hg,(z1). Each curve gz, , hy, is represented by equation y = y(z) and can be determined
by sequence of points (z;, ¥;), i = 1(1)n, where i = a(b)c denotes increment of variable ¢ from value
a with step b to value ¢ inclusively. The more precise and suitable approximation of boundary curves
for the assumed model of applied patch, the better representation of the whole complex surface can
be obtained.

2.2. Practically used methods of approximation of curves

Among many models of curves, used for interpolation of nonlinear functions, the most popular are
Lagrangean and Hermite polynomials, complex curves based on piecewise cubic Hermite interpo-
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lation, cubic splines and B-splines, including NURBS, etc. Some of them are more frequently used
for conventional interpolation problems, due their simple analytical definition and some are more
suitable for interactive surface or solid modelling (splines, NURBS, etc.).

Lagrangean polynomaials

Lagrangean interpolating polynomial is defined through the following formula [11],

pr(z) = ZLi(x) Yi, (1).
=0
where )
Li(z) = (g — 2o}z —m1) i [Eemi )2 — o) - {2~ 2n) 2)

(i —=wo)(zi' = or) = 22w = 24q) V- R PR

If n is a big number, then undesired oscillations may occur (i.e., local maximum and local
minimum values) at points z; € R, where p/ (z;) = 0. This trend will be stronger if the degree
of the Lagrangean interpolation polynomial and consequently the number of interpolation points
considerably increase [11].

Calculations which are necessary for determination of Lagrangean interpolating polynomials can
be simplified by the use of the divided differences method [29, 11]. Interpolation using divided
differences has an advantage in comparison with Lagrangean method, because if the necessary
preliminary work is done, the evaluation of the interpolating polynomial for a particular value of
z is very simple computationally. However, unstability of resulting Lagrangean polynomial is still
directly proportional to its degree.

Hermate polynomials

The more precise interpolation (especially over the areas between interpolating points) can be
achieved when not only coordinates of points z; , ¥; , ¢ = 1(1)n, but also first derivatives y. , i = 1(1)n
are known and used. This set of data forms suitable basis for designing interpolating polynomials
of 2n — 1 degree. The following Hermite’s formulas [11] can be used in this case,

pu(z) =) Hi(z)yi+ Y _ Hi(z)y;, (3)
szl =11
where
Hi(z) = [1 - 2Li(z:)(z — )] Li(z)  and  H(z) = (z — ;) L (x), (4)

L;(z) — Lagrangean interpolation coefficients.

Hermite polynomials enable more precise interpolation than Lagrangean polynomials, because
degree of polynomial is 2n — 1, which is distinctly bigger number than degree of Lagrangean interpo-
lating polynomial n — 1. Although the coordinates z;, y; , i = 1(1)n can be measured on a physical
model or found from cross-sectional drawings of a 3-D object with high accuracy, but tangent vectors
(gradients) could have big relative errors. This could lead to oscillations, which might amplify with
an increasing degree of interpolating polynomial. This disadvantage causes that in many cases it is
more profitable to use so-called piecewise Hermite interpolation based on low-degree polynomials.
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Piecewise cubic Hermite interpolation

In the simplest case, taking into consideration available information about the interpolated points:
P; = (zi, ¥i), Pis1 = (Tit1,¥i41) , ¢ = 1(1)n and about the first derivatives: Y, Yiy1 » represented by
tangent vectors P} and P}, , parametric cubic polynomial P(u) can be calculated. This polynomial
enables joining the sequence of points P;, i = 1(1)n with consideration of C? class of continuity.
It is based on interpolating Hermite functions (suitable basis for the composite curves) and can be
calculated through the following formulas [11],

P(u) = Lhoo(u), hot (w), ho (W), hus (w)] - [Py, Pisr, PL, P’ (5)
where
Pj(u) — vector containing coordinates of points; k=14,i+1; u€ (0,1);

hij — basic Hermite functions : hgo(u) = 2u? — 3u+1, ho(u)=—2u®+ 3u?,

hio(u) = u® — 2u® +u, hii(u) = TR Tt

With this method direction and length of tangent vector P in each interpolating point (z;, yi) as
well as continuity of slope at all data points can be forced and stabilized. Unfortunately, continuity
of second derivatives and hence, the continuity of curvature at nodal points can not be ensured. One
of the advantages of applying this method for curve and surface modelling is that surfaces based on
network of composite cubic interpolating polynomials may be smooth at each point. However, the
problem of stable and accurate evaluation of the necessary gradients is still unsolved. Unfortunately,
even the successive approximations of the gradients may give only rough estimates of tangent vectors
and the whole interpolating procedure will not be robust enough.

Cubic spline interpolation

Smooth interpolation of given data points (which are nodal points to the network of curves laying on
considered complex surface) can be done on the basis of low-degree polynomials, reducing undesired
side effects with oscillations. Such composite curves, spline curves [7, 11], are most frequently based
on cubic polynomials, which allow to keep the continuity of first and second derivatives (continuity of
tangent vectors and curvature required with consideration of structural and technological aspects)
at all nodal points. The cubic spline (a composite curve of cubic polynomials) f(z), which fitts
given data points, can be defined by the sequence of n + 1 points (z;, yi) (called knots), where
i = 0(1)n. On each interval (z;_1, z;) (called span) f(z) is a polynomial of a degree not higher
than 3. Furthermore, it is assumed that f(z;) = y; and first derivative f'(z;) as well as the second
derivative f”(z;) are continuous at all nodes z; , where i = 1(1)n — 1. Briefly, this curve has minimal
mean squared curvature. In geometrical sense this is the smoothest curve of all possible curves that
pass through the given sequence of fixed points [7]. For completeness of interpolating spline definition
some additional information is necessary to make the appropriate system of equations solvable. It
depends on different (mostly geometrical) considerations of specific application: (i) built-in ends with
a specified first derivatives f'(zo) = fg, f'(zn) = fy; (ii) free ends — no curvature of the spline at zg
and , , i.e.. f"(z¢) = f"(zn) = 0; (iii) defined curvature at the ends: f"(zo) = W T e
(iv) continuity of third degree derivative at the end spans (thus, two successive interpolated spans
at each end of the spline are the same cubic functions). Splines of degree higher than 3 are used
rarely, when derivatives of the third or higher orders are also required to be continuous at each
node.

Although the splines have great advantages with continuous curvature, they have also some
limitations [7, 11]: (i) problems with stability of computations arise when vertical tangents or near
vertical tangents occur; (ii) numerical procedure may fail or lead to undesired oscillations in the
case of interpolation of curve with discontinuity in second derivative; (iii) local modification of given
data is associated with re-computations of the entire splines. First two problems can be alleviated by
local redefinition of axes. The third one can be avoided by the use of fundamental splines (B-splines).
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B-spline interpolation

B-splines have been developed [7, 10, 36] and implemented for a number of geometrical modellers in
Computer Aided Engineering (CAE) systems, especially for CAD/CAM systems used in automo-
tive engineering and in aviation engineering. B-spline curves and B-spline surfaces are widely used
because they exhibit the following advantages: (i) they allow proper description of the curve based
on relatively small amount of input data, (ii) each B-spline curve lies within the control polygon
(control net) defined by control points (the convex hull property), (iii) displacement of a single
control point influences the modelled curve only locally (this is due to local non-zero values of the
blending functions defining B-spline), (iv) B-spline representation of curve or surface is invariant
under an affine map, which is necessary for modelling of 3D objects, (v) B-spline representation has
variation diminishing property.

Parametric representation of a functional B-spline curve is defined in terms of its blending func-
tions by the following formula [7, 10, 36],

n
T T
£(t) = [f(t)as F(D)y, F(0):)" =D Lt aig, aiz) Nig(t), (6)
LD

where

a =l ey, ai,ZJT — control points defining B-spline control polygon (control coefficients),

N; (t) — related blending functions of degree k — 1,

| | - row vector, | |7 - transposition of vector | |.

According to its definition, a spline is of order k or degree k — 1, when it is defined as a piecewise
k — 1 degree polynomial that is C*¥~2 continuous. This also means that: (i) the degree of the
polynomial does not exceed k — 1 inside each (t;, t;+1) interval, (ii) the first £ — 2 derivatives of
considered spline are continuous.

One way for the calculation of blending functions N; x(t) is to use the Mansfield-Cox-de Boor
“formula. Mathematical representation of this recursive formula is [7, 10]

. e HilbaSit Sibitiy
Nia(t) = {0, otherwise, o
t—t b -1
Ni(t) = ———N; j—1(t) + ————Nit15-1(t), k> 1 )
tivk—1—ti (e Sl e |

The most commonly used B-splines are of order k=4. They are formed of cubic B-splines with C*?
continuity at the nodal points. B-splines could be of non-rational or rational type. The rational
B-splines are more general than non-rational ones and are defined in terms of rational functions.
If the elements of knot vector |¢;, ..., ti+x]| are spaced equally, the B-spline is called a uniform
B-spline. This equal spacing between the knots is easy to use for further calculations, but in the
case of highly unevenly spaced data points undesirable oscillations may occur when using uniform
B-spline representation. In such case, in order to better control the shape in the design process,
a non-uniform knot spacing should be used and the Non-Uniform Rational B-Splines (NURBS)
should be generated, based on input data [10]

> wia; N (t)
2 e (9)
> w; NF(t)
J
where
wj — weights, w; > 0 and w,, > 0, w; > 0 for j = 2(1)n — 1,
a; — vector of nodes of control polygon,

Nik(t) — B-spline basis functions of degree k.



578 A. Kawalec

Weights w; introduced in the above equation play the role of additional shape parameters. They
affect the modelled curve or surface only locally. As the weight w; increases, the curve is pulled
towards the control point a; . When w; decreases, the curve is pushed away from the control point a; .
Therefore, modification of the modelled curve or surface can be done much more precisely, than in
the case of non-rational approach. Although free form curve or surface modelling with the use of
NURBS gives a lot of flexibility and has advantages in interactive geometric modelling, calculation
of suitable knots and weights to obtain the curve or surface passing through a given set of points
requires certain computational effort. In addition to this, it is very important to select correctly the
order of NURBS for particular set of given data points. The higher the order is, the smoother the
modelled curve or surface could be, but at the same time the distance between interpolated points
and original measured data points will be greater [6].

The methods of curve modelling, presented above, are useful for interpolation of given data
points. However, in the case of measurement data, which by their nature contain statistical or other
fluctuations, the above procedures might amplify them. Therefore, rather than using interpolation
techniques, certain estimation methods with inherent smoothing properties can be used for creating
numerical representation of complex boundary surface. In order to diminish or even to omit unde-
sired oscillations, optimal regularization of input data in combination with estimation techniques
can be applied.

Estimation and smoothing of data

Design of interpolating curve, which accurately passes through all the given points (z;,;) is rea-
sonable, if the coordinates of points are reliable. However, when the points (z;,v;) represent some
experimental data, resulting from non-geometrical calculations, the methods of approximation of
given set of points by designing the curve passing through all the data points could lead to undesired
side effects. When given points contain statistical or other fluctuations, the procedures that were
described above might lead to significant amplification of them.

The most frequently used methods of estimation are the Least Squares (LS) and the Maximum
Probability (MP) methods, which are very effective for wide range of problems. Therefore, they
are also well known. It should be noticed that in standard conditions, the MP estimators are
asymptotically unbiased, normally distributed and effective. At the same time, the MP method
requires, before the estimation, all the information about distribution of measured parameters, which
is usually not available. Therefore, in many cases, normal distributions of measurements are assumed.
Then, the MP method converts to the LS method and MP estimators become LS estimators [9, 33]. It
can be proved [22, 33| that LS estimators are the best estimators in the whole class of linear unbiased
estimators. The advantage of the LS method lies in its simplicity of practical realization and in
possibility of application of corresponding recurrent algorithms, which are particularly useful in the
cases of on-line estimation of mathematical models of processes changing in time (e.g., estimation
during measurements). On the other hand, the LS method is very sensitive to significant noise in
experimental data, especially when the data contain unnormal random errors (positive or negative
peaks). It should be noticed that experimental data can contain up to 10%-20% of such peaks.
Then, corresponding curves, obtained by the LS method, are significantly shifted in direction to
the a.n. peaks. Therefore, the LS method should be applied in combination with the high quality
digital filters, which reduce related influence of the peaks on final results of estimation [2, 15].
Unfortunately, these filters are often not as effective as necessary in smoothing or throwing away
the a.n. undesired peaks from the experimental data.

The necessity of improvement of stability of parametric estimation caused development of the
robust estimation methods [9, 13]. The most frequently used robust estimation methods are methods
related to the quasi-probable estimators (M-estimators), proposed by P.J. Huber [13], linear combi-
nations of the succeeding statistics (L-estimators) and the estimators based on ordering techniques
(R-estimators). For example, Huber [13] proposed the following method of determination of stable
estimators of parameter #. Common probability density function ¢(é, z) of variables # and x, where
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z; denotes measurements, belongs to the certain class of functions. The principle idea lies in finding
such a function 1Py = 0p(0, x)/00, describing the method of estimation, that asymptotic dispersion
D(vg, ) does not exceed some minimal value for any arbitrary function ¢, i.e.

D(¢9a QO) < D(1/10 ) (»09)3 where D(’lljﬂ y ‘Pe) =i HtgnmSXD(lb, (10) (10)

This general approach to robust estimation of mathematical models was successfully used for wide
range of regression problems [9, 13, 27], including time series analysis, signal processing, filtering
of measurement data, etc. Consequently, M-estimators of regression, denoted BM , can be found as
a solution of the following optimization,

m n
nb;an yi— Y Bixij :ﬂmin > pled), (11)
toi=1 j=1 G LY, -

where p(e;) = yi — Z?:l Bjzij — residuals, and p(n) - chosen function. Properties of estimators

B depend on function p(n). In order to fulfil the requirements related to bias of estimators,
effectiveness of estimation and the other, additional conditions are considered. The most important
is an increment of density function p() sustained smaller than quadratic function n? (for p(n) = n?
this method becomes LS method). Depending on the function p(n) different M-estimators can
be obtained. Conditions minimum of the a.n. sum lead to equations expressing that each partial
derivative 9(-)/0f; becomes zero, i.e.

m n

> v {vi— X itk dis (12)
i=1 =1

Main features of the a.n. estimators and the other robust estimators lie in small bias in estimate
and in good effectiveness. In addition, they are only slightly sensitive to the change of measured
parameters’ distributions. The estimators, which are effective for the measured data, characterized
by distributions with “heavy ends”, are also stable in relation to the measured data with significant
occasional random errors. However, in the case of normal distributions of measured data, robust
estimators are less effective, than the methods originally oriented to data distributions with “light
ends”.

With the development of computer aided measurement systems the need to use more versatile
methods of estimation increases. An original method of calculations of M-estimators was proposed
by W.I. Mudrov and W.A. Kuschko [28] — method of variationally-weighted squared approxima-
tions. This method is a good generalization of both standard LS and minimum moduli methods.
Based on repeated application of the weighted LS with changing weights, this method allows to
obtain significantly probable estimators. This fact confirms the role of the LS method in estimation
of mathematical models in the case of standard, normal distributions, as well as in the case of
distributions with “heavy ends”.

Application of digital filtering and smoothing of measured data partially diminishes the a.n. ef-
fects caused by random errors. At the same time, both filtering and smoothing significantly increase
collinearities between independent variables (input signals) in regression models. As a result, simul-
taneously increase both multicollinearity of measurement matrix and multicollinearity of the Fisher
information matriz (FIM), which becomes in such case ill-conditioned. Application of standard
estimation methods to such ill-conditioned data usually leads to unstable results.

In order to diminish influence of multicollinearity on stability of estimation, grouping of different
independent parameters is usually being done. Application of such clustering techniques allows to
estimate only certain sums of regressors. This is very often not sufficient to create corresponding
mathematical model of a surface. Necessity of separation of regressors is specially significant for
obtaining proper results when using CNC’s or CMM’s. Such system must be created on the basis of



580 A. Kawalec

correct mathematical model adequately describing real object, which should be measured, modelled
or controlled.

Generally, inversion of ill-conditioned FIM is an incorrect problem. Effective methods of solution
of the incorrect problems were created by A.N. Tikchonov [37] and his co-workers. These so-called
reqularization algorithms make use of certain a priori information about smoothness, monotony and
convexity of the solution being sought for. Regularization algorithms, applied to ill-conditioned data,
allow to obtain biased estimators, which are more stable than standard LS estimators. However, it
should be noticed that in every particular case so-called reqularization parameters should be chosen
individually.

Other methods of stable estimation also have some disadvantages. For example, in the case of
ridge regression estimators it was not proved, in which way ridge parameter should be chosen. For
this purpose, so-called trace of the ridge can be analyzed in the area surrounding this value of
the ridge trace, for which the ridge regression estimator changes only very slightly. In the case
of attracting estimators, optimal value of attracting parameter can be determined in explicit way
(James—Stain estimator). However, existing methods of selection of the regularization parameter
make the corresponding estimators nonlinear. The a.n. disadvantages limit the use of regularization
methods in practice of estimation of mathematical models.

The most believable data and recommendations for proper selection of tooth flank modification
and for proper gear design and manufacturing, in general, follow from experimental and operational
investigations of real gear transmissions, performed in real working conditions. However, these in-
vestigations can be done only after a prototype of gear transmission is made. In addition to this,
they are time-consuming and expensive. Therefore, further development in surface modelling of real
tooth flanks, combined with finite element analysis, leading to proper TCA of gear transmission
under load, is still an up-to-date problem.

In this work analytical and numerical representation of surfaces applicable for modelling of tooth
flanks is presented. It is useful for determination of tooth contact area in gear transmission with
modified tooth flanks. The advantage of the presented method over the methods given in the papers
cited above lies in entirely discrete representation of tooth flanks and puts special attention to the
situations, when measurement data is ill-conditioned. It can be used at the design stage of gear
transmission and can be helpful in estimation of tooth flanks model, and furthermore — in proper
selection of the type and parameters of tooth flank modification defined by discrete data.

3. PROBLEMS LEADING TO ILL-CONDITIONED MATRICES

One of the most frequent reasons for generation of ill-conditioned matrices is interpolation with
high degree polynomials. Let us assume sequence of data points (z;, y;), ¢ = 0(1)n, which should
be approximated by the polynomial of n degree, passing through all of them,

d(z) = ap + a1z + L LTS TR R A O | (13)
The following equation must be solved,

XA =Y, (14)
where:

X - Vandermonde’s matrix containing information about mf » X € Mny1)x(n+1) »

1 zo adi-s =

Lngyiont aeiigh
X 1 1 :

[y m% o o

A e M"t! and A = |ag, a1, ..., an|’ — vector of unknown coefficients,
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YeM'! and Y = |y, 11, .:0% ynJT — vector of known values y; ,
M, xn — set of matrices with m rows and n columns,

M™ — set of vectors with dimension m.

In the case of a big number of points and correspondingly — high degree of polynomial ¢(z),
matrix X becomes ill-conditioned. The way to omit influence of the data fluctuations on the result
is to design an approximating function, passing close to all the given points and estimate the
polynomial coefficients a;, i = 0(1)n from the Least Squares Method (LSM) [9, 22, 33|,

A=F1XTy, (15)

where F = XTX - Fisher information matrix, F € M@ui1)x(n+1) -

In the case of a high degree of approximating polynomial, some of the columns or rows of the
matrix F are almost parallel vectors. This high correlation causes so-called multicollinearity of the
matrix F, which is then ill-conditioned.

4. AN INFLUENCE OF ERRORS ON THE SOLUTION OF MATRIX EQUATION

Assuming that nonsingular matrix X € M, «,, has elements distorted by éX € M,,«.,» and vector
of known values Y € M™ has strict information, then instead of solving X A = Y for vector of
unknowns A € M™, the following equation must be solved,

(X + 6X)(A +6A) =Y. (16)

With Euclid norm of the matrix X and vector A, respectively,

XA_ n
1% = max H INERIRS a7
do=1

A#0

and considering condition number of matrix X defined as [38§]
cond(X) = [|IX[| - [IX 7],

the following inequality can be obtained,

Lllﬁ;—é—”” < cond(X + 6X) % : (18)
If vector Y is also distorted by Y € M™, then Eq. (16) becomes

(X +6X)(A+0A)=Y +0Y. (19)
Equation (19) yields

SA = 0A, +6A,, (20)

where
6A; = (X+4+0X)"'Y-A  and Ay =(X+6X)loY.

Euclid norm of vector §A; could be limited by inequality analogous to Ineq. (18). Taking into
consideration that || X + 6X|| > ||X]| and ||X]| - |A| = || X A|| it can be shown that

16As) 19Y]
< cond(X + 6X) —- . 21
1A e (1)
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From Inegs. (18) and (21) the following result can be obtained:

[SA] ( 16X]] II5YII>
—— < cond(X + 6X : 22
aq = X+ X raxy * et
For real symmetrical matrix F € My, its condition number can be estimated as [44]
Amax[F]
cond(F) = ——— 23
B = ] (23)

where );, ¢ = 1(1)n — eigenvalues of matrix F.

From Ineq. (22) it follows that condition number (by definition — not less than 1) of matrix
which has to be inverted plays the role of multiplicator for relative errors of computed coefficients
of mathematical model representing boundary surface e.g., tooth flank surface (measured surface or
surface generated in numerical way with consideration to intentionally introduced modifications of
the surface). In addition to this, from Eq. (23) it follows that the most significant factor influencing
the distortion of estimated coefficients is the minimal eigenvalue Ay ax of the considered matrix.

5. AN ANALYSIS OF MULTICOLLINEARITY

For better understanding the problem of multicollinearity, related to high condition number of an
arbitrary matrix, which must be inverted, it can be assumed that two vectors (columns x;, x;,
i # j, of measurement matrix X) are almost parallel. Then minimal eigenvalue Amin of Fisher
matrix X7'X is very small.

By definition,

XTX Vi = Min Vi (24)

where Vuin — eigenvector associated with Amin ; VI =N = 1.
For very small A\yin from Eq. (24) we can obtain || X V> ~ 0, i.e. XV =~ 0, which could be
rewritten in the following form,

Y Xjvpre 0 (25)
s=1

where X; — i-th column of matrix X, X; € M™, and v; — i-th element of eigenvector Vpn of the
matrix XTX.
Regarding to the formula (25) for n = 2 and considering that vectors X;, X, are normalized,
ie |X1? =1, X2l = 1, we can get
v .
cos(X; , Xg) ~ =05 (26)
V2
From Eq. (26) it follows that elements of eigenvector Vi;n associated with the minimal eigenvalue
Amin = 0 of Fisher matrix X7 X play the role of weights, informing about the rate of multicollinearity
of columns X .

6. STABLE PARAMETRIC ESTIMATION OF MATHEMATICAL MODEL
OF BOUNDARY CURVE FROM THE MESH

6.1. Regularization of matrix containing coordinates of the nodes

Let us analyze a set of points (z;,y;), 1 = 1(1)m, which are measured on a cross-section of a physical
model and represent a curve on the surface — one of the curves defining the mesh, filled by surface
patches. Estimation of the curve starts from the equation

V=KA+R (27)
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where

Y — vector of measured coordinates y;, i=1(1)m, Y € M™,
X — matrix of measured or calculated coordinates x{ (measurement matrix), X € M,,xn,
A — vector of unknown coefficients, A € M",

R — vector of measurement errors, R € M™.

We assume that E[R] = 0 and D[R] = oI, where E[] - mathematical expectation, D[] -
mathematical variance, I, € M, xp and I,, = diag(1,1,...,1) — unit matrix; o > 0.

In order to improve the stability of estimation, we invent regularized matrix X = X + B,
where B € M,,,x, , which will be used for estimation instead of measurement matrix X. Additional
matrix B, designed in a way to diminish multicollinearities, has the following structure,

B=¢QS”, (28)
where

e — small real number, related to the accuracy of measurements and accuracy of computation
on particular computer;

Q — vector of coefficients of regularization, Q € M™;

S — vector, elements of which are proportional to the collinearity of regressors, S € M™.

Based on Eq. (28) and on LS approach, the vector of estimators A g can be calculated from the
following formula [14],

Ap={X X)'RTY, (29)

Optimal values for regularization matrix B could be found as a result of minimization of the spherical
norm of matrix B with condition put on the minimal eigenvalue of the Fisher matrix. Therefore,
considering tr[B? B] - trace of matrix BT B — for a spherical norm ||B||? of matrix B, we formulate
the following functional,

J = tr [BT B] — p {Ommin [XT X] - 2"}, (30)
where

tr[F] = .1, fii — trace of matrix F, F € My, ,

p — Lagrangean multiplicator,

S\min[XT X] — minimal eigenvalue of matrix X7 X,

X = Xin[XT X] 7, 7 >0,

A* — assumed minimal eigenvalue of regularized Fisher matrix.
Matrix B can be written in the following form

Be=ec-B

where e still denotes a small real number.
Considering the theorem of perturbation of eigenvalue [21, 44], we can obtain

Amin [XT X] = Amin [XT X] + € Amin [XT B’ + BT X] + 0(¢?). (31)
From Eq. (31) and from Egs. (28), (30) we get

T
)

J =t [2(QST)" (QST)] — 4 [VEa (XTe QST + 8QTeX) Vinin — 1] (32)
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Equation (32) can be rewritten in the following form,
J=e QI ISI* — (€2 VinX QS  Vinin =), (33)

where: Vnin — eigenvector related to minimal eigenvalue )\m;n[XT Xl Vi E M.
It could be easily shown that minimum of functional J from Eq. (33) can be achieved for the
following values,

M STVminXVmin
Q= ) 34
AHE e
g - NvginXTQVmin ; (35)
elQl?
v =2eVE, XTQSTViin - (36)

From Egs. (34), (35) we can obtain
Q = XVnin . (37)
Combining Egs. (37), (35) and (36) yields

& 7Vmin
B, s d S=—T—"_—=.
A AR PR 2emin [XTX] (38)
Then, considering Egs. (28), (37) and (38), we arrive at
B— {)x* — Amin [XT X] } XV in Vgin . (39)

2min [XT X]

In the case when L-iterated minimal eigenvalue of the Fisher information matrix is a very small
number, then optimal matrix of regularization can be rewritten in the following form,

b
B = LXV, V!
L ; 2/\1 1Vi (40)
where )\i = )\i [XT X]
Spherical norm of regularization matrix B can be found as

tr [(A* Rl Fooatn N /\min]

B 9 3 min
B S (41)
whiere Kesin = Ainfh” X
Taking into consideration that Amax[B” B] < tr[B” B], we can obtain
I SN
>\max [BTB] S (—ﬂ— . (42)
4)\min
From the theorem [31] limiting the trace of matrix DT D, where D € M;,xp,, i.e. from
n
tr [DTD] > X (43)
i=1

and from the known inequality

n
> >0 (44)
=1
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we can get

(A* = Amin) tr [V1 VT XT X]

Amax [2X7 B] < . (45)
Considering that
(aeM"AbeM") = tr[ab’] =a’ b,
we obtain from Ineq. (45) the following inequality,
Amax [XT B 4+ BT X] < A — Amin (X7 X] . (46)

The maximal eigenvalue of the matrix [X” X] from Eq. (29) can be limited by the following
inequality,

Amax [XT X] < Amax [XT X] + Amax [BT B] + Amax [X7 B + BT X] . (47)
Therefore, from Eqs. (47), (42), (45) and (46) we can obtain
i B LIS b
Amax [XT X] < Amax [XT X] + Amin Hun + ( mm) . (48)
Amin 2>\min

From Ineq. (48) it can be concluded that
inas (R K} = Xy X X].

At the same time, minimal eigenvalue Apin [X” X] could be considerably increased (in relation to
it’s initial value Amin [XT X]).

The eigenvalue A*, which plays the role of control parameter for minimal eigenvalue of the FIM
in Egs. (39), (40), has to be chosen with regard to the following requirements,

ol : *\1T' *
AT =gy A*e(z\r,ilil,:lAmax) cond {[X +B(\Y)]" X+ B(A )]} . (49)

6.2. Limitations to the norm of difference between biased and unbiased LS estimators
of polynomials used for surface modelling

In order to find the limit to the norm of difference between biased and unbiased LS estimators of
polynomials used for surface modelling it will be assumed that estimators A are computed for initial
measurement matrix X and estimators A g are computed for regularized measurement matrix X in
accordance to the following formulas,

~

A=(XTX)' XY and . Ap= [(X+B)T (X+B)]_1 x+B)7TY. (50)

Denoting D = A — Ap and assuming the upper limit for the norm of matrix A as ||A||? < r2,
we can come to the following inequality, limiting the bias of estimators,

W [H] X2, [XT X] (1 +¢?) r?

min

Dl T
H] [det(H)]~

(51)

mm [

where H = (X + B)T (X + B) and H € M, «,, .

From Ineq. (51) it follows that the bias of regularized estimators has upper limit depending, first
of all, on the trace and determinant of regularized FIM as well as on the norm of the vector of
estimators.
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6.3. Numerical example of robust estimation with regularized matrix

Geometrical data obtained from measurements of gear tooth flanks can be interpreted as signals,
representing (in three coordinates) the shape of considered tooth flank. Additional regularization
matrix B can be determined on the basis of measurements made on representative piece of tooth
flank in direction, in which the whole measurement procedure should be performed.

First, measurement matrix X and Fisher information matrix XT X with its minimal eigenvalue
Amin [X? X] and corresponding eigenvector Vi, should be determined. Then, based on Egs. (39) or
(40), optimal regularization matrix B, for single minimal eigenvalue Amin [X” X] or By, for L-iterated
minimal eigenvalue, should be computed, respectively. Assumed minimal eigenvalue A\*, necessary
for computation of matrix B or matrix Bz, , should be chosen in accordance with the requirement
given by Eq. (49). Columns of matrix B can be interpreted as supplementary, regularizing noise,
added to corresponding columns of measurement matrix X.

For the case of measurement matrix X with absolute values of the coefficients of correlation [9, 27,
33] between the columns X,; and X, , 7 # j, bigger than 0.8, an influence of ratio k& = onoise/signal »
where o2 - variation of regularizing noise, on condition cond(X” X) and on determinant det(XT X)
of the regularized FIM was examined on a model and shown in Fig. 4.

log[det(f(T X1, log[cond(f(T X)]

0.0 18.0
= {2804 e s L
~~ : i ‘x
e 6044 S 1
e | og[det(X" X)] S
T 90/ ! - v E 90 3
\ ) ' | wiem T )
T s logleond X" | gy 8
VN T PO st Lo T R e

Coefficient k=0yise/Tignal

Fig. 4. An influence of ratio k = onoise/Tsignal On stability of parametric estimation with use of the regularized
LS method by randomization in space of the measurement matrix; X — randomized measurement matrix

log[RSS],  NA-Agl’

0.0 e 3.0
B0 i 23
— -6.0 ! 28 ..
170] ! -
wn ! o
& 90 i 15 <
g : : <
i P G | 1.0
SyTved e pudelSeld 1| = log[RSS]
B e L . Hos
S | === nAGARl
-18.0 '

Coefficient  k=04ise/Osignal

Fig. 5. An influence of ratio k = onoise/Tsignal 0N accuracy of the parametric estimation in the case of ran-
domized in space measurement matrix; RSS - residual sum of squares; A — vector of coefficients of considered
model; A — vector of estimated coefficients; ||[]|| — Euclidean norm of vector []
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Corresponding influence of ratio k = oyise/ Osignal ON the Euclidean norm of the bias of estimators

|A — Ag|?> and on the residual sum of squares (RSS) [9, 27, 33] was also investigated numerically
on the same model with strong collinearities in measurement matrix X (Fig. 5).

An analysis of the related FIM’s eigenvectors and eigenvalues showed that its minimal eigenvalue
was very close to zero i.e., Amin & 0. Optimal randomization of the measurements gave the estimators
obtained by randomized LS method app. 5 times more accurate with the condition cond(X” X) of
the randomized FIM app. 10° times less, than in the case of conventional standard LS estimation.

7. CONCLUSIONS

In the cases, when the smoothness of surface is required, as it takes place with modelling of conjugate
surfaces of tooth flanks, and standard procedures lead to undesired fluctuations of curves and asso-
ciated surfaces, it is profitable to interpolate them by models of curves and surfaces, which do not fit
the points but pass very close to given set of points. If standard LS method gives unstable coefficients
because of ill-conditioned Fisher matrix (containing strong or almost strong multicollinearities), it
is better to regularize coordinates of the nodes from the mesh of curves laying on considered sur-
face with the optimal matrix B. Significant improvement of the stability of estimation, and related
surface modelling can be achieved when parameters of regularization are chosen with consideration
of the minimal possible condition of the Fisher information matrix. Presented method is useful for
determination of tooth contact area in gear transmissions with tooth flanks defined by discrete data
e.g., tooth flanks with modified shape.
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