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The paper discusses various classes of solution sets for linear interval systems of equations, and their
properties. Interval methods constitute an important mathematical and computational tool for modelling
real-world systems (especially mechanical) with (bounded) uncertainties of parameters, and for controlling
rounding errors in computations. They are in principle much simpler than general probabilistic or fuzzy
set formulation, while in the same time they conform very well with many practical situations. Linear
interval systems constitute an important subclass of such interval models, still in the process of continuous
development. Two important problems in this area are discussed in more detail—the classification of so-
called united solution sets, and the problem of overestimation of interval enclosures (in the context of
linear systems of equations called also a matriz coefficient dependence problem).

1. INTRODUCTION

Interval computation methods, starting from an early paper by Warmus [26], through a series of
monographs and textbooks [1, 4, 16, 17], grew into a well-established field providing mathematical
and computational tools for modelling systems with uncertainties, see e.g. [14], and for fully control-
ling rounding errors in computation. In this approach, an uncertain (real) number is represented by
an interval (a connected bounded subset) of real numbers which presumably contains the unknown
exact value of the number in question. Thus, the uncertainty is bounded by the size of the interval;
in addition, no commitment to a particular probability distribution (or its estimate) of the various
alternative values within the interval needs to be made. This model is thus in principle much simpler
than general probabilistic or fuzzy set formulations of uncertainty. Despite its simplicity, it conforms
very well with many practical situations, like tolerance handling in mechanics or managing rounding
errors in numerical computations. Also, so recently popular fuzzy set approach uses more and more
often the interval formulations and methods. First, intervals can be considered as a special kind
of a fuzzy set membership function (a “square-wave” membership function). Second, the so-called
a-cut approach [3, 25] to handle more complex membership functions is based on replacing a fuzzy
set problem with a set of interval problems: every interval problem is obtained by thresholding the
original fuzzy set membership function at some value a of the function, 0 < o < 1.

The problems of modeling uncertainty and of reliable computing are also very important issues
in computational analysis of mechanical structures, hence the importance of interval computation
methods in this application area becomes recently widely recognized. This is signified, among others,
by the growing number of publications [7, 14, 15, 19, 25]. The basic, and very important subfield of
computational methods for mechanical applications concerns analysis of linear mechanical systems
with parameter uncertainties. Here, the mathematical model of the problem is usually formulated
as a system of linear equations. In the interval formulation, the coefficients of the system matrix
and right-hand side are intervals, and hence we have the problem of solving a system of interval
linear equations. The general theory of solving such systems is considerably advanced, see [5, 6, 14,
17, 18, 20, 21, 22, 23, 24], although the demands of practical applications still uncover new gaps
in the theory and in development of practical computational algorithms, see e.g. the discussion
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of some of these problems in [14]. One set of problems here comes from the fact that the very
notion of solution to a system of interval linear equations is rather far from being obvious, or at
least is much more complicated than for the ordinary, noninterval linear systems. Depending on the
purpose or application, different definitions of the solution to such a system are useful. In most of
the interesting cases, we get sets of solutions, which come in a large variety of shapes, often quite
complex and hard to calculate or characterize exactly. Therefore, from a practical point of view, it
is crucial to work out comprehensive understanding of both the possible variety of definitions and
shapes of these solution sets, and the variety of available practical methods for finding tractable
approximations to them. Little work on characterization of shapes of these solution sets has been
done. Some basic findings are scattered over various sources, e.g. [5, 14, 22|, while seemingly little
work has been devoted exclusively to that problem [2]. This paper aims to be another step in this
general direction.

The paper starts with a brief introduction to interval arithmetic and systems of linear interval
equations. Then, the basic types of solutions to these systems are presented. The most important
in today’s practical applications is the so-called united solution set (USS), hence the main part of
the paper is devoted to it. We show diagrammatically the basic construction of the USS, various
approximations to it, as well as a basic classification (and certain computational properties) of the
diverse shapes of such sets. Next, the general problem of large practical importance, especially in
mechanical applications, namely the overestimation problem of interval enclosures is discussed (in
the context of linear interval systems it is usually called a matriz coefficient dependence problem).
The discussion leads to the formulation of a so-called parametric solution set and its special cases
for linear and symmetric coefficient dependence.

As mentioned above, a great deal of the results reported in the paper is presented or illustrated
graphically. The graphical examples shown are all (at most) two-dimensional; however, in most
cases the generalization to more dimensions is quite straightforward. Graphical (or, more precisely,
diagrammatic) methods gain popularity recently, both for presenting and for discovering scientific
facts [9], including facts about interval arithmetic [10, 11, 12, 13]. The classification of shapes
and other properties of interval solution sets seems to be especially well suited for handling by
diagrammatic methods. They offer more comprehensible characterization and understanding of the
entities and relations in this domain, hence their adoption in this investigation by the authors.

2. INTERVALS AND INTERVAL ARITHMETIC

The notation used in this paper in general follows the standard conventions of interval literature,
see e.g. [1, 4, 16, 17], with some minor modifications and additions. Modifications consist of wider
use of operator notation instead of functional notation (in order to minimise the number of super-
fluous parentheses in formulas). Additions constitute the introduction of the “circumflex” symbol
for interval radius, as well as an occasional use of the shorthand “£” constructor, and alternative
variants of symbols for the TSS and CSS solution sets (see Sec. 3).

Usually, an interval is defined as a pair of (comparable) elements of some (at least partially)
ordered set. In this paper we consider only real intervals, i.e. intervals defined over the set of real
numbers R. Also, for our purposes we can identify an interval with the set of elements lying between
its endpoints (including the endpoints). A proper real interval z (or an interval z if no confusion
arises) is thus defined as a subset of the set of real numbers R such that

z=[z.8l={E Rz ESEH

where z < Z, and z = infz, T = supz are endpoints of the interval z. By  we shall denote any
element of the interval z. The set of all (real) intervals is denoted by IR and called a (real) interval
space. The interval is called thick if z < Z, and thin (or point) interval if z = Z. For most purposes
thin intervals can be identified with corresponding real numbers.
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For an interval = the midpoint, radius, magnitude (or absolute value) and mignitude are defined,
respectively, as follows,

i =midg = (T +2)/2,

t=radz=(T—2)/2,

|z| = mag z = max(|z|, [7]),

(z) = migz = min(|z|,|Z|]) if 0¢z, (z)=0 otherwise.

Interval can be also expressed in terms of its midpoint and radius—this is a so-called centered
formulation,

g=%-2,F43P=2+ A= L &, where A =[-1,+1].

The notation using the A interval was introduced by Warmus as early as in 1956 [26] but it is not
in general use today; the “£” notation we introduce in this paper as a convenient shorthand.

All operations and functions defined on reals may be naturally extended to cover interval operands
according to the general formula

zoy={Zoy|Z €7 €y}, )

f(ﬂ')l,(UQ,... ,:L‘n) = {f(.’f?l,:frg,. 54 ,in) | T & Tinlimdl, 2o ios ,n}.
For many operations, including a standard arithmetic operations of addition, subtraction, multipli-
cation and division, the resulting set is also an interval that can be conveniently defined in terms
of endpoints (or midpoint and radius) of the argument intervals,

z+y=[z+y,T+7] =@ +9) £ (@ +9),

—z=[-%,—z]=-%F+%,

z-y=z+(-y)=[z-5,T-yl =@ -9 = (@+9), (2)

Ay [mln(iy» EQ, zy, 'ZL-':U) ) max(&y, Ega Ty, Ty ] )

gly=z-[1/7,1)y] =z -y/yy==z-y/ (5> —9*) if 0¢y, undefined otherwise.
As can be seen from the definitions, subtraction and division of intervals are not the inverse oper-
ations to addition an multiplication, respectively, differently than for the corresponding operations

on reals. Other differences exist, most notably the distributive law a(b+ ¢) = ab+ ac does not hold
in general in interval arithmetic. Instead, we have the weaker subdistributive law,

z(y + 2) C zy + z2.

For any bounded set of real numbers s we can define a smallest interval enclosure of the set,
called also (interval) hull of the set

hull s = [inf s, sup s.

E.g., for a two-element set {a,} of real numbers we have hull{e, 8} = [min(e, 8), max(c, 8)].
Thus, when an application of some operation or function produces a set which is not an interval,
the hull of the set can be taken if there is a need to stay within interval arithmetic all the time
(which is usually the case). Hence, Egs. (1) are in practice used in the form

zoy=hull{Zo§|Z €z, j €y} (3)

f(:l:l,:Ez,...,:Bn) =hull{f(§31,.’f2,...,£fn),.’ii ET; 1= 1,2,...,’!1}.

Most operations on intervals can be extended to interval matrices, by applying them compo-
nentwise to all matrix elements. In particular, infimum, supremum, midpoint, radius, magnitude,
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intersection, addition and subtraction are so defined. An interval matrix A € IR™*™ can be also
considered as a set of real matrices, or as a matrix interval

A:{AGR"XMASASK}:[A,K]=A:tA; ARKRAAecR™™, A>0

Matrix multiplication is defined as for real matrices, with the hull operation used as the final step,
since the set {AB |A €A, Be B} in general may not be an interval matrix. It is also important to
remember that multlphcatlon of interval matrices (contrary to the non-interval matrices and scalar
intervals) is not associative, thus in general A(BC) # (AB)C, unless A and C are thin (i.e., real)
matrices.

The boundary (or the vertez set) of an interval matrix is a set of real matrices consisting of 2t
elements, where ¢ is the number of thick interval coefficients of A, and is defined as

vert A = {A € Ald;; € vertaij} = {A €Ala; € {Qij ; Ziij}} - (4)

Of course, for an interval  we have vert z = {z,7}.

3. SYSTEMS OF LINEAR INTERVAL EQUATIONS

Let us consider a linear interval system of equations with an interval coefficient matrix A € IR**"
and an interval right-hand side vector b € IR",

AxEP (5)

Such an equation can be considered either as a system of interval equations, or as a set of real
systems of equations. To these two interpretations correspond different concepts of a solution to
this equation. For the first interpretation, the most natural definition leads to a so-called algebraic
solution, which is simply an interval vector x that fulfills the above interval equation. However the
algebraic solution does not always exist, and is of little use in many practical applications of interval
equations. In most applications it is needed to look for all possible real vectors X that fulfill the set
of equations of the form Ax = b, where A € A and b € b are all possible combinations of real
matrices and right-hand side vectors contained in the interval matrices A and b. Such a definition
also parallels the natural extension of numerical operations and functions into the realm of intervals
according to Eq. (1). Now, the x we are looking for is not a single interval vector, but rather a set
of real vectors, not necessarily constituting a real interval. Therefore, it should be rather called
a solution set—more specifically in this case, a united solution set (USS, for short). It is defined as

$(A,b) = S33(A,b) = {Xx €R* | 3A € A) (Fbeb) Ax=b} = {Xx€R" | AxNb #0}. (6)
In certain applications, two other kinds of solution sets happen to be useful [23, 24]. These are:
_ a tolerable solution set (TSS),

Sc(A,b) = Sya(A,b) = {Xx €R" | (VA€ A) (Gbeb) Ax=b} = {X € R" | Ai C b}, (7)

— a controllable solution set (CSS),

$5(A,b) = Tav(A,b) = {X € K" | (Vb€ b) (3A € A) Ax =b} = {k € R* | Ax D b}. (8)

Both TSS and CSS usually are not interval vectors, similarly as for the case of USS. A graphic
illustration of the solution sets (6), (7) and (8) is shown in Fig. 1.
It is easy to see from the above definitions that always

Sc(A,b) CE(A,b) and  B5(A,b) C Z(A,b).
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a) USS
b) TSS
A%
S(A, b) ‘%\o
c) CSS

Fig. 1. Three kinds of solution sets for systems of linear interval equations: united solution set (a), tolerable
solution set (b) and controllable solution set (c)

Other important relations hold between the above solution sets. E.g., it was proven that TSS and
CSS cannot both be nonempty for a given nonsingular system of equations (except in the trivial
case when both TSS and CSS are equal and are actually a real vector). Hence, Fig. 1a is not fully
correct unless the set (A, b) is unbounded.

Other possible solution sets will be introduced in the sequel. However, only the united solution
set USS and its various approximations and characterizations will be considered in more detail.

4. UNITED SOLUTION SET

Usually, the set X(A,b) is not an interval vector, contrary to what may seem by analogy to the
system of real equations. It is of rather complicated shape (in general, not necessarily convex,
connected, or bounded). It is connected and bounded if the matrix A is regular. In this case, it
constitutes an n-dimensional polyhedron which is a sum of at most 2" convex polyhedrons obtained
as intersections of the set (A, b) with every of the 2™ orthants of the solution space Oz; ...z, [5].
The convez hull conv (A, b) of this set is a minimal convex polyhedron containing 3(A, b); as can
be easily seen, the vertices of the convex hull constitute a subset of vertices of the solution set.
Figure 2 shows an example of the diagrammatic construction and representation of the USS, in
the form developed by the first author of this paper (see also [13]). It shows in detail the structure
of the system of equations and constitutes a basis for further analysis of various properties and
types of solution sets (the details will be published separately). Every of the constituting interval
equations (here 2-dimensional) may be represented by a sub-region of the 2-dimensional solution
space Oz1zo. Solid lines represent so-called boundary lines, i.e., solution sets of all real equations
obtained from the interval equation by taking all combinations of interval endpoints. Dashed lines
correspond to solution sets for interval midpoints of the coefficients (they will be called midlines in
the sequel). The solution set of the system of equations is the intersection of the sets corresponding
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In every orthant the USS
forms a convex polytope
with at most
2 (n* - n + 1) vertices.

[0,1]1 x,+[1,2]1x,=[-2, 2] ® o Extremal points

[-4,-2]1x,+[1,4]1x,=4 0% Vertex solution set (VSS)

Fig. 2. Graphical construction for USS and VSS. Left: every individual equation of the system of equations
produces its own solution set—a 2-dimensional region; Right: the USS is an intersection of these solution sets
for individual equations

to individual equations (it is also shown separately at the right). The intersection of the central lines
corresponds to the solution of the real system of equations for the midpoints of interval coefficients;
obviously, it is always contained in the USS.

4.1. Vertex solution set

The black and white points in Fig. 2 indicate a vertez solution set (VSS), i.e. the set of solutions
of all real systems of equations whose coefficients are all possible combinations of endpoints of the
coefficients of the matrix A and vector b,

S (vert A, vert b) = {x € R" | (JE € vert A)(3é € vert b)Ex = &}.

They constitute intersections of boundary lines taken from different individual equations of the
system. The VSS is a discrete and finite set of points, with number of elements equal to 2¢ < 2"2+",
where t = ta + tp, is the number of thick intervals in matrices A and b of the system.

Black points in Fig. 2 indicate eztremal points of the USS, i.e. vertices of the convexr hull
conv (A, b) of the USS. Of course, they all belong to VSS. Note, however, that not all vertices of
the USS must belong to the VSS (two such vertices can be seen in Fig. 2).

4.2. Approximations of the USS

Calculating (and representing) the exact solution set ¥(A,b) may be quite hard and impractical,
especially for larger n. Therefore, for many practical purposes we are satisfied with various approx-
imations to this set. The natural approximation is the interval enclosure of the set. The smallest
(tightest) enclosure is the hull of the set, see e.g. [17],

hull 2(A, b) = [inf (A, b),sup £(A, b)].
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interval hull of the USS

outer approximation of the hull

inner approximation of the hull

_[[0,1] [1,2] [r-2,21
-4, -21171, 4] = 4

Fig. 3. Basic types of approximations of the USS

Calculation of an interval hull requires, in general, an NP-hard algorithm [8], despite the fact that
hull (A, b) = hull X(vert A, vert b), and X(vert A, vert b) is discrete and finite; see the previous
Section and Figs. 2 and 3. However, trading computational complexity for estimation accuracy, it
is possible to derive polynomial-time algorithms producing interval estimations that are larger (or
smaller) than the exact hull of the solution set (Fig. 3). There is quite a number of such algorithms,
of various complexity, accuracy, applicability conditions and effectiveness, scattered over a wide
selection of literature sources, e.g. [5, 7, 8, 14, 17, 19, 20, 21, 22, 23, 24]. Some of them are adequately
developed and tested, but the other still require much research. Of much practical importance would
be an appropriate systematization of them, leading to eventual creation of a knowledge base system
giving advice as to which algorithm is best (e.g., fastest or most reliable) for any given system of
interval equations.

4.3. Basic types of united solution sets

The variety of shapes of united solution sets is considerable. Fortunately, they can be classified into
a few basic types, according to the preliminary classification scheme proposed here. In Fig. 4 we
present the most basic types (for n = 2). The examples shown here (and in Sec. 4.4) are all due
to the authors (see also [14]). As in Fig. 2, the dashed lines are midlines for component equations
of the system. One of the simplest type is a rectangular solution set. This type of solution set
occurs, e.g., for a real matrix A with orthogonal rows. Despite its simplicity, in general case there
is no polynomial-time algorithm to find the hull of it—we need to solve at least 2" systems of real
equations, so it is of exponential complexity.

In the second example, the whole solutioni set is contained in one orthant (Fig. 4b). Although
the shape is more complex than the previous one (the matrices contain more interval coefficients,
edges are not parallel), there are known polynomial-time algorithms to find its hull. This is due to
the knowledge that the solution set is contained in one orthant only. When the rectangular solution
set is known to be confined to one orthant, its hull can be found in polynomial time as well.

The next type, a spiked set (Fig. 4c) is probably the most interesting. This shape characterizes
systems near singularity—an analogue of ill-conditioned real systems. The more “spiky” the shape,
the nearer is some real singular matrix to the matrix interval A of the system. Usually, then,
widening (some) intervals in A leads to an even more spiky shape, as it usually brings the matrix
A nearer to singularity.

The solution sets for singular matrices (Fig. 4d, e) produce an unbounded region in the Oz ...z,
space. Note how the singular system in Fig. 4d is obtained from that in Fig. 4c by changing only
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a) rectangular x, A
11
A‘Lzz] il
llm] 4
b-[ 4
(1, 3] LA
-5 ’/f’ - \\ 5 il
-5
c) spiked
X, A
_[QHUJq
A_[-4P&M ]

[t-1,21
b‘[o ]

e) singular

disconnected

_1M0,2] 1
A’[—thn

o, 21
b‘[z ]

e
~~
S

b) simple

Seee
A_LLH[LM]

TR
b‘[ 5 ]

X, A

]

B T e

-5 ’,’ S5 X
-5
d) singular
% A
. 1.10,.1] [1; 2]
A‘[—4p%u
_{ -1, 2]
b‘[ 0 ]
S Z
5 ;

Fig. 4. Examples of some proposed basic shapes of united solution sets: rectangular—intervals only in

b, while A is real with orthogonal rows (a); simple—the whole solution set confined to one orthant (b);

spiked—with long spikes, usually due to large interval widths (c); singular—when spikes go to infinity (d);
singular disconnected—with two disconnected components (more components possible for n > 2) (e)

the lower bound ay, of the coefficient age from —3 to —4. When a5, moves down from —3, the
spikes in Fig. 4c become longer and longer until finally they go to infinity (with the sides of the
spikes becoming parallel for a9 = —4), when the matrix A becomes singular. For certain singular
matrices, the solution set may become even disconnected (Fig. 4e). Exact conditions for that to

occur were not yet published.
The appropriate classification of solution set shapes has direct application for fitting appropriate

solution method to the given system of equations (i.e., given interval matrix A of the system), as
was indicated above.

4.4. Dependence of the USS on interval width

In many applications, it is required to analyze the behaviour of solutions when the degree of un-
certainty of data is varied. That translates to varying the widths of the interval coefficients of the
system. Hence, investigation of how the solution set depends on the width of interval coefficients
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X, A

-10

Fig. 5. Dependence of the USS on widths of interval coefficients. The example illustrates how much the
solution type might change by scaling widths of coefficients (the last system is singular!)

of matrix A and vector b becomes of great significance. Figure 5 presents an example. First, we
solved an exemplary system of interval equations obtaining a simple solution set (Fig. 5a). How-
ever, the system with doubled widths of coefficients (Fig. 5b) gives a quite different type of solution
set—a spiked one. Again, a system of equations with coefficient widths doubled once more leads to
a singular system with an unbounded solution set (Fig. 5¢).

The example indicates that greater uncertainty of data (or parameters of the real-world system
modelled by an interval system of equations) may lead to interval problems that are less tractable
or even unbounded. That may reflect adequately the properties of the modelled system (e.g., of
a truss that becomes a mechanism). However, in some cases that may be a result of overestimation
effects of interval arithmetic. These effects, and how to avoid them, are discussed in the next three
sections of the paper.

5. OVERESTIMATION PROBLEM FOR INTERVAL ENCLOSURES

As it was mentioned before, certain formal properties of interval arithmetic, like that the usual
distributive law is not valid (only the weaker subdistributive law holds), may lead to overestimation
errors during calculation of interval expressions. Indeed, if not taken properly into account, these
effects may severely diminish the accuracy of interval estimates of solutions to linear systems of even
moderate complexity. In this and the next sections, we attempt to explain the effects in more detail,
show how they affect the accuracy of interval estimations, and discuss possible remedies to the
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problem. The following definitions and notations essentially follow [4, 17] with some modifications,
while the examples used and their analysis are mostly due to the authors.
Let us consider a real function f(x) : R* — R and an interval function F'(u) : IR* — IR.

Definition 1. A function fr(u) = {f(x) | x € u} is called an interval range of f(x) over u € IR".

Definition 2. If (Vx € u) f(x) € F(u) then the function F(u) is called an interval enclosure
of f(x).

Definition 3. An interval extension is such an interval enclosure for which F(x) = f(x) for all
thin x (i.e., for x € R*).

Definition 4. An interval function F is inclusion monotonic if u C v = F(u) C F(v).

The most important kind of an interval extension, called a natural interval extension, is an interval
function F(u) obtained from an expression for a real function f(x) by replacing all real variables
in the expression by interval variables. Every natural interval extension that uses only operations
{+,—,",/,9?} is also inclusion monotonic. However, different expressions (though equivalent for real
arguments) may lead to different interval enclosures (in the sense that the interval functions defined
by them are different), usually with different overestimation of the interval range (cf. examples
below).

Theorem 1 (Fundamental theorem of interval arithmetic)
If an interval enclosure F'(u) is inclusion monotonic then fr(u) C F(u), i.e., an interval enclosure
F(u) of f(x) for an interval u contains the range of the function f(x) over u.

Due to that, fortunately, we know that the result of evaluation of a natural interval enclosure will
be always at most an overestimation—we never obtain an interval smaller than the correct range
of the function. Unfortunately, for many cases (e.g., when a variable appears in the expression for
f(x) more than once) the overestimation may be quite significant.

Two simple, one-dimensional examples are shown in Fig. 6. First, consider the expression fi(z) =
1/(141/z). In standard arithmetic, for z # 0, it is equivalent to a simpler formula fo(z) = z/(z+1),
requiring only one division instead of two required for fi(z), but containing the variable z twice.
That is, both expressions fi(z) and fo(z) define the same real function f(z) of real variable .
However, natural interval extensions Fj(u) and Fy(u) are not equivalent. Indeed, putting u = [1, 3]
and calculating F;(u) and Fy(u) using interval arithmetic rules, one gets

Fi([1,3) =1/ +1/[1,3]) = 1/(1 + [1/3,1]) = 1/[4/3,2] = [1/2,3/4],
which is equal to the range fr([1,3]), whereas
Fy([1,3]) = [1,3]/([1,3] +1) = [1,3]/[2,4] = [1,3] - [1/4,1/2] = [1/4,3/2].

Thus, Fy([1,3]) # Fi([1,3]) = fr([1,3]), and calculation according to the seemingly simpler formula
Fy(u) overestimates significantly the value of fr(u). However, we have still fr(u) C Fy(u), as
prescribed by Theorem 1 (Fig. 6a).

The problem is that many functions cannot be expressed in the form in which the variables occur
only once (or in certain other forms for which the overestimation problem does not arise [1]).

The second example (Fig. 6b) shows a function h(z) = 22 + z for which there is no arithmetic
expression containing the variable z only once. Hence, all its natural interval extensions overestimate
the range hg(u) for some interval arguments u. E.g., the three natural interval extensions for h(z),

Hi(u) = u? +u,
Hy(u) = u- (u+1),
Hj(u) = u-u+u,
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a) iy 3A fx) ) = _1_1__%_ . ﬁ
/ ; ol F.w)=1/(1+1/u)
Fw=u/(u+1)
_________________ P b i
S o e
»
=
b) A 7 h(x) = 2 + x
h(x) 3 / H@W=u+u
e . Hw-=u-(u+1)
: < | E,, H@W=u-u+u
o -1u =t foru=1-1,11

-2

Fig. 6. Examples of overestimation of interval enclosures

evaluate for u = A = [—1, 1] as follows,

Hl([_l, 1]) = [‘1’ 1]2 * [—‘17 1] = [Ov 1] i+ [—la 1] == [_172]7
Hy([-1,1]) = [-1,1] - ([-L,1] +1) = [-1,1] - [0,2] = [-2,2],
HS([_lv 1]) 5 [_17 1] ' [_1’ 1] T [_1’ 1] =3 [_17 1] -+ [”‘1’ 1] = [_272] = H?([_l’ 1])

Note that when evaluating u? in H; we used the generic definition of an extension of real functions
to interval operands, according to Eq. (1). Otherwise we would have got an overestimation of the
value of u? that would in effect change H; into Hj. Since hp([—1,1]) = [~1/4,2], see Fig. 6b,
then every of the interval extensions Hy, Ho, H3 overestimates the range in this case. However, the
inclusion property according to Theorem 1 holds for all of them, as expected.

6. COEFFICIENT DEPENDENCE AND PARAMETRIC SOLUTIONS

When one applies an interval formulation to some real-life system with uncertainties (e.g., to a linear
mechanical problem), the interval coefficients of the resulting matrices of the system of equations
usually depend, in often complex ways, on several uncertain (that is, interval) parameters of the
original system. Realization of this situation leads to the so-called parametric formulation for the
system of interval equations [6, 14, 22]. Let coefficients of a matrix A and a vector b be functions
of some vector of interval parameters p. The parametric formulation of the system of linear interval
equations is then given as

A(p)x = b(p),

where p;, 1 = 1,...,k, are given parameters varying over specified intervals and for every p € p,
A(p) and b(p) are real matrices.

with P:(PI,P%,pk)a (9)
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6.1. Parametric solution set

For the parametric formulation, the analogue of the USS is the so-called parametric solution set
(PSS), defined naturally as (cf. Eq. (6))

S(A(p),b(p)) = {Xx € R" | (3p € p) A(P)Xx = b(P)}- (10)

Since, usually, many different coefficients of the matrix A and the vector b depend on the same
parameters, the variability of the coefficients within their intervals is no longer independent (as
is assumed in the classical formulation). Hence, in the resulting expression for the (analytical)
solution x the same parameter occurs several times. Due to the properties of interval arithmetic
explained in the previous section, solving such interval systems with interval arithmetic without
taking the dependence into account produces usually much larger solution set than the true one
defined by Eq. (10). Note that the USS is a limit case of PSS (when all the matrix coefficients
themselves are considered as parameters).

Examples of two-dimensional parametric solution sets (see [14], with some modifications) are
shown in Fig. 7. The midlines are shown dashed, as before. The midpoint solution (the intersection
of midlines) must belong here to PSS due to continuous dependence of the coefficients on the
parameter p. You can compare the USS (light gray) with the PSS (dark gray region in Fig 7a, a
curved line in Fig 7b). Both black and white points correspond to the vertex solution set (of the

% 1h

a) -
b il i Z(A, b) 7 T(A®), b))
i oo X(vert A, vertb) o S(A(vert p), b(vert p))

O hull (A, b) 7 hull S(A(p), b(p))
o1 2], _ [io2]

A‘[-z iabkr [ 0 ]

py lp, 2p,

Alp) - , b = |2, b, 0,1

®) [_2 3,,1_1] ®) [0] Py €0, 1]
b)

2(A, b)

Jo Y(vert A, vert b)
o* Y(A(vert p), b(vert p))
 Z(A®), b))

12 A S

\ o0 i wils b i {10480
vl Lo M

i I 1 1 _|2p
A(P)_ {_1 2p_1]: b(P)— [ 2]: PG[O, 1]

Fig. 7. Parametric solution set is usually much smaller than the corresponding USS, also for singular
systems, where it can be bounded as well (b)
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USS), while the black ones correspond to a parametric vertez solution set PVSS, i.e. the set of
solutions for the boundary of the interval parameter vector p (that is, for all members of vert p),

Y (A(vert p),b(vert p)) = {x € R" | (3p € vert p) A(p)x = b(p)}.
Generally
PVSS C PSS C USS.

Note that in general case neither VSS C PVSS nor PVSS C VSS hold (though the second inclusion
holds for the examples in Fig. 7: this occurs when every coefficient of the system depends on at
most one parameter). Moreover, in many cases, not taking the parameter dependence into account
may lead to singularity of the matrix A (see Sec. 4.4), while (A (p), b(p)) remains still bounded
and small, see Fig. 7b.

An attempt to calculate the hull of the PSS of Eq. (10) by calculating the hull of PVSS, that is by
solving 2* systems of real equations for all combinations of endpoints of the interval parameters p;
(i.e. for all members of vert p), will not produce valid results unless it is assured that components of
the solution vector x depend monotonically upon all p;’s. This is rarely the case: as is shown by the
examples in Fig. 7, even when every coefficient of the system depends linearly and monotonically on
a single interval parameter, the solution depends on the parameter p non-monotonically. Hence, in
general, only the inclusion relation between hulls of PVSS and PSS holds, so that the hull of PVSS
is an inner estimation of the hull of PSS,

hull £(A (vert p), b(vert p)) C hull X(A(p), b(p)) C hull (A, b),

provided the appropriate hulls exist—e.g., hullX(A,b) does not exist for the example in Fig. 7b
since ¥(A,b) in this case is unbounded (or, alternatively, we may consider it to be equal to the
whole Oz,z5 plane—in this way the above inclusions are also valid for unbounded solution sets).

6.2. Linear and symmetric solution sets

There are only a few results concerning solving the general problem of finding interval estimates
for functions, or linear interval systems of equations, depending on interval parameters. When the
dependence of the coefficients of the system matrices A and b on interval parameters p is linear,
i.e. when ai;j(p) and b;(p) are linear functions of p € R¥ | the corresponding PSS is called linear
parametric solution set (LPSS) and denoted as i, (A (p), b(p)). General characterizations of shapes
of the i, (A(p), b(p)) solution set were not investigated yet. Note that both examples in Fig. 7
are linear parametric. The first attempt to develop an algorithm for inner and outer estimation of
the LPSS has been reported by Rump [22], as a generalization of Jansson’s method for symmetric
matrices [6].

An important special case of the linear dependence is given when the coefficients of the matrix A
are considered as parameters (components of the vector p), but the matrix is required to be always
symmetric, i.e. A(p) = A(p)" and thus a;;(p) = aji(p) = pij, bi(P) = pi, p = {pi;} U {pi}. Such a
situation occurs for many linear mechanical systems, e.g. trusses [14]. In this case, the solution set
is defined as

Seym(A,b) ={X€R* |(GAc A, A=AT)(Fbeb)Ax=b}, A=AT (11)

Jansson [6] describes the method working with this symmetry constraint. Figure 8 shows an
example of an interval system (due to Behnke, also used by Rump [22]), with the symmetric solution
set marked. Note the curved boundaries of the set: according to [2], in general the symmetric solution
set is bounded by quadratic curves or (hyper)surfaces.
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X, A}
¢ YA, b)

e > (vert A, vert b)
3 Zm(A, b) = Z(AD), b(p))
2

A- [ B "‘I, p e (1, 2]

py 3

1

b - [ 2] Py P, € [10, 10.5]

Fig. 8. A Rump-Behnke example [22] of a symmetric solution set

7. CONCLUSIONS

In the paper several basic types of solution sets for systems of interval equations have been presented
and discussed. A special attention has been given to the construction and properties of the united
solution set and the effects of coefficient dependence leading to the parametric solution set.

Systems of linear interval equations and their solutions constitute a much richer and more com-
plex domain than classic systems of (real) linear equations. Hence, they require a much more complex
analysis, including development of new analytical tools. Also, computational algorithms for finding
the solutions or approximating them become more complex, which asks for searching for meth-
ods specialized to different types of problems. To achieve that goal, we need more comprehensive
characterization and classification of various types of solutions.

The very important problem of overestimation of interval enclosures (or coefficient dependence)
requires special treatment and construction of algorithms. Especially important, but still not solved
satisfactorily, is here the problem of finding effective methods and algorithms for calculating the
parametric solution sets and their approximations.

Another result of our work is the realization of the fact that in interval formulation the practical
importance of singular systems is much greater than in applications of standard linear systems.
Analysis and characterization of singular interval systems will require development of new formal
and computational tools.

From the experience of the authors it also follows that diagrammatic methods of representation
and analysis are very useful for more comprehensible characterization and understanding of the
domain.
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